Search results for: innovation efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8196

Search results for: innovation efficiency

246 Performance of the Abbott RealTime High Risk HPV Assay with SurePath Liquid Based Cytology Specimens from Women with Low Grade Cytological Abnormalities

Authors: Alexandra Sargent, Sarah Ferris, Ioannis Theofanous

Abstract:

The Abbott RealTime High Risk HPV test (RealTime HPV) is one of five assays clinically validated and approved by the English NHS Cervical Screening Programme (CSP) for HPV triage of low grade dyskaryosis and test-of-cure of treated Cervical Intraepithelial Neoplasia. The assay is a highly automated multiplex real-time PCR test for detecting 14 high risk (hr) HPV types, with simultaneous differentiation of HPV 16 and HPV 18 versus non-HPV 16/18 hrHPV. An endogenous internal control ensures sample cellularity, controls extraction efficiency and PCR inhibition. The original cervical specimen collected in SurePath (SP) liquid-based cytology (LBC) medium (BD Diagnostics) and the SP post-gradient cell pellets (SPG) after cytological processing are both CE marked for testing with the RealTime HPV test. During the 2011 NHSCSP validation of new tests only the original aliquot of SP LBC medium was investigated. Residual sample volume left after cytology slide preparation is low and may not always have sufficient volume for repeat HPV testing or for testing of other biomarkers that may be implemented in testing algorithms in the future. The SPG samples, however, have sufficient volumes to carry out additional testing and necessary laboratory validation procedures. This study investigates the correlation of RealTime HPV results of cervical specimens collected in SP LBC medium from women with low grade cytological abnormalities observed with matched pairs of original SP LBC medium and SP post-gradient cell pellets (SPG) after cytology processing. Matched pairs of SP and SPG samples from 750 women with borderline (N = 392) and mild (N = 351) cytology were available for this study. Both specimen types were processed and parallel tested for the presence of hrHPV with RealTime HPV according to the manufacturer´s instructions. HrHPV detection rates and concordance between test results from matched SP and SPGCP pairs were calculated. A total of 743 matched pairs with valid test results on both sample types were available for analysis. An overall-agreement of hrHPV test results of 97.5% (k: 0.95) was found with matched SP/SPG pairs and slightly lower concordance (96.9%; k: 0.94) was observed on 392 pairs from women with borderline cytology compared to 351 pairs from women with mild cytology (98.0%; k: 0.95). Partial typing results were highly concordant in matched SP/SPG pairs for HPV 16 (99.1%), HPV 18 (99.7%) and non-HPV16/18 hrHPV (97.0%), respectively. 19 matched pairs were found with discrepant results: 9 from women with borderline cytology and 4 from women with mild cytology were negative on SPG and positive on SP; 3 from women with borderline cytology and 3 from women with mild cytology were negative on SP and positive on SPG. Excellent correlation of hrHPV DNA test results was found between matched pairs of SP original fluid and post-gradient cell pellets from women with low grade cytological abnormalities tested with the Abbott RealTime High-Risk HPV assay, demonstrating robust performance of the test with both specimen types and reassuring the utility of the assay for cytology triage with both specimen types.

Keywords: Abbott realtime test, HPV, SurePath liquid based cytology, surepath post-gradient cell pellet

Procedia PDF Downloads 258
245 Technology Assessment of the Collection of Cast Seaweed and Use as Feedstock for Biogas Production- The Case of SolrøD, Denmark

Authors: Rikke Lybæk, Tyge Kjær

Abstract:

The Baltic Sea is suffering from nitrogen and phosphorus pollution, which causes eutrophication of the maritime environment and hence threatens the biodiversity of the Baltic Sea area. The intensified quantity of nutrients in the water has created challenges with the growth of seaweed being discarded on beaches around the sea. The cast seaweed has led to odor problems hampering the use of beach areas around the Bay of Køge in Denmark. This is the case in, e.g., Solrød Municipality, where recreational activities have been disrupted when cast seaweed pile up on the beach. Initiatives have, however, been introduced within the municipality to remove the cast seaweed from the beach and utilize it for renewable energy production at the nearby Solrød Biogas Plant, thus being co-digested with animal manure for power and heat production. This paper investigates which type of technology application’s have been applied in the effort to optimize the collection of cast seaweed, and will further reveal, how the seaweed has been pre-treated at the biogas plant to be utilized for energy production the most efficient, hereunder the challenges connected with the content of sand. Heavy metal contents in the seaweed and how it is managed will also be addressed, which is vital as the digestate is utilized as soil fertilizer on nearby farms. Finally, the paper will outline the energy production scheme connected to the use of seaweed as feedstock for biogas production, as well as the amount of nitrogen-rich fertilizer produced. The theoretical approach adopted in the paper relies on the thinking of Circular Bio-Economy, where biological materials are cascaded and re-circulated etc., to increase and extend their value and usability. The data for this research is collected as part of the EU Interreg project “Cluster On Anaerobic digestion, environmental Services, and nuTrients removAL” (COASTAL Biogas), 2014-2020. Data gathering consists of, e.g., interviews with relevant stakeholders connected to seaweed collection and operation of the biogas plant in Solrød Municipality. It further entails studies of progress and evaluation reports from the municipality, analysis of seaweed digestion results from scholars connected to the research, as well as studies of scientific literature to supplement the above. Besides this, observations and photo documentation have been applied in the field. This paper concludes, among others, that the seaweed harvester technology currently adopted is functional in the maritime environment close to the beachfront but inadequate in collecting seaweed directly on the beach. New technology hence needs to be developed to increase the efficiency of seaweed collection. It is further concluded that the amount of sand transported to Solrød Biogas Plant with the seaweed continues to pose challenges. The seaweed is pre-treated for sand in a receiving tank with a strong stirrer, washing off the sand, which ends at the bottom of the tank where collected. The seaweed is then chopped by a macerator and mixed with the other feedstock. The wear down of the receiving tank stirrer and the chopper are, however, significant, and new methods should be adopted.

Keywords: biogas, circular bio-economy, Denmark, maritime technology, cast seaweed, solrød municipality

Procedia PDF Downloads 293
244 Lake of Neuchatel: Effect of Increasing Storm Events on Littoral Transport and Coastal Structures

Authors: Charlotte Dreger, Erik Bollaert

Abstract:

This paper presents two environmentally-friendly coastal structures realized on the Lake of Neuchâtel. Both structures reflect current environmental issues of concern on the lake and have been strongly affected by extreme meteorological conditions between their period of design and their actual operational period. The Lake of Neuchatel is one of the biggest Swiss lakes and measures around 38 km in length and 8.2 km in width, for a maximum water depth of 152 m. Its particular topographical alignment, situated in between the Swiss Plateau and the Jura mountains, combines strong winds and large fetch values, resulting in significant wave heights during storm events at both north-east and south-west lake extremities. In addition, due to flooding concerns, historically, lake levels have been lowered by several meters during the Jura correction works in the 19th and 20th century. Hence, during storm events, continuous erosion of the vulnerable molasse shorelines and sand banks generate frequent and abundant littoral transport from the center of the lake to its extremities. This phenomenon does not only cause disturbances of the ecosystem, but also generates numerous problems at natural or man-made infrastructures located along the shorelines, such as reed plants, harbor entrances, canals, etc. A first example is provided at the southwestern extremity, near the city of Yverdon, where an ensemble of 11 small islands, the Iles des Vernes, have been artificially created in view of enhancing biological conditions and food availability for bird species during their migration process, replacing at the same time two larger islands that were affected by lack of morphodynamics and general vegetalization of their surfaces. The article will present the concept and dimensioning of these islands based on 2D numerical modelling, as well as the realization and follow-up campaigns. In particular, the influence of several major storm events that occurred immediately after the works will be pointed out. Second, a sediment retention dike is discussed at the northeastern extremity, at the entrance of the Canal de la Broye into the lake. This canal is heavily used for navigation and suffers from frequent and significant sedimentation at its outlet. The new coastal structure has been designed to minimize sediment deposits around the exutory of the canal into the lake, by retaining the littoral transport during storm events. The article will describe the basic assumptions used to design the dike, as well as the construction works and follow-up campaigns. Especially the huge influence of changing meteorological conditions on the littoral transport of the Lake of Neuchatel since project design ten years ago will be pointed out. Not only the intensity and frequency of storm events are increasing, but also the main wind directions alter, affecting in this way the efficiency of the coastal structure in retaining the sediments.

Keywords: meteorological evolution, sediment transport, lake of Neuchatel, numerical modelling, environmental measures

Procedia PDF Downloads 85
243 Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens

Authors: Dereje Regasa

Abstract:

The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system.

Keywords: agroecology, diversity, recycling, sustainable food system, transition

Procedia PDF Downloads 87
242 Waste Scavenging as a Waste-to-Wealth Strategy for Waste Reduction in Port Harcourt City Nigeria: A Mixed Method Study

Authors: Osungwu Emeka

Abstract:

Until recently, Port Harcourt was known as the “Garden City of Nigeria” because of its neatness and the overwhelming presence of vegetation all over the metropolis. But today, the presence of piles of refuse dotting the entire city may have turned Port Harcourt into a “Garbage City”. Indiscriminate dumping of industrial, commercial and household wastes such as food waste, paper, polythene, textiles, scrap metals, glasses, wood, plastic, etc. at street corners and gutters, is still very common. The waste management problem in the state affects the citizens both directly and indirectly. The dumping of waste along the roadside obstructs traffic and, after mixing with rain water may sip underground with the possibility of the leachate contaminating the groundwater. The basic solid waste management processes of collection, transportation, segregation and final disposal appear to be very inefficient. This study was undertaken to assess waste utilization using metal waste scavengers. Highlighting their activities as a part of the informal sector of the solid waste management system with a view to identifying their challenges, prospects and possible contributions to the solid waste management system in the Port Harcourt metropolis. Therefore, the aim was to understand and assess scavenging as a system of solid waste management in Port Harcourt and to identify the main bottlenecks to its efficiency and the way forward. This study targeted people who engage in scavenging metal scraps across 5 major waste dump sites across Port Harcourt. To achieve this, a mixed method study was conducted to provide both experiential evidence on this waste utilization method using a qualitative study and a survey to collect numeric evidence on this subject. The findings from the qualitative string of this study provided insight on scavenging as a waste utilization activity and how their activities can reduce the gross waste generated and collected from the subject areas. It further showed the nature and characteristics of scavengers in the waste recycling system as a means of achieving the millennium development goals towards poverty alleviation, job creation and the development of a sustainable, cleaner environment. The study showed that in Port Harcourt, the waste management practice involves the collection, transportation and disposal of waste by refuse contractors using cart pushers and disposal vehicles at designated dumpsites where the scavengers salvage metal scraps for recycling and reuse. This study further indicates that there is a great demand for metal waste materials/products that are clearly identified as genuinely sustainable, even though they may be perceived as waste. The market for these waste materials shall promote entrepreneurship as a profitable venture for waste recovery and recycling in Port Harcourt. Therefore, the benefit of resource recovery and recycling as a means of the solid waste management system will enhance waste to wealth that will reduce pollution, create job opportunities thereby alleviate poverty.

Keywords: scavengers, metal waste, waste-to-wealth, recycle, Port Harcourt, Nigeria, waste reduction, garden city, waste

Procedia PDF Downloads 98
241 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis

Procedia PDF Downloads 418
240 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 157
239 Double Liposomes Based Dual Drug Delivery System for Effective Eradication of Helicobacter pylori

Authors: Yuvraj Singh Dangi, Brajesh Kumar Tiwari, Ashok Kumar Jain, Kamta Prasad Namdeo

Abstract:

The potential use of liposomes as drug carriers by i.v. injection is limited by their low stability in blood stream. Firstly, phospholipid exchange and transfer to lipoproteins, mainly HDL destabilizes and disintegrates liposomes with subsequent loss of content. To avoid the pain associated with injection and to obtain better patient compliance studies concerning various dosage forms, have been developed. Conventional liposomes (unilamellar and multilamellar) have certain drawbacks like low entrapment efficiency, stability and release of drug after single breach in external membrane, have led to the new type of liposomal systems. The challenge has been successfully met in the form of Double Liposomes (DL). DL is a recently developed type of liposome, consisting of smaller liposomes enveloped in lipid bilayers. The outer lipid layer of DL can protect inner liposomes against various enzymes, therefore DL was thought to be more effective than ordinary liposomes. This concept was also supported by in vitro release characteristics i.e. DL formation inhibited the release of drugs encapsulated in inner liposomes. DL consists of several small liposomes encapsulated in large liposomes, i.e., multivesicular vesicles (MVV), therefore, DL should be discriminated from ordinary classification of multilamellar vesicles (MLV), large unilamellar vesicles (LUV), small unilamellar vesicles (SUV). However, for these liposomes, the volume of inner phase is small and loading volume of water-soluble drugs is low. In the present study, the potential of phosphatidylethanolamine (PE) lipid anchored double liposomes (DL) to incorporate two drugs in a single system is exploited as a tool to augment the H. pylori eradication rate. Preparation of DL involves two steps, first formation of primary (inner) liposomes by thin film hydration method containing one drug, then addition of suspension of inner liposomes on thin film of lipid containing the other drug. The success of formation of DL was characterized by optical and transmission electron microscopy. Quantitation of DL-bacterial interaction was evaluated in terms of percent growth inhibition (%GI) on reference strain of H. pylori ATCC 26695. To confirm specific binding efficacy of DL to H. pylori PE surface receptor we performed an agglutination assay. Agglutination in DL treated H. pylori suspension suggested selectivity of DL towards the PE surface receptor of H. pylori. Monotherapy is generally not recommended for treatment of a H. pylori infection due to the danger of development of resistance and unacceptably low eradication rates. Therefore, combination therapy with amoxicillin trihydrate (AMOX) as anti-H. pylori agent and ranitidine bismuth citrate (RBC) as antisecretory agent were selected for the study with an expectation that this dual-drug delivery approach will exert acceptable anti-H. pylori activity.

Keywords: Helicobacter pylorI, amoxicillin trihydrate, Ranitidine Bismuth citrate, phosphatidylethanolamine, multi vesicular systems

Procedia PDF Downloads 207
238 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
237 Investigations on the Fatigue Behavior of Welded Details with Imperfections

Authors: Helen Bartsch, Markus Feldmann

Abstract:

The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.

Keywords: effective notch stress, fatigue, fatigue design, weld imperfections

Procedia PDF Downloads 260
236 Traditional Rainwater Harvesting Systems: A Sustainable Solution for Non-Urban Populations in the Mediterranean

Authors: S. Fares, K. Mellakh, A. Hmouri

Abstract:

The StorMer project aims to set up a network of researchers to study traditional hydraulic rainwater harvesting systems in the Mediterranean basin, a region suffering from the major impacts of climate change and limited natural water resources. The arid and semi-arid Mediterranean basin has a long history of pioneering water management practices. The region has developed various ancient traditional water management systems, such as cisterns and qanats, to sustainably manage water resources under historical conditions of scarcity. Therefore, the StorMer project brings together Spain, France, Italy, Greece, Jordan and Morocco to explore traditional rainwater harvesting practices and systems in the Mediterranean region and to develop accurate modeling to simulate the performance and sustainability of these technologies under present-day climatic conditions. The ultimate goal of this project was to resuscitate and valorize these practices in the context of contemporary challenges. This project was intended to establish a Mediterranean network to serve as a basis for a more ambitious project. The ultimate objective was to analyze traditional hydraulic systems and create a prototype hydraulic ecosystem using a coupled environmental approach and traditional and ancient know-how, with the aim of reinterpreting them in the light of current techniques. The combination of ‘traditional’ and ‘modern knowledge/techniques’ is expected to lead to proposals for innovative hydraulic systems. The pandemic initially slowed our progress, but in the end it forced us to carry out the fieldwork in Morocco and Saudi Arabia, and so restart the project. With the participation of colleagues from chronologically distant fields (archaeology, sociology), we are now prepared to share our observations and propose the next steps. This interdisciplinary approach should give us a global vision of the project's objectives and challenges. A diachronic approach is needed to tackle the question of the long-term adaptation of societies in a Mediterranean context that has experienced several periods of water stress. The next stage of the StorMer project is the implementation of pilots in non-urbanized regions. These pilots will test the implementation of traditional systems and will be maintained and evaluated in terms of effectiveness, cost and acceptance. Based on these experiences, larger projects will be proposed and could provide information for regional water management policies. One of the most important lessons learned from this project is the highly social nature of managing traditional rainwater harvesting systems. Unlike modern, centralized water infrastructures, these systems often require the involvement of communities, which assume ownership and responsibility for them. This kind of community engagement leads to greater maintenance and, therefore, sustainability of the systems. Knowledge of the socio-cultural characteristics of these communities means that the systems can be adapted to the needs of each location, ensuring greater acceptance and efficiency.

Keywords: oasis, rainfall harvesting, arid regions, Mediterranean

Procedia PDF Downloads 40
235 Sugarcane Trash Biochar: Effect of the Temperature in the Porosity

Authors: Gabriela T. Nakashima, Elias R. D. Padilla, Joao L. Barros, Gabriela B. Belini, Hiroyuki Yamamoto, Fabio M. Yamaji

Abstract:

Biochar can be an alternative to use sugarcane trash. Biochar is a solid material obtained from pyrolysis, that is a biomass thermal degradation with low or no O₂ concentration. Pyrolysis transforms the carbon that is commonly found in other organic structures into a carbon with more stability that can resist microbial decomposition. Biochar has a versatility of uses such as soil fertility, carbon sequestration, energy generation, ecological restoration, and soil remediation. Biochar has a great ability to retain water and nutrients in the soil so that this material can improve the efficiency of irrigation and fertilization. The aim of this study was to characterize biochar produced from sugarcane trash in three different pyrolysis temperatures and determine the lowest temperature with the high yield and carbon content. Physical characterization of this biochar was performed to help the evaluation for the best production conditions. Sugarcane (Saccharum officinarum) trash was collected at Corredeira Farm, located in Ibaté, São Paulo State, Brazil. The farm has 800 hectares of planted area with an average yield of 87 t·ha⁻¹. The sugarcane varieties planted on the farm are: RB 855453, RB 867515, RB 855536, SP 803280, SP 813250. Sugarcane trash was dried and crushed into 50 mm pieces. Crucibles and lids were used to settle the sugarcane trash samples. The higher amount of sugarcane trash was added to the crucible to avoid the O₂ concentration. Biochar production was performed in three different pyrolysis temperatures (200°C, 325°C, 450°C) in 2 hours residence time in the muffle furnace. Gravimetric yield of biochar was obtained. Proximate analysis of biochar was done using ASTM E-872 and ABNT NBR 8112. Volatile matter and ash content were calculated by direct weight loss and fixed carbon content calculated by difference. Porosity measurement was evaluated using an automatic gas adsorption device, Autosorb-1, with CO₂ described by Nakatani. Approximately 0.5 g of biochar in 2 mm particle sizes were used for each measurement. Vacuum outgassing was performed as a pre-treatment in different conditions for each biochar temperature. The pore size distribution of micropores was determined using Horváth-Kawazoe method. Biochar presented different colors for each treatment. Biochar - 200°C presented a higher number of pieces with 10mm or more and did not present the dark black color like other treatments after 2 h residence time in muffle furnace. Also, this treatment had the higher content of volatiles and the lower amount of fixed carbon. In porosity analysis, while the temperature treatments increase, the amount of pores also increase. The increase in temperature resulted in a biochar with a better quality. The pores in biochar can help in the soil aeration, adsorption, water retention. Acknowledgment: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil – PROAP-CAPES, PDSE and CAPES - Finance Code 001.

Keywords: proximate analysis, pyrolysis, soil amendment, sugarcane straw

Procedia PDF Downloads 214
234 An Unusual Manifestation of Spirituality: Kamppi Chapel of Helsinki

Authors: Emine Umran Topcu

Abstract:

In both urban design and architecture, the primary goal is considered to be looking for ways in which people feel and think about space and place. Humans, in general, see a place as security and space as freedom and feel attached to place and long for space. Contemporary urban design manifests itself by addressing basic physical and psychological human needs. Not much attention is paid to transcendence. There seems to be a gap in the hierarchy of human needs. Usually, social aspects of public space are addressed through urban design. More personal and intimately scaled needs of an individual are neglected. How does built form contribute to an individual’s growth, contemplation, and exploration? In other words, a greater meaning in the immediate environment. Architects love to talk about meaning, poetics, attachment and other ethereal aspects of space that are not visible attributes of places. This paper aims at describing spirituality through built form with a personal experience of Kamppi Chapel of Helsinki. Experience covers various modes through which a person unfolds or constructs reality. Perception, sensation, emotion, and thought can be counted as for these modes. To experience is to get to know. What can be known is a construct of experience. Feelings and thoughts about space and place are very complex in human beings. They grow out of life experiences. The author had the chance of visiting Kamppi Chapel in April 2017, out of which the experience grew. The Kamppi Chapel is located on the South side of the busy Narinnka Square in central Helsinki. It offers a place to quiet down and compose oneself in a most lively urban space. With its curved wooden facade, the small building looks more like a museum than a chapel. It can be called a museum for contemplation. With its gently shaped interior, it embraces visitors and shields them from the hustle bustle of the city outside. Places of worship in all faiths signify sacred power. The author, having origins in a part of the world where domes and minarets dominate the cityscape, was impressed by the size and the architectural visibility of the Chapel. Anyone born and trained in such a tradition shares the inherent values and psychological mechanisms of spirituality, sacredness and the modest realities of their environment. Spirituality in all cultural traditions has not been analyzed and reinterpreted in new conceptual frameworks. Fundamentalists may reject this positivist attitude, but Kamppi Chapel as it stands does not look like it has a say like “I’m a model to be followed”. It just faces the task of representing a religious facility in an urban setting largely shaped by modern urban planning, which seems to the author as looking for a new definition of individual status. The quest between the established and the new is the demand for modern efficiency versus dogmatic rigidity. The architecture here has played a very promising and rewarding role for spirituality. The designers have been the translators for human desire for better life and aesthetic environment for an optimal satisfaction of local citizens and the visitors alike.

Keywords: architecture, Kamppi Chapel, spirituality, urban

Procedia PDF Downloads 182
233 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin

Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng

Abstract:

The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.

Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin

Procedia PDF Downloads 76
232 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 138
231 Determination of Energy and Nutrients Composition of Potential Ready-to-Use Therapeutic Food Formulated from Locally Available Resources

Authors: Amina Sa'id Muhammad, Asmau Ishaq Alhassan, Beba Raymond, Fatima Bello

Abstract:

Severe acute malnutrition (SAM) remains a major killer of children under five years of age. Nigeria has the second highest burden of stunted children in the world, with a national prevalence rate of 32 percent of children under five. An estimated 2 million children in Nigeria suffer from severe acute malnutrition (SAM), and 3.9% of children in northwest Nigeria suffer from SAM, which is significantly higher than the national average of 2.1%. Community-Based Management of Acute Malnutrition (CMAM) has proven to be an effective intervention in the treatment of SAM in children using Ready-to-Use Therapeutic Food (RUTF). Ready-to-use therapeutic food (RUTF) is a key component for the treatment of Severe Acute Malnutrition. It contains all the energy and nutrients required for rapid catch-up growth and used particularly in the treatment of children over 6 months of age with SAM without medical complications. However, almost all RUTFs are currently imported to Nigeria from other countries. Shortages of RUTF due to logistics (shipping costs, delays, donor fatigue etc) and funding issues present a threat to the achievement of the 2030 World Health Assembly (WHA) targets for reducing malnutrition in addition to 2030 SDGs 2 (Zero Hunger), 3 (Good Health and Wellbeing), 12 (Responsible Consumption and Production), and 17 (Partnerships for the Goals), thus undermining its effectiveness in combating malnutrition On the other hand, the availability of human and material resources that will aid local production of RUTF presents an opportunity to fill in the gap in regular RUTF supply. About one thousand Nigerian children die of malnutrition-related causes every day, reaching a total of 361,000 each year. Owing to the high burden of malnutrition in Nigeria, the local production of RUTF is a logical step, that will ensure increased availability, acceptability, access, and efficiency in supply, and at lower costs. Objective(s): The objectives of this study were therefore, to formulate RUTF from locally available resources and to determine its energy and nutrients composition, incommensurate with the standard/commercial RUTF. Methods: Three samples of RUTF were formulated using locally available resources (soya beans, wheat, rice, baobab, brown-sugar, date palm and soya oil); which were subjected to various analysis to determine their energy/proximate composition, vitamin and mineral contents and organoleptic properties were also determined using sensory evaluation. Results: The energy values of the three samples of locally produced RUTF were found to be in conformity with WHO recommendation of ≥ 500 kcal per 100g. The energy values of the three RUTF samples produced in the current study were found to be 563.08, 503.67 and 528.98 kcal respectively. Sample A, B and C had protein content of 13.56% 16.71% and 14.62% respectively, which were higher than that of commercial RUTF (10.9%). Conclusions/recommendations: The locally formulated RUTF samples had energy value of more than 500 kcal per 100g; with an appreciable amount of macro and micro nutrients. The appearance, taste, flavor and general acceptability of the formulated RUTF samples were also commendable.

Keywords: energy, malnutrition, nutrients, RUTF

Procedia PDF Downloads 41
230 Training in Communicational Skills in Students of Medicine: Differences in Bilingualism

Authors: Naiara Ozamiz Etcebarria, Sonia Ruiz De Azua Garcia, Agurtzane Ortiz Jauregi, Virginia Guillen Cañas

Abstract:

Introduction: The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes´ improvement and efficiency of health services. The ability of Active listening , empathy, assertiveness and social skills, are important abilities to develop in all professions in which there is a relationship with other people. In the field of health, it is even more important to have adequate qualities so that the treatment with the patient will be adequate and satisfactory. We conducted a research with students of third year in the Degree of Medicine with the objectives: - to know how the active listening, empathy, assertiveness and social skills of students are. - to know if there are differences according to different demographic variables, such as sex, language, age, number of siblings and interest in the subject. Material and Methods: The students of the Third year in the Degree of Medicine (N = 212) participated voluntarily. Sociodemographic data were collected. Descriptive and comparative analysis of the averages of the students with respect to active listening, empathy, assertiveness and social skills were performed. Once the questionnaires were collected, they were entered into the SPSS 21 database. Four communicational aspects were evaluated: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. The active listening questionnaire assesses these factors: Listening without interruption and less contradiction, Listening with 100% attention, Listening beyond words, Listening encouraging the other to go deeper. The TECA questionnaire of cognitive and affective empathy evaluates: Adoption of perspectives, Emotional Comprehension, Emphasizing stress, Empathic joy. The EHS questionnaire Social Skills Scale: Self-expression in social situations, Defending one's own rights as a consumer, Expressing anger or dissatisfaction, Refusing to do and cutting interactions off, Making requests, Initiating positive interactions with the other sex. The ACDA questionnaire Assertiveness Assessment Scale evaluates self-assertiveness and heteroaservitivity. Applicability: To train these skills is so important for clinical practice of medical students and these capabilities that can be measured in a longitudinal way time. Ethical-legal aspects: The data were anonymous. The study was approved by the Ethics Committee. Results: The students of the Third year in the Degree of Medicine (34.4% Basque speakers and 65.6% Spanish speakers) with average age 20.93, (27.8% men and 72.2% women). There are no differences in social skills between men and women. The Basque speaker students of are more heteroactive (ACDA) than Spanish students. Active listening has a high correlation with social skills, especially with self-expression in social situations. Listening without interruption has a high correlation with self-expression in social situations and initiating positive interactions with the opposite sex. Adoption of perspectives presents a high correlation with auto- assertiveness. Emotional understanding presents a high correlation with positive interactions with the opposite sex. Empathic joy correlates with self-assertiveness, self-expression in social situations, and initiating positive interactions with the opposite sex.

Keywords: active listening, assertiveness, communicational skills, empathy, students of medicine

Procedia PDF Downloads 303
229 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance

Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens

Abstract:

Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.

Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium

Procedia PDF Downloads 66
228 Exploring the Role of Private Commercial Banks in Increasing Small and Medium Size Enterprises’ Financial Accessibility in Developing Countries: A Study in Bangladesh

Authors: Khondokar Farid Ahmmed, Robin Bown

Abstract:

It is widely recognized that the formal financing of Small and Medium Size Enterprises (SMEs) by Private Commercial Banks (PCBs) is restricted. Due to changing financial market competition, SMEs are now important customers to PCBs in the member countries of the Asian Development Bank (ADB). Various initiatives in enhancing the efficiency of risk assessment of PCBs have failed in increasing financing accessibility in the traditional financing system where information asymmetry is a key constraint. In this circumstance, PCBs need to undertake a holistic approach. Holistic approach refers to methods that attempt to fundamentally change established traditions. To undertake holistic approach, this study intends to find the entire established financing culture between PCBs and SMEs in a new lens beyond the tradition on the basis of two basic questions: “What is the traditional lending culture between PCBs and SMEs” and “What could be potential role of PCBs to develop that culture where focusing on SME financing to PCBs". This study considered formal SME financing in Bangladesh by focusing on SMEs applying for their first loan. Bangladesh is a member country of ADB. The data collection method is semi-structured and we utilized face-to-face interviews with in-depth branch managers, higher officials and owner-managers of SME customers of PCBs and higher officials of SME Foundation and the Bangladesh central bank. Discourse analysis method was used for data analysis on the frame of thematic discussion fully based on participants’ views. The research found that branch managers and loan officers have a high level of power in assessing and financing decision-making. There is a changing attitude in PCB sector in requiring flexible collateral assets. Branch managers (Loan Officers) consider value of business prospect of owner-mangers as complementary of collateral assets. However, the study found the assessment process of business prospect is entirely unstructured and linked with socio-cultural settings that does not support PCBs’ changing manner in terms of collateral requirement. The study redefined and classified collateral assets to include all financing constructs in a structure. The degree of value of the collateral assets determines the degree of business prospects. This study suggested applying an outside classroom-learning paradigm such as “knowledge tour” to enhance the value of the kinds of collateral assets. This is the scope of PCBs in increasing SMEs’ financing eligibility in win-win basis. The findings and proposition could be effective in other ADB member countries and audiences in the field.

Keywords: CCA, financing, information asymmetry, PCA, PCB, financing

Procedia PDF Downloads 200
227 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 88
226 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 258
225 Reading Comprehension in Profound Deaf Readers

Authors: S. Raghibdoust, E. Kamari

Abstract:

Research show that reduced functional hearing has a detrimental influence on the ability of an individual to establish proper phonological representations of words, since the phonological representations are claimed to mediate the conceptual processing of written words. Word processing efficiency is expected to decrease with a decrease in functional hearing. In other words, it is predicted that hearing individuals would be more capable of word processing than individuals with hearing loss, as their functional hearing works normally. Studies also demonstrate that the quality of the functional hearing affects reading comprehension via its effect on their word processing skills. In other words, better hearing facilitates the development of phonological knowledge, and can promote enhanced strategies for the recognition of written words, which in turn positively affect higher-order processes underlying reading comprehension. The aims of this study were to investigate and compare the effect of deafness on the participants’ abilities to process written words at the lexical and sentence levels through using two online and one offline reading comprehension tests. The performance of a group of 8 deaf male students (ages 8-12) was compared with that of a control group of normal hearing male students. All the participants had normal IQ and visual status, and came from an average socioeconomic background. None were diagnosed with a particular learning or motor disability. The language spoken in the homes of all participants was Persian. Two tests of word processing were developed and presented to the participants using OpenSesame software, in order to measure the speed and accuracy of their performance at the two perceptual and conceptual levels. In the third offline test of reading comprehension which comprised of semantically plausible and semantically implausible subject relative clauses, the participants had to select the correct answer out of two choices. The data derived from the statistical analysis using SPSS software indicated that hearing and deaf participants had a similar word processing performance both in terms of speed and accuracy of their responses. The results also showed that there was no significant difference between the performance of the deaf and hearing participants in comprehending semantically plausible sentences (p > 0/05). However, a significant difference between the performances of the two groups was observed with respect to their comprehension of semantically implausible sentences (p < 0/05). In sum, the findings revealed that the seriously impoverished sentence reading ability characterizing the profound deaf subjects of the present research, exhibited their reliance on reading strategies that are based on insufficient or deviant structural knowledge, in particular in processing semantically implausible sentences, rather than a failure to efficiently process written words at the lexical level. This conclusion, of course, does not mean to say that deaf individuals may never experience deficits at the word processing level, deficits that impede their understanding of written texts. However, as stated in previous researches, it sounds reasonable to assume that the more deaf individuals get familiar with written words, the better they can recognize them, despite having a profound phonological weakness.

Keywords: deafness, reading comprehension, reading strategy, word processing, subject and object relative sentences

Procedia PDF Downloads 338
224 The Effect of a Multidisciplinary Spine Clinic on Treatment Rates and Lead Times to Care

Authors: Ishan Naidu, Jessica Ryvlin, Devin Videlefsky

Abstract:

Introduction: Back pain is a leading cause of years lived with disability and economic burden, exceeding over $20 billion in healthcare costs not including indirect costs such as absence from work and caregiving. The multifactorial nature of back pain leads to treatment modalities administered by a variety of specialists, which are often disjointed. Multiple studies have found that patients receiving delayed physical therapy for lower back pain had higher medical-related costs from increased health service utilization as well as a reduced improvement in pain severity compared to early management. Uncoordinated health care delivery can exacerbate the physical and economic toll of the chronic condition, thus improvements in interdisciplinary, shared decision-making may improve outcomes. Objective: To assess whether a multidisciplinary spine clinic (MSC), consisting of orthopedic surgery, neurosurgery, pain medicine, and physiatry, alters interventional and non-interventional planning and treatment compared to a traditional unidisciplinary spine clinic (USC) including only orthopedic surgery. Methods: We conducted a retrospective cohort study with patients initially presenting for spine care to orthopedic surgeons between July 1, 2018 to June 30, 2019. Time to treatment recommendation, time to treatment and rates of treatment recommendations were assessed, including physical therapy, injections and surgery. Treatment rates were compared between MSC and USC using Pearson’s chi-square test logistic regression. Time to treatment recommendation and time to treatment were compared using log-rank test and Cox proportional hazard regression. All analyses were repeated for the propensity score (PS) matched subsample. Results: This study included 1,764 patients, with 692 at MSC and 1,072 at USC. Patients in MSC were more likely to be recommended injection when compared to USC (8.5% vs. 5.4%, p=0.01). When adjusted for confounders, the likelihood of injection recommendation remained greater in MSC than USC (Odds ratio [OR]=2.22, 95% CI: (1.39, 3.53), p=0.001). MSC was also associated with a shorter time to receiving injection recommendation versus USC (median: 21 vs. 32 days, log-rank: p<0.001; hazard ratio [HR]=1.90, 95% CI: (1.25, 2.90), p=0.003). MSC was associated with a higher likelihood of injection treatment (OR=2.27, 95% CI: (1.39, 3.73), p=0.001) and shorter lead time (HR=1.98, 95% CI: (1.27, 3.09), p=0.003). PS-matched analyses yielded similar conclusions. Conclusions: Care delivered at a multidisciplinary spine clinic was associated with a higher likelihood of recommending injection and a shorter lead time to injection administration when compared to a traditional unidisciplinary spine surgery clinic. Multidisciplinary clinics may facilitate coordinated care amongst different specialties resulting in increased utilization of less invasive treatment modalities while also improving care efficiency. The multidisciplinary clinic model is an important advancement in care delivery and communication, which can be used as a powerful method of improving patient outcomes as treatment guidelines evolve.

Keywords: coordinated care, epidural steroid injection, multi-disciplinary, non-invasive

Procedia PDF Downloads 140
223 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 48
222 Performance Evaluation of Various Displaced Left Turn Intersection Designs

Authors: Hatem Abou-Senna, Essam Radwan

Abstract:

With increasing traffic and limited resources, accommodating left-turning traffic has been a challenge for traffic engineers as they seek balance between intersection capacity and safety; these are two conflicting goals in the operation of a signalized intersection that are mitigated through signal phasing techniques. Hence, to increase the left-turn capacity and reduce the delay at the intersections, the Florida Department of Transportation (FDOT) moves forward with a vision of optimizing intersection control using innovative intersection designs through the Transportation Systems Management & Operations (TSM&O) program. These alternative designs successfully eliminate the left-turn phase, which otherwise reduces the conventional intersection’s (CI) efficiency considerably, and divide the intersection into smaller networks that would operate in a one-way fashion. This study focused on the Crossover Displaced Left-turn intersections (XDL), also known as Continuous Flow Intersections (CFI). The XDL concept is best suited for intersections with moderate to high overall traffic volumes, especially those with very high or unbalanced left turn volumes. There is little guidance on determining whether partial XDL intersections are adequate to mitigate the overall intersection condition or full XDL is always required. The primary objective of this paper was to evaluate the overall intersection performance in the case of different partial XDL designs compared to a full XDL. The XDL alternative was investigated for 4 different scenarios; partial XDL on the east-west approaches, partial XDL on the north-south approaches, partial XDL on the north and east approaches and full XDL on all 4 approaches. Also, the impact of increasing volume on the intersection performance was considered by modeling the unbalanced volumes with 10% increment resulting in 5 different traffic scenarios. The study intersection, located in Orlando Florida, is experiencing recurring congestion in the PM peak hour and is operating near capacity with volume to a capacity ratio closer to 1.00 due to the presence of two heavy conflicting movements; southbound and westbound. The results showed that a partial EN XDL alternative proved to be effective and compared favorably to a full XDL alternative followed by the partial EW XDL alternative. The analysis also showed that Full, EW and EN XDL alternatives outperformed the NS XDL and the CI alternatives with respect to the throughput, delay and queue lengths. Significant throughput improvements were remarkable at the higher volume level with percent increase in capacity of 25%. The percent reduction in delay for the critical movements in the XDL scenarios compared to the CI scenario ranged from 30-45%. Similarly, queue lengths showed percent reduction in the XDL scenarios ranging from 25-40%. The analysis revealed how partial XDL design can improve the overall intersection performance at various demands, reduce the costs associated with full XDL and proved to outperform the conventional intersection. However, partial XDL serving low volumes or only one of the critical movements while other critical movements are operating near or above capacity do not provide significant benefits when compared to the conventional intersection.

Keywords: continuous flow intersections, crossover displaced left-turn, microscopic traffic simulation, transportation system management and operations, VISSIM simulation model

Procedia PDF Downloads 310
221 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia PDF Downloads 174
220 Development of Alternative Fuels Technologies for Transportation

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.

Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)

Procedia PDF Downloads 181
219 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays

Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín

Abstract:

Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.

Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation

Procedia PDF Downloads 195
218 Reduction of Specific Energy Consumption in Microfiltration of Bacillus velezensis Broth by Air Sparging and Turbulence Promoter

Authors: Jovana Grahovac, Ivana Pajcin, Natasa Lukic, Jelena Dodic, Aleksandar Jokic

Abstract:

To obtain purified biomass to be used in the plant pathogen biocontrol or as soil biofertilizer, it is necessary to eliminate residual broth components at the end of the fermentation process. The main drawback of membrane separation techniques is permeate flux decline due to the membrane fouling. Fouling mitigation measures increase the pressure drop along membrane channel due to the increased resistance to flow of the feed suspension, thus increasing the hydraulic power drop. At the same time, these measures lead to an increase in the permeate flux due to the reduced resistance of the filtration cake on the membrane surface. Because of these opposing effects, the energy efficiency of fouling mitigation measures is limited, and the justification of its application is provided by information on a reducing specific energy consumption compared to a case without any measures employed. In this study, the influence of static mixer (Kenics) and air-sparging (two-phase flow) on reduction of specific energy consumption (ER) was investigated. Cultivation Bacillus velezensis was carried out in the 3-L bioreactor (Biostat® Aplus) containing 2 L working volume with two parallel Rushton turbines and without internal baffles. Cultivation was carried out at 28 °C on at 150 rpm with an aeration rate of 0.75 vvm during 96 h. The experiments were carried out in a conventional cross-flow microfiltration unit. During experiments, permeate and retentate were recycled back to the broth vessel to simulate continuous process. The single channel ceramic membrane (TAMI Deutschland) used had a nominal pore size 200 nm with the length of 250 mm and an inner/external diameter of 6/10 mm. The useful membrane channel surface was 4.33×10⁻³ m². Air sparging was brought by the pressurized air connected by a three-way valve to the feed tube by a simple T-connector without diffusor. The different approaches to flux improvement are compared in terms of energy consumption. Reduction of specific energy consumption compared to microfiltration without fouling mitigation is around 49% and 63%, for use of two-phase flow and a static mixer, respectively. In the case of a combination of these two fouling mitigation methods, ER is 60%, i.e., slightly lower compared to the use of turbulence promoter alone. The reason for this result can be found in the fact that flux increase is more affected by the presence of a Kenics static mixer while sparging results in an increase of energy used during microfiltration. By comparing combined method with turbulence promoter flux enhancement method ER is negative (-7%) which can be explained by increased power consumption for air flow with moderate contribution to the flux increase. Another confirmation for this fact can be found by comparing energy consumption values for combined method with energy consumption in the case of two-phase flow. In this instance energy reduction (ER) is 22% that demonstrates that turbulence promoter is more efficient compared to two phase flow. Antimicrobial activity of Bacillus velezensis biomass against phytopathogenic isolates Xanthomonas campestris was preserved under different fouling reduction methods.

Keywords: Bacillus velezensis, microfiltration, static mixer, two-phase flow

Procedia PDF Downloads 118
217 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 180