Search results for: systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9437

Search results for: systems

1667 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 135
1666 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 110
1665 Sound Quality Analysis of Sloshing Noise from a Rectangular Tank

Authors: Siva Teja Golla, B. Venkatesham

Abstract:

The recent technologies in hybrid and high-end cars have subsided the noise from major sources like engines and transmission systems. This resulted in the unmasking of the previously subdued noises. These noises are becoming noticeable to the passengers, causing annoyance to them and affecting the perceived quality of the vehicle. Sloshing in the fuel tank is one such source of noise. Sloshing occurs due to the excitations undergone by the fuel tank due to the vehicle's movement. Sloshing noise occurs due to the interaction of the fluid with the surrounding tank walls or with the fluid itself. The noise resulting from the interaction of the fluid with the structure is ‘Hit noise’, and the noise due to fluid-fluid interaction is ‘Splash noise’. The type of interactions the fluid undergoes inside the tank, and the type of noise generated depends on a variety of factors like the fill level of the tank, type of fluid, presence of objects like baffles inside the tank, type and strength of the excitation, etc. There have been studies done to understand the effect of each of these parameters on the generation of different types of sloshing noises. But little work is done in the psychoacoustic aspect of these sounds. The psychoacoustic study of the sloshing noises gives an understanding of the level of annoyance it can cause to the passengers and helps in taking necessary measures to address it. In view of this, the current paper focuses on the calculation of the psychoacoustic parameters like loudness, sharpness, roughness and fluctuation strength for the sloshing noise. As the noise generation mechanisms for the hit and splash noises are different, these parameters are calculated separately for them. For this, the fluid flow regimes that predominantly cause the hit-and-splash noises are to be separately emulated inside the tank. This is done through a reciprocating test rig, which imposes reciprocating excitation to a rectangular tank filled with the fluid. By varying the frequency of excitation, the fluid flow regimes with the predominant generation of hit-and-splash noises can be separately created inside the tank. These tests are done in a quiet room and the noise generated is captured using microphones and is used for the calculation of psychoacoustic parameters of the sloshing noise. This study also includes the effect of fill level and the presence of baffles inside the tank on these parameters.

Keywords: sloshing, hit noise, splash noise, sound quality

Procedia PDF Downloads 36
1664 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: altitude estimation, drone, image processing, trajectory planning

Procedia PDF Downloads 116
1663 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 459
1662 Species Distribution and Incidence of Inducible Clindamycin Resistance in Coagulase-Negative Staphylococci Isolated from Blood Cultures of Patients with True Bacteremia in Turkey

Authors: Fatma Koksal Cakirlar, Murat Gunaydin, Nevri̇ye Gonullu, Nuri Kiraz

Abstract:

During the last few decades, the increasing prevalence of methicillin resistant-CoNS isolates has become a common problem worldwide. Macrolide-lincosamide-streptogramin B (MLSB) antibiotics are effectively used for the treatment of CoNS infections. However, resistance to MLSB antibiotics is prevalent among staphylococci. The aim of this study is to determine species distribution and the incidence of inducible clindamycin resistance in CoNS isolates caused nosocomial bacteremia in our hospital. Between January 2014 and October 2015, a total of 484 coagulase-negative CoNS isolates were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital. Blood cultures were analyzed with the BACTEC 9120 system (Becton Dickinson, USA). The identification and antimicrobial resistance of isolates were determined by Phoenix automated system (BD Diagnostic Systems, Sparks, MD). Inducible clindamycin resistance was detected using D-test. The species distribution was as follows: Staphylococcus epidermidis 211 (43%), S. hominis 154 (32%), S. haemolyticus 69 (14%), S. capitis 28 (6%), S. saprophyticus 11 (2%), S. warnerii 7 (1%), S. schleiferi 5 (1%) and S. lugdunensis 1 (0.2%). Resistance to methicillin was detected in 74.6% of CoNS isolates. Methicillin resistance was highest in S.hemoliticus isolates (89%). Resistance rates of CoNS strains to the antibacterial agents, respectively, were as follows: ampicillin 77%, gentamicin 20%, erythromycin 71%, clindamycin 22%, trimethoprim-sulfamethoxazole 45%, ciprofloxacin 52%, tetracycline 34%, rifampicin 20%, daptomycin 0.2% and linezolid 0.2%. None of the strains were resistant to vancomycin and teicoplanin. Fifteen (3%) CoNS isolates were D-test positive, inducible MLSB resistance type (iMLSB-phenotype), 94 (19%) were constitutively resistant (cMLSB -phenotype), and 237 (46,76%) isolates were found D-test negative, indicating truly clindamycin-susceptible MS phenotype (M-phenotype resistance). The incidence of iMLSB-phenotypes was higher in S. epidermidis isolates (4,7%) compared to other CoNS isolates.

Keywords: bacteremia, inducible MLSB resistance phenotype, methicillin-resistant, staphylococci

Procedia PDF Downloads 240
1661 Alternative Ways of Knowing and the Construction of a Department Around a Common Critical Lens

Authors: Natalie Delia

Abstract:

This academic paper investigates the transformative potential of incorporating alternative ways of knowing within the framework of Critical Studies departments. Traditional academic paradigms often prioritize empirical evidence and established methodologies, potentially limiting the scope of critical inquiry. In response to this, our research seeks to illuminate the benefits and challenges associated with integrating alternative epistemologies, such as indigenous knowledge systems, artistic expressions, and experiential narratives. Drawing upon a comprehensive review of literature and case studies, we examine how alternative ways of knowing can enrich and diversify the intellectual landscape of Critical Studies departments. By embracing perspectives that extend beyond conventional boundaries, departments may foster a more inclusive and holistic understanding of critical issues. Additionally, we explore the potential impact on pedagogical approaches, suggesting that alternative ways of knowing can stimulate alternative way of teaching methods and enhance student engagement. Our investigation also delves into the institutional and cultural shifts necessary to support the integration of alternative epistemologies within academic settings. We address concerns related to validation, legitimacy, and the potential clash with established norms, offering insights into fostering an environment that encourages intellectual pluralism. Furthermore, the paper considers the implications for interdisciplinary collaboration and the potential for cultivating a more responsive and socially engaged scholarship. By encouraging a synthesis of diverse perspectives, Critical Studies departments may be better equipped to address the complexities of contemporary issues, encouraging a dynamic and evolving field of study. In conclusion, this paper advocates for a paradigm shift within Critical Studies departments towards a more inclusive and expansive approach to knowledge production. By embracing alternative ways of knowing, departments have the opportunity to not only diversify their intellectual landscape but also to contribute meaningfully to broader societal dialogues, addressing pressing issues with renewed depth and insight.

Keywords: critical studies, alternative ways of knowing, academic department, Wallerstein

Procedia PDF Downloads 74
1660 Value Engineering Change Proposal Application in Construction of Road-Building Projects

Authors: Mohammad Mahdi Hajiali

Abstract:

Many of construction projects estimated in Iran have been influenced by the limitations of financial resources. As for Iran, a country that is developing, and to follow this development-oriented approach which many numbers of projects each year run in, if we can reduce the cost of projects by applying a method we will help greatly to minimize the cost of major construction projects and therefore projects will finish faster and more efficiently. One of the components of transportation infrastructure are roads that are considered to have a considerable share of the country budget. In addition, major budget of the related ministry is spending to repair, improve and maintain roads. Value Engineering is a simple and powerful methodology over the past six decades that has been successful in reducing the cost of many projects. Specific solution for using value engineering in the stage of project implementation is called value engineering change proposal (VECP). It was tried in this research to apply VECP in one of the road-building projects in Iran in order to enhance the value of this kind of projects and reduce their cost. In this case study after applying VECP, an idea was raised. It was about use of concrete pavement instead of hot mixed asphalt (HMA) and also using fiber in order to improve concrete pavement performance. VE group team made a decision that for choosing the best alternatives, get expert’s opinions in pavement systems and use Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) for ranking opinions of the experts. Finally, Jointed Plain Concrete Pavement (JPCP) was selected. Group also experimented concrete samples with available fibers in Iran and the results of experiments showed a significant increment in concrete specifications such as flexural strength. In the end, it was shown that by using of fiber-reinforced concrete pavement instead of asphalt pavement, we can achieve a significant saving in cost, time and also increment in quality, durability, and longevity.

Keywords: road-building projects, value engineering change proposal (VECP), Jointed Plain Concrete Pavement (JPCP), Fuzzy TOPSIS, fiber-reinforced concrete

Procedia PDF Downloads 204
1659 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: canny pruning, hand recognition, machine learning, skin tracking

Procedia PDF Downloads 189
1658 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 250
1657 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes

Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker

Abstract:

The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.

Keywords: automation, battery production, carrier, advanced process control, cyber-physical system

Procedia PDF Downloads 343
1656 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 160
1655 Powering Profits: A Dynamic Approach to Sales Marketing and Electronics

Authors: Muhammad Awais Kiani, Maryam Kiani

Abstract:

This abstract explores the confluence of these two domains and highlights the key factors driving success in sales marketing for electronics. The abstract begins by digging into the ever-evolving landscape of consumer electronics, emphasizing how technological advancements and the growth of smart devices have revolutionized the way people interact with electronics. This paradigm shift has created tremendous opportunities for sales and marketing professionals to engage with consumers on various platforms and channels. Next, the abstract discusses the pivotal role of effective sales marketing strategies in the electronics industry. It highlights the importance of understanding consumer behavior, market trends, and competitive landscapes and how this knowledge enables businesses to tailor their marketing efforts to specific target audiences. Furthermore, the abstract explores the significance of leveraging digital marketing techniques, such as social media advertising, search engine optimization, and influencer partnerships, to establish brand identity and drive sales in the electronics market. It emphasizes the power of storytelling and creating captivating content to engage with tech-savvy consumers. Additionally, the abstract emphasizes the role of customer relationship management (CRM) systems and data analytics in optimizing sales marketing efforts. It highlights the importance of leveraging customer insights and analyzing data to personalize marketing campaigns, enhance customer experience, and ultimately drive sales growth. Lastly, the abstract concludes by underlining the importance of adapting to the ever-changing landscape of the electronics industry. It encourages businesses to embrace innovation, stay informed about emerging technologies, and continuously evolve their sales marketing strategies to meet the evolving needs and expectations of consumers. Overall, this abstract sheds light on the captivating realm of sales marketing in the electronics industry, emphasizing the need for creativity, adaptability, and a deep understanding of consumers to succeed in this rapidly evolving market.

Keywords: marketing industry, electronics, sales impact, e-commerce

Procedia PDF Downloads 78
1654 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies

Authors: Tania Viju, Bimal P., Naseer M. A.

Abstract:

This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.

Keywords: decision support system, dynamic management, road accident blackspots, road safety

Procedia PDF Downloads 149
1653 The Role of Hypothalamus Mediators in Energy Imbalance

Authors: Maftunakhon Latipova, Feruza Khaydarova

Abstract:

Obesity is considered a chronic metabolic disease that occurs at any age. Regulation of body weight in the body is carried out through complex interaction of a complex of interrelated systems that control the body's energy system. Energy imbalance is the cause of obesity and overweight, in which the supply of energy from food exceeds the energy needs of the body. Obesity is closely related to impaired appetite regulation, and a hypothalamus is a key place for neural regulation of food consumption. The nucleus of the hypothalamus is connected and interdependent on receiving, integrating and sending hunger signals to regulate appetite. Purpose of the study: to identify markers of food behavior. Materials and methods: The screening was carried out to identify eating disorders in 200 men and women aged 18 to 35 years with overweight and obesity and to check the effects of Orexin A and Neuropeptide Y markers. A questionnaire and questionnaires were conducted with over 200 people aged 18 to 35 years. Questionnaires were for eating disorders and hidden depression (on the Zang scale). Anthropometry is measured by OT, OB, BMI, Weight, and Height. Based on the results of the collected data, 3 groups were divided: People with obesity, People with overweight, Control Group of Healthy People. Results: Of the 200 analysed persons, 86% had eating disorders. Of these, 60% of eating disorders were associated with childhood. According to the Zang test result: Normal condition was about 37%, mild depressive disorder 20%, moderate depressive disorder 25% and 18% of people suffered from severe depressive disorder without knowing it. One group of people with obesity had eating disorders and moderate and severe depressive disorder, and group 2 was overweight with mild depressive disorder. According to laboratory data, the first group had the lowest concentration of Orexin A and Neuropeptide U in blood serum. Conclusions: Being overweight and obese are the first signal of many diseases, and prevention and detection of these disorders will prevent various diseases, including type 2 diabetes. Obesity etiology is associated with eating disorders and signal transmission of the orexinorghetic system of the hypothalamus.

Keywords: obesity, endocrinology, hypothalamus, overweight

Procedia PDF Downloads 82
1652 Efficacy of Gamma Radiation on the Productivity of Bactrocera oleae Gmelin (Diptera: Tephritidae)

Authors: Mehrdad Ahmadi, Mohamad Babaie, Shiva Osouli, Bahareh Salehi, Nadia Kalantaraian

Abstract:

The olive fruit fly, Bactrocera oleae Gmelin (Diptera: Tephritidae), is one of the most serious pests in olive orchards in growing province in Iran. The female lay eggs in green olive fruit and larvae hatch inside the fruit, where they feed upon the fruit matters. One of the main ecologically friendly and species-specific systems of pest control is the sterile insect technique (SIT) which is based on the release of large numbers of sterilized insects. The objective of our work was to develop a SIT against B. oleae by using of gamma radiation for the laboratory and field trial in Iran. Oviposition of female mated by irradiated males is one of the main parameters to determine achievement of SIT. To conclude the sterile dose, pupae were placed under 0 to 160 Gy of gamma radiation. The main factor in SIT is the productivity of females which are mated by irradiated males. The emerged adults from irradiated pupae were mated with untreated adults of the same age by confining them inside the transparent cages. The fecundity of the irradiated males mated with non-irradiated females was decreased with the increasing radiation dose level. It was observed that the number of eggs and also the percentage of the egg hatching was significantly (P < 0.05) affected in either IM x NF crosses compared with NM x NF crosses in F1 generation at all doses. Also, the statistical analysis showed a significant difference (P < 0.05) in the mean number of eggs laid between irradiated and non-irradiated females crossed with irradiated males, which suggests that the males were susceptible to gamma radiation. The egg hatching percentage declined markedly with the increase of the radiation dose of the treated males in mating trials which demonstrated that egg hatch rate was dose dependent. Our results specified that gamma radiation affects the longevity of irradiated B. oleae larvae (established from irradiated pupae) and significantly increased their larval duration. Results show the gamma radiation, and SIT can be used successfully against olive fruit flies.

Keywords: fertility, olive fruit fly, radiation, sterile insect technique

Procedia PDF Downloads 200
1651 Departures from Anatolian Seljuk Building Complex with Iwan/Eyvan: The Tradition of Iwan Tombs

Authors: Mehmet Uysal, Yavuz Arat, Uğur Tuztaşı

Abstract:

As man constructed the spaces that he lived in he also designed spaces where their dead will stay according to their belief systems. These spaces are sometimes monumentalized by the means of a stone on the top of a mountain, sometimes signed by totems and sometimes became structures to protect graves and symbolize the person or make him unforgettable. Various grave monuments have been constructed from the earliest primitive societies to developed societies. Every belief system built structures for itself; Pyramids for pharaohs, grave monuments for kings and emperors, temples and tombs for important men of religion. These spaces are also architectural works like a school or a dwelling and have importance in history of architecture. After Turks embraced Islamism, examples of very beautiful tombs are built in Middle Asia during the Seljuk Period. By the time Seljuks came to Anatolia they built important tombs having peerless architectural characteristics firstly around Ahlat. After Anatolia Seljuks made Konya the capital city and Konya became administrative, cultural and scientific center, very important tombs were built in Konya. Different from the local tomb architecture, the architecture of tombs with half-open “eyvan/Iwan” is significant. Although iwan buildings is vastly used in Anatolian civil architecture and monumental buildings its best exmaples are observed in 13th century Medrese buildings. The iwan tomb tradition which was observed during the time period when this building typology was shaped and departed from the resident tradition in the form of iwan tombs are rarely represented. However, similar tombs were build in resemblance to this tradition. This study provides information on samples of iwan tombs (Gömeç Hatun Tomb, Emir Yavaştagel Tomb, and Beşparmak Tomb) and evaluates the departures from iwan building complexes in view of architectural language. This paper also gives information about iwan tombs among tombs having importance in Islamic Architectural Heritage.

