Search results for: support vector machines (SVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8245

Search results for: support vector machines (SVM)

7495 Importance of Developing a Decision Support System for Diagnosis of Glaucoma

Authors: Murat Durucu

Abstract:

Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.

Keywords: decision support system, glaucