Search results for: online learning tools
4244 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.Keywords: emotion recognition, facial recognition, signal processing, machine learning
Procedia PDF Downloads 3164243 The Relationship between Self-Injury Behavior and Social Skills among Children with Mild Intellectual Disability in the State of Kuwait
Authors: Farah Al-Shatti, Elsayed El-Khamisi, Nabel Suleiman
Abstract:
The study aimed at identifying the relationship between self-injury behavior and social skills among children with mild intellectual disability (ID) in the state of Kuwait. The sample of the study consisted of 65 males and females with ID; their ages ranged between 8 to 12 years. The study used a measure for rating self-injury behavior designed by the researcher; and a measure for rating social skills was designed. The results of the study showed that there was an increase in the percentages of the two dimensions of the self-injury behavior for children with ID; the self-injury behavior by child’s own body was higher than the self-injury behavior by environmental tools, additionally the results showed that there were statistically significant differences between males and females on the dimensions and total scorer of self-injury scale favor the males, and there were statistically significant differences between them on the dimensions of the social skills and total score favor the females, It also indicated that there was statistically significant negative relationship between the dimensions of the self-injury and the dimensions of the social skills for children with intellectual disability.Keywords: mild intellectual disability, self injury behavior, social skills, state of Kuwait
Procedia PDF Downloads 3494242 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 2674241 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection
Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad
Abstract:
The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.Keywords: community detection, electrical segmentation, multiplex graph, power grid
Procedia PDF Downloads 794240 Comparative Life Cycle Assessment of Roofing System for Abu Dhabi
Authors: Iyasu Eibedingil
Abstract:
The construction industry is one of the major factors responsible for causing a negative impact on the environment. It has the largest share in the use of natural resources including land use, material extraction, and greenhouse gases emissions. For this reason, it is imperative to reduce its environmental impact through the construction of sustainable buildings with less impact. These days, it is possible to measure the environmental impact by using different tools such as the life cycle assessment (LCA) approach. Given this premise, this study explored the environmental impact of two types of roofing systems through comparative life cycle assessment approach. The tiles were analyzed to select the most environmentally friendly roofing system for the villa at Khalifa City A, Abu Dhabi, United Arab Emirates. These products are available in various forms; however, in this study concrete roof tiles and clay roof tiles were considered. The results showed that concrete roof tiles have lower environmental impact. In all scenarios considered, manufacturing the roof tiles locally, using recovered fuels for firing clay tiles, and using renewable energy (electricity from PV plant) showed that the concrete roof tiles were found to be excellent in terms of its embodied carbon, embodied the energy and various other environmental performance indicators.Keywords: clay roof tile, concrete roof tile, life cycle assessment, sensitivity analysis
Procedia PDF Downloads 3924239 Digital Self-Care Intervention Evaluation from the Perspective of Healthcare Users
Authors: Dina Ziadlou, Anthony Sunjaya, Joyzen Cortez Ramos, Romario Muñoz Ramos, Richard Dasselaar
Abstract:
This study aimed to evaluate the opinions of users using digital health technologies to prevent, promote, and maintain their health and well-being with or without the support of a healthcare provider to delineate an overview of the future patient journey while considering the strategic initiatives in the digital transformation era. This research collected the opinions of healthcare clients through a structural questionnaire to collect user accessibility, user knowledge, user experience, user engagement, and personalized medicine to investigate the mindset of the users and illustrate their opinions, expectations, needs, and voices about digital self-care expansion. In the realm of digital transformation, the accessibility of users to the internet, digital health platforms, tools, and mobile health applications have revolutionized the healthcare ecosystem toward nurturing informed and empowered patients who are tech-savvy and can take the initiative to be in charge of their health, involved in medical decision-making, and seek digital health innovations to prevent diseases and promote their healthy lifestyles. Therefore, the future of the patient journey is digital self-care intervention in a healthcare ecosystem where the partnership of patients in healthcare services is tied to their health information and action ownership.Keywords: digital health, patient engagement, self-care intervention, digital self-care intervention, digital transformation
Procedia PDF Downloads 364238 Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips
Authors: H. Heidari-Bafroui, B. Ribeiro, A. Charbaji, C. Anagnostopoulos, M. Faghri
Abstract:
In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications.Keywords: infrared lightbox, paper-based device, phosphate detection, smartphone colorimetric analyzer
Procedia PDF Downloads 1234237 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur
Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh
Abstract:
The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.Keywords: blast furnace, optimization, silicon, statistical tools
Procedia PDF Downloads 2234236 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation
Abstract:
This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation
Procedia PDF Downloads 3244235 Affects Associations Analysis in Emergency Situations
Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko
Abstract:
Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.Keywords: data mining, emergency phone calls, emotional profiles, rules
Procedia PDF Downloads 4084234 Spatial Cluster Analysis of Human Cases of Crimean Congo Hemorrhagic Fever Reported in Pakistan
Authors: Tariq Abbas, Younus Muhammad, Sayyad Aun Muhammad
Abstract:
Background : Crimean Congo hemorrhagic fever (CCHF) is a tick born viral zoonotic disease that has been notified from almost all regions of Pakistan. The aim of this study was to investigate spatial distribution of CCHF cases reported to National Institue of Health , Islamabad during year 2013. Methods : Spatial statistics tools were applied to detect extent spatial auto-correlation and clusters of the disease based on adjusted cumulative incidence per million population for each district. Results : The data analyses revealed a large multi-district cluster of high values in the uplands of Balochistan province near Afghanistan border. Conclusion : The cluster included following districts: Pishin; Qilla Abdullah; Qilla Saifullah; Quetta, Sibi; Zhob; and Ziarat. These districts may be given priority in CCHF surveillance, control programs, and further epidemiological research . The location of the cluster close to border of Afghanistan and Iran highlight importance of the findings for organizations dealing with disease at national, regional and global levels.Keywords: Crimean Congo hemorrhagic fever, Pakistan, spatial autocorrelation, clusters , adjusted cumulative incidence
Procedia PDF Downloads 4124233 Biosensor System for Escherichia coli and Staphylococcus aureus Detection in Traditional Ice Cream
Authors: Raana Babadi Fathipour
Abstract:
Ice cream is a nutritious dairy product that, given its constituent materials and high nutritional value, is a suitable growth medium for the growth of various food microorganisms. The contamination of this product with pathogenic microorganisms may cause food poisoning and infections, and so could be harmful to human health. The foremost critical pathogenic microscopic organisms of ice cream incorporate Escherichia coli, Staphylococcus aureus, Bacillus cereus, Enterobacteriaceae, coliforms, Listeria monocytogenes and Enterococcus. Biosensor technology, albeit a recent addition to the dairy industry, has proven its worth in other fields, such as medical devices. Through numerous studies, the advantages of employing biosensors have consistently emerged. These incredible tools present expeditious and straightforward means while specifically targeting analytes. Thus, they bring forth unparalleled solutions that bolster ongoing advancements within dairy products and processes. This review delves into the latest developments in the realm of biosensors and evaluates the diverse techniques of bio-recognition and transduction in terms of their benefits, drawbacks, and relevance to traditional ice cream. Furthermore, the obstacles that impede the progress of these approaches in meeting the growing need for swift and real-time quality control of milk products, particularly ice cream, are also expounded upon.Keywords: traditional ice cream, Escherichia coli, Staphylococcus aureus, biosensors
Procedia PDF Downloads 814232 A Historo-Religious Approach to Christian-Muslim Relations in Nasarawa State, Nigeria.
Authors: Akolo Ajige
Abstract:
Christian-Muslim relations had been existing for a long time in Nigeria. Despite the long standing relations between the two faith communities, there had been occasional religious crises in Nigeria (especially in Northern part of Nigeria). These crises have rendered some people homeless, left some without a family, while property worth millions of naira destroyed, and thereby putting some people in perpetual trauma. The situation seemed to be entirely different in Nasarawa State where there is relative peace between Christians and Muslims. The purpose of the study therefore was to examine Christian-Muslim relations in Nasarawa State. Its objectives were to: (i) identify the factors responsible for the peaceful coexistence between Christians and Muslims in Nasarawa State; (ii) state how they were relating in times of politics, worship, celebration of religious festivals etc; (iii) discuss how issues which could have led to crises were resolved between the two faiths, and (iv) examine the roles played by the religious leaders, traditional rulers and the media on peaceful co-existence between the Muslims and the Christians in Nasarawa State. Historical and Comparative methods were adopted in this research. Historical method helped to evaluate the history of Islam and Christianity in Nasarawa State, while comparative method was adopted to assess the extent of interaction of Muslims and Christians in the State. The study employed primary and secondary sources as tools for gathering information.Keywords: historo-religious, christian, muslim, relations
Procedia PDF Downloads 414231 The Challenges of Cloud Computing Adoption in Nigeria
Authors: Chapman Eze Nnadozie
Abstract:
Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.Keywords: cloud computing, data centre, infrastructure, it resources, virtualization
Procedia PDF Downloads 3514230 The Role Support Groups Play in Decreasing Depression and PTSD in Cancer Survivors: A Literature Review
Authors: Julianne Macmullen
Abstract:
Due to advances in technology and early detection and treatment of cancer, many cancer patients are surviving longer than five years post-diagnosis. Most cancer patients suffer from depression, anxiety, and post-traumatic stress disorder (PTSD) at some point during diagnosis, treatment, and survivorship. A subgroup of patients will continue to suffer from depression and PTSD and require early intervention. Support groups provide patients with the emotional and informational support they require while also giving survivors a sense of community, friendship, and purpose. This type of support is recognized by researchers to improve the quality of life while also decreasing depression and PTSD symptoms. The gaps in the literature include cultural diversity, minorities, and support groups involving cancer types other than breast cancer. Another gap in the literature includes the perceptions of cancer patients as well as longitudinal studies to determine the relationships between support groups and decreased depression and PTSD rates over time. Future research is required to fill the gaps in the literature mentioned previously. Future research is also needed to analyze the difference in age groups and different types of support groups such as professionally-led, peer-led, and online. Implications for practice involve providers assessing for the symptoms of depression and PTSD in order to offer prompt treatment and support services to those patients. In conclusion, social support by way of support groups improves the quality of life, gives survivors a sense of purpose to help others while also gaining the support they need, and reduces the rate of depressive episodes related to PTSD.Keywords: cancer survivor, survivorship, post-traumatic stress disorder (PTSD), depression, support groups
Procedia PDF Downloads 1764229 Designing and Making Sustainable Architectural Clothing Inspired by Reconstruction of Bam’s Bazaar
Authors: Marzieh Khaleghi Baygi, Maryam Khaleghy Baygy
Abstract:
The main aim of this project was designing and making sustainable architectural wearable dress inspired by reconstruction project of Bam’s Bazar in Iran. To achieve the goals of this project, Bam Bazar became the architectural reference. A mixed research method (including applied, qualitative and case studies methods) was used. After research, data gathering and considering related intellectual, mental and cultural background, the garment was modeled by using 3ds Max's modeling tools and Marvelous. After making the pattern, the wearable architecture was built and an architectural and historical building converted to a clothing. The implementation of sustainable architectural clothing, took seventeen months. The result of this project was a cloth in a new form that had been worn on its architect body. The comparison between present project and previous research were focusing on the same subjects (architectural clothing) shows some dramatic differentiations, including, the architect, designer and executive of this project was the same person who was the main researcher. Also, in this research, special attention was paid to the sustainability, volume and forms. Most projects in this subject (especially pervious related Iranian research) relied on painting and not on the volumes and forms. The sustainable immovable architecture had worn on its architect, became a cloth on a human's body that was moving.Keywords: wearable architecture, clothing, bam bazar, space, sustainability
Procedia PDF Downloads 614228 Teaching Speaking Skills to Adult English Language Learners through ALM
Authors: Wichuda Kunnu, Aungkana Sukwises
Abstract:
Audio-lingual method (ALM) is a teaching approach that is claimed that ineffective for teaching second/foreign languages. Because some linguists and second/foreign language teachers believe that ALM is a rote learning style. However, this study is done on a belief that ALM will be able to solve Thais’ English speaking problem. This paper aims to report the findings on teaching English speaking to adult learners with an “adapted ALM”, one distinction of which is to use Thai as the medium language of instruction. The participants are consisted of 9 adult learners. They were allowed to speak English more freely using both the materials presented in the class and their background knowledge of English. At the end of the course, they spoke English more fluently, more confidently, to the extent that they applied what they learnt both in and outside the class.Keywords: teaching English, audio lingual method, cognitive science, psychology
Procedia PDF Downloads 4184227 The Effect of Applying Surgical Safety Checklist on Surgical Team’s Knowledge and Performance in Operating Room
Authors: Soheir Weheida, Amal E. Shehata, Samira E. Aboalizm
Abstract:
The aim of this study was to examine the effect of surgical safety checklist on surgical team’s knowledge and performance in operating room. Subjects: A convenience sample 151 (48 head nurse, 45 nurse, 37 surgeon and 21 anesthesiologist) which available in operating room at two different hospitals was included in the study. Setting: The study was carried out at operating room in Menoufia University and Shebin Elkom Teaching Hospitals, Egypt. Tools: I: Surgical safety: Surgical team knowledge assessment structure interview schedule. II: WHO surgical safety observational Checklist. III: Post Surgery Culture Survey scale. Results: There was statistical significant improvement of knowledge mean score and performance about surgical safety especially in post and follow up than pre intervention, before patients entering the operating, before induction of anesthesia, skin incision and post skin closure and before patient leaves operating room, P values (P < 0.001). Improvement of communication post intervention than pre intervention between surgical team’s (4.74 ± 0.540). About two thirds (73.5 %) of studied sample strongly agreed on surgical safety in operating room. Conclusions: Implementation of surgical safety checklist has a positive effect on improving knowledge, performance and communication between surgical teams and these seems to have a positive effect on improve patient safety in the operating room.Keywords: knowledge, operating room, performance, surgical safety checklist
Procedia PDF Downloads 3344226 Using Neural Networks for Click Prediction of Sponsored Search
Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov
Abstract:
Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate
Procedia PDF Downloads 5724225 Psychological Variables Predicting Academic Achievement in Argentinian Students: Scales Development and Recent Findings
Authors: Fernandez liporace, Mercedes Uriel Fabiana
Abstract:
Academic achievement in high school and college students is currently a matter of concern. National and international assessments show high schoolers as low achievers, and local statistics indicate alarming dropout percentages in this educational level. Even so, 80% of those students intend attending higher education. On the other hand, applications to Public National Universities are free and non-selective by examination procedures. Though initial registrations are massive (307.894 students), only 50% of freshmen pass their first year classes, and 23% achieves a degree. Low performances use to be a common problem. Hence, freshmen adaptation, their adjustment, dropout and low academic achievement arise as topics of agenda. Besides, the hinge between high school and college must be examined in depth, in order to get an integrated and successful path from one educational stratum to the other. Psychology aims at developing two main research lines to analyse the situation. One regarding psychometric scales, designing and/or adapting tests, examining their technical properties and their theoretical validity (e.g., academic motivation, learning strategies, learning styles, coping, perceived social support, parenting styles and parental consistency, paradoxical personality as correlated to creative skills, psychopathological symptomatology). The second research line emphasizes relationships within the variables measured by the former scales, facing the formulation and testing of predictive models of academic achievement, establishing differences by sex, age, educational level (high school vs college), and career. Pursuing these goals, several studies were carried out in recent years, reporting findings and producing assessment technology useful to detect students academically at risk as well as good achievers. Multiple samples were analysed totalizing more than 3500 participants (2500 from college and 1000 from high school), including descriptive, correlational, group differences and explicative designs. A brief on the most relevant results is presented. Providing information to design specific interventions according to every learner’s features and his/her educational environment comes up as a mid-term accomplishment. Furthermore, that information might be helpful to adapt curricula by career, as well as for implementing special didactic strategies differentiated by sex and personal characteristics.Keywords: academic achievement, higher education, high school, psychological assessment
Procedia PDF Downloads 3694224 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 4694223 The Effectiveness of Banks’ Web Sites: A Study of Turkish Banking Sector
Authors: Raif Parlakkaya, Huseyin Cetin, Duygu Irdiren
Abstract:
By the development of World Wide Web, the usage rate of Internet has rapidly grown globally; and provided a basis for the emergence of electronic business. As well as other sectors, the banking sector has adopted the use of internet with the developments in information and communication technologies. Due to the public disclosure and transparency principle of Corporate Governance, the importance of information disclosure of banks on their web sites has increased significantly. For the purpose of this study, a Bank Disclosure Attribute Index (BDAI) in Turkey has been constructed through classifying the information disclosure on banks’ web sites into general, financial, investors and corporate governance attributes. All 47 banks in Turkish Banking System have been evaluated according to the index with the aim of providing a comparison between banks. By Chi Square Test, Pearson Correlation, T-Test, and ANOVA statistical tools, it has been concluded that the majority of banks in Turkey have shared information on their web sites adequately with respect to their total index score. Although there is a positive correlation between various types of information on banks’ web sites, there is no uniformity among them. Also, no significant difference between various types of information disclosure and bank types has been observed. Compared with the total index score averages of the five largest banks in Turkey, there are some banks that need to improve the content of their web sites.Keywords: internet banking, websites evaluation, customer adoption, Turkey
Procedia PDF Downloads 3984222 Brand Preferences in Saudi Arabia: Explorative Study in Jeddah
Authors: Badr Alharbi
Abstract:
There is significant debate on the evolution of retail marketing as an economy matures. In penetrating new markets, global brands are efficient in establishing a presence and replacing less effective competitors by engaging in superior advertising, pricing and sometimes quality. However, national brands adapt over time and may either partner with global brands in distribution and services or directly compete more efficiently in the new, open market. This explorative study investigates brand preferences in Saudi Arabia. As a conservative society, which is nevertheless highly commercialised, Saudi Arabia markets could be fragmenting with consumer preferences and rejections based on country of origin, globalisation, or perhaps regionalisation. To investigate this, an online survey was distributed to Saudis in Jeddah to gather data on their preferences for travel, technology, clothes and accessories, eating out, vehicles, and influential brands. The results from 710 valid responses were that there are distinct regional and national brand preferences among the young Saudi men who contributed to the survey. Apart from a preference for Saudi food providers, airline preferences were the United Emirates, holiday preferences were Europe, study and work preferences were the United States, hotel preferences were United States-based, car preferences were Japanese, and clothing preferences were United States-based. The results were broadly in line with international research findings; however, the study participants varied from Arab research findings by describing themselves as innovative in their purchase selections, rarely loyal (exception of Apple products) and continually seeking new brand experiences. This survey contributes to an understanding of evolving Saudi consumer preferences.Keywords: Saudi marketing, globalisation, country of origin, brand preferences
Procedia PDF Downloads 2774221 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application
Authors: Senthuran Manoharan, Rathesan Sivagananalingam
Abstract:
One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.Keywords: authentication, adaptive authentication, machine learning, security
Procedia PDF Downloads 2494220 Burnback Analysis of Star Grain Using Level-Set Technique
Authors: Ali Yasin, Ali Kamran, Muhammad Safdar
Abstract:
In order to reduce the hefty cost involved in terms of time and project cost, the development and application of advanced numerical tools to address the burn-back analysis problem in solid rocket motor design and development is the need of time. Several advanced numerical schemes have been developed in recent times, but their usage in the design of propellant grain of solid rocket motors is very rare. In this paper, an advanced numerical technique named the Level-Set method has been utilized for the burn-back analysis of star grain to study the effect of geometrical parameters on ballistic performance indicators such as solid loading, neutrality, and sliver percentage. In the level set technique, simple finite difference methods may fail quickly and require more sophisticated non-oscillatory schemes for feasible long-time simulation. For internal ballistic calculations, a simplified equilibrium pressure method is utilized. Preliminary results of the operative conditions, for all the combustion time, of star grain burn-back using level set techniques are compared with published results using CAD technique to test the developed numerical model.Keywords: solid rocket motor, internal ballistic, level-set technique, star grain
Procedia PDF Downloads 1234219 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method
Authors: Marzieh Jafarzadeh, Fatemeh Rezaee
Abstract:
Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow
Procedia PDF Downloads 2134218 Data Mining in Healthcare for Predictive Analytics
Authors: Ruzanna Muradyan
Abstract:
Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health
Procedia PDF Downloads 634217 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome
Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya
Abstract:
Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.Keywords: mammography, early detection, genetic screening, breast cancer
Procedia PDF Downloads 5624216 Polarization of Lithuanian Society on Issues Related to Language Politics
Authors: Eglė Žurauskaitė, Eglė Gudavičienė
Abstract:
The goal of this paper is to reveal how polarization is constructed through the use of impoliteness strategies. In general, media helps to spread various ideas very fast, and it means that processes of polarization are best revealed in computer-mediated communication (CMC) contexts. For this reason, data for the research was collected from online texts about a current, very diverse topic in Lithuania - Lithuanian language policy and regulations, because this topic is causing a lot of tension in Lithuanian society. Computer-mediated communication allows users to edit their message before they send it. It means that addressees carefully select verbal expressions to convey their message. In other words, each impoliteness strategy and its verbal expression were created intentionally. Impoliteness strategies in this research are understood as various ways to reach a communicative goal: belittle the other. To reach the goal, the public opinions of various Lithuanian public figures (e. g., cultural people, politicians, officials) were collected from new portals in 2019–2023 and analyzed using both quantitative and qualitative approaches. First, problematic aspects of the language policy, for which public figures complain, were identified. Then instances when public figures take a defensive position were analyzed: how they express this position and what it reveals about Lithuanian culture. Findings of this research demonstrate how concepts of impoliteness theory can be applied in analyzing the process of polarization in Lithuanian society on issues related to the State language policy. Also, to reveal how polarization is constructed, these tasks were set: a) determine which impoliteness strategies are used throughout the process of creating polarization, b) analyze how they were expressed verbally (e. g., as an advice, offer, etc.).Keywords: impoliteness, Lithuanian language policy, polarization, impoliteness strategies
Procedia PDF Downloads 574215 Parental Engagement with Their Preschoolers’ Cognitive Development Prior to Their Kindergarten Admission: Sharjah-Based Case Study
Authors: Nada Mohammad Eljeshi
Abstract:
In the United Arab Emirates (UAE), preschoolers can enroll in kindergarten after completing four years old by August 31 of their admission year. This study aims to better understand how Sharjah-based parents’ engagement with preschoolers contributes to their phonological awareness, literacy development, and print knowledge before their kindergarten admission considering cognitive development is addressed in the UAE national child care standards. More specifically, it will discuss the importance of cognitive development activities to preschoolers, the rationale behind defining the admission age to kindergarten and compare and benchmark the policy to other countries. To achieve this study's objectives, an online survey was conducted and distributed. Respondents were asked 13 dichotomous questions related to activities that promote the preschooler’s linguistics literacy and cognitive development. The results suggested parents’ emphasis on phonological awareness, followed by developing their print knowledge. However, the majority of the surveyed parents did not engage in literacy development with their preschoolers. On this basis, it is clear parents’ awareness should occur by introducing various activities such as book reading, that there is a need to introduce and encourage parents to various activities such as reading a printed book and drawings to keep up with their children's cognitive development. The survey results suggested an emphasis on phonological awareness, followed by developing their print knowledge. However, the majority of the surveyed parents did not engage in literacy development with their preschoolers. On this basis, parental awareness of the importance of preschoolers' cognitive development should be developed and engage the parents in understanding their preschooler’s cognitive development before entering kindergarten.Keywords: preschoolers, cognitive development, parental engagement, Sharjah-based case study
Procedia PDF Downloads 247