Keywords: Seljuk Building Complex, Eyvan/Iwan, Anatolia, Islamic Architectural Heritage, tomb

Procedia PDF Downloads 408
1650 Enhancing Healthcare Delivery in Low-Income Markets: An Exploration of Wireless Sensor Network Applications

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Healthcare delivery in low-income markets is fraught with numerous challenges, including limited access to essential medical resources, inadequate healthcare infrastructure, and a significant shortage of trained healthcare professionals. These constraints lead to suboptimal health outcomes and a higher incidence of preventable diseases. This paper explores the application of Wireless Sensor Networks (WSNs) as a transformative solution to enhance healthcare delivery in these underserved regions. WSNs, comprising spatially distributed sensor nodes that collect and transmit health-related data, present opportunities to address critical healthcare needs. Leveraging WSN technology facilitates real-time health monitoring and remote diagnostics, enabling continuous patient observation and early detection of medical issues, especially in areas with limited healthcare facilities and professionals. The implementation of WSNs can enhance the overall efficiency of healthcare systems by enabling timely interventions, reducing the strain on healthcare facilities, and optimizing resource allocation. This paper highlights the potential benefits of WSNs in low-income markets, such as cost-effectiveness, increased accessibility, and data-driven decision-making. However, deploying WSNs involves significant challenges, including technical barriers like limited internet connectivity and power supply, alongside concerns about data privacy and security. Moreover, robust infrastructure and adequate training for local healthcare providers are essential for successful implementation. It further examines future directions for WSNs, emphasizing innovation, scalable solutions, and public-private partnerships. By addressing these challenges and harnessing the potential of WSNs, it is possible to revolutionize healthcare delivery and improve health outcomes in low-income markets.

Keywords: wireless sensor networks (WSNs), healthcare delivery, low-Income markets, remote patient monitoring, health data security

Procedia PDF Downloads 42
1649 Testing and Validation Stochastic Models in Epidemiology

Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa

Abstract:

This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.

Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions

Procedia PDF Downloads 18
1648 Healthy Beverages Made from Grape Juice: Antioxidant, Energetic, and Isotonic Components

Authors: Yasmina Bendaali, Cristian Vaquero, Carlos Escott, Carmen González, Antonio Morata

Abstract:

Consumer tendencies to healthy eating habits and request for organic beverages led to the production of new drinks from fruit juices as a source of nutrients and bioactive compounds. Grape juice is a rich source of sugars, organic acids, and phenolic compounds, which define its beneficial effect on health and the attractive sensory profile for consumers' choices (color, taste, flavor). Thus, grape juice was used as a source of sugars, avoiding the addition of sweeteners by diluting it with mineral water to obtain the sugar concentration recommended for isotonic drinks (6% to 8%) to provide energy during physical activities. In addition, phenolic compounds of grape juice are associated with many human health benefits, mainly antioxidant activity, which helps to prevent different diseases associated with oxidative stress, including cancers and cardiovascular and neurodegenerative diseases. Furthermore, physical exercise has been shown to increase the production of free radicals and other reactive oxygen species. Thus, athletes need to improve their antioxidant defense systems to prevent oxidative damage. Different studies have demonstrated the positive effect of grape juice consumption during physical activities, which improves antioxidant activity and performance, protects against oxidative damage, and reduces inflammation. Thus, the use of grape juice to develop isotonic drinks can provide isotonic drinks with antioxidant and biological activities in addition to their principal role of rehydration and replacement of minerals and carbohydrates during physical exercises. Moreover, attractive sensory characteristics, mainly color, which is provided by anthocyanin content, have a great contribution to making the drinks more natural and help to dispense the use of synthetic dyes in addition to the health benefits which will be a novel product in the field of healthy beverages responding on the demand of consumers for new, innovative, and healthy products.

Keywords: grape juice, isotonic, antioxidants, anthocyanins, natural, sport

Procedia PDF Downloads 81
1647 On Cloud Computing: A Review of the Features

Authors: Assem Abdel Hamed Mousa

Abstract:

The Internet of Things probably already influences your life. And if it doesn’t, it soon will, say computer scientists; Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives. Alan Kay of Apple calls this "Third Paradigm" computing. Ubiquitous computing is essentially the term for human interaction with computers in virtually everything. Ubiquitous computing is roughly the opposite of virtual reality. Where virtual reality puts people inside a computer-generated world, ubiquitous computing forces the computer to live out here in the world with people. Virtual reality is primarily a horse power problem; ubiquitous computing is a very difficult integration of human factors, computer science, engineering, and social sciences. The approach: Activate the world. Provide hundreds of wireless computing devices per person per office, of all scales (from 1" displays to wall sized). This has required new work in operating systems, user interfaces, networks, wireless, displays, and many other areas. We call our work "ubiquitous computing". This is different from PDA's, dynabooks, or information at your fingertips. It is invisible; everywhere computing that does not live on a personal device of any sort, but is in the woodwork everywhere. The initial incarnation of ubiquitous computing was in the form of "tabs", "pads", and "boards" built at Xerox PARC, 1988-1994. Several papers describe this work, and there are web pages for the Tabs and for the Boards (which are a commercial product now): Ubiquitous computing will drastically reduce the cost of digital devices and tasks for the average consumer. With labor intensive components such as processors and hard drives stored in the remote data centers powering the cloud , and with pooled resources giving individual consumers the benefits of economies of scale, monthly fees similar to a cable bill for services that feed into a consumer’s phone.

Keywords: internet, cloud computing, ubiquitous computing, big data

Procedia PDF Downloads 387
1646 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements

Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus

Abstract:

The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.

Keywords: T-RTM technology, composite, automotive, class A surface

Procedia PDF Downloads 142
1645 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 137
1644 Effective, Affordable, and Accessible Treatment for Pregnancy’s Commonest Complication: Online Synchronous Interpersonal Psychotherapy for Mothers with Postpartum Depression

Authors: Vivian Polak, Lena Verdeli, Wendy Lou, Caroline Lovett

Abstract:

Postnatal depression (PND) is a common complication of childbirth that increases the risk of future depressive episodes in women, postpartum depression in partners, as well as social, emotional, behavioural, language, and cognitive problems in offspring. Although psychotherapy, and in particular Group Interpersonal Psychotherapy (IPT-G), has been proven effective in treating PND, it remains largely inaccessible. However, research has indicated that online synchronous group therapy can be equally as effective as in-person therapy and is a more affordable and accessible modality of treatment. This study aimed to ascertain whether delivering IPT-G virtually when compared to treatment as usual, could more effectively reduce depressive and anxiety symptoms, enhance mother-infant attachment, improve the couple relationship, augment social support, improve overall functioning, and enhance the quality of life for women in rural and northern Ontario who are suffering from PND. By bridging the gap in access to mental health services during the postpartum period, this study seeks to improve the well-being of mothers and their families in rural and northern Ontario, Canada. A randomized controlled trial was conducted to determine whether virtual IPT-G plus treatment as usual would be more effective than treatment as usual alone in treating women with PND in Ontario, Canada. Preliminary results indicate that women who received virtual IPT-G had a clinically and statistically significant decrease in overall depressive symptoms compared to their counterparts who received only the treatment as usual. As such, providing online synchronous IPT-G in the perinatal period not only has the potential to improve women's outcomes in the present but also to decrease future health costs, reduce the burden on the educational and justice systems, and decrease the number of disability life years lost to postnatal depression.

Keywords: family wellbeing, group psychotherapy, interpersonal psychotherapy, postnatal depression, virtual psychotherapy

Procedia PDF Downloads 71
1643 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems

Authors: Seada Hussen, Frie Ayalew

Abstract:

Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.

Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller

Procedia PDF Downloads 86
1642 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery

Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov

Abstract:

The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.

Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive

Procedia PDF Downloads 294
1641 Restorative Justice to the Victims of Terrorism in the Criminal Justice System of India

Authors: Sumanta Meher, Gaurav Shukla

Abstract:

The torments of the victims of terrorism have not only confined to loss of life and limp but also includes the physiological trauma to the innocent victims. The physical wounds may heal, but the trauma remains in the mind and heart of the victims and their loved ones; however, one should not deny that these terrorist activities affect to a major extent to their livelihood. To protect their human rights and restore the shattered lives of the victims of terrorism all the Nations beyond their differences have to show solidarity and frame a comprehensive restorative policy with an effective implementing mechanism. The General Assembly of United Nations, through its several resolutions, has appealed Nations to show solidarity and also committed to helping the Members State to frame the law and policy to support the victims of terrorism. To achieve the objectives of the resolutions adopted by the United Nations, the Indian legislators in 2008 amended the Code of Criminal Procedure, 1973 and incorporated Section 357A to provide financial assistance to the victims of terrorism. In India, the contemporary developments in the victims’ oriented studies have increased the dimension of the traditional criminal justice systems to protect the rights of the victims. In this regard, the paper has ascertained the Indian legal framework in respect to the restorative justice to the victims of terrorism and also addressed the question as to whether the statutory provisions and enforcement mechanisms are efficient enough to protect the human rights of the victims of terrorism. For that purpose, the paper has analyzed the International instruments and the reports with regard to the compensation to the victims of terrorist attacks, with that, the article also evaluates the initiatives of United Nations to help Members State to frame the law and policies to support the victims of terrorism. The study also made an attempt to critically analyze the legal provisions of compensation and rehabilitation of the victims of terrorist attacks in India and whether they are in alignment with the International standards. While concluding, the paper has made an endeavor for a robust legal framework towards the restorative justice for the victims of terrorism in India.

Keywords: victims of terrorism, restorative justice, human rights, criminal justice system of India

Procedia PDF Downloads 162
1640 Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines

Authors: Abdul Matin, Muhammad Ajmal, Uzma Yunus, Noaman-ul Haq, Hafiz M. Shohaib, Ambreen G. Muazzam

Abstract:

Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system.

Keywords: carbon nanoparticles, carbon nanoparticles-methotrexate conjugates, human lung carcinoma cell lines, lactate dehydrogenase, methotrexate

Procedia PDF Downloads 310
1639 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 373
1638 Promoting Effective Institutional Governance in Cameroon Higher Education: A Governance Equalizer Perspective

Authors: Jean Patrick Mve

Abstract:

The increasing quest for efficiency, accountability, and transparency has led to the implementation of massive governance reforms among higher education systems worldwide. This is causing many changes in the governance of higher education institutions. Governments over the world are trying to adopt business-like organizational strategies to enhance the performance of higher education institutions. This study explores the changes that have taken place in the Cameroonian higher education sector. It also attempts to draw a picture of the likely future of higher education governance and the actions to be taken for the promotion of institutional effectiveness among higher education institutions. The “governance equalizer” is used as an analytical tool to this end. It covers the five dimensions of the New Public Management (NPM), namely: state regulation, stakeholder guidance, academic self-governance, managerial self-governance, and competition. Qualitative data are used, including semi-structured interviews with key informants at the organizational level and other academic stakeholders, documents and archival data from the university and from the ministry of higher education. It has been found that state regulation among higher education institutions in Cameroon is excessively high, causing the institutional autonomy to be very low, especially at the level of financial management, staffing and promotion, and other internal administrative affairs; at the level of stakeholder guidance there is a higher degree of stakeholders consideration in the academic and research activities among universities, though the government’s interest to keep its hands in most management activities is still high; academic self-governance is also very weak as the assignment of academics is done more on the basis of political considerations than competence; there is no real managerial self-governance among higher education institutions due to the lack of institutional capacity and insufficient autonomy at the level of decision making; there is a plan to promote competition among universities but a real competitive environment is not yet put into place. The study concludes that the government’s policy should make state control more relaxed and concentrate on steering and supervision. As well, real institutional autonomy, professional competence building for top management and stakeholder participation should be considered to guarantee competition and institutional effectiveness.

Keywords: Cameroon higher education, effective institutional governance, governance equalizer, institutional autonomy, institutional effectiveness

Procedia PDF Downloads 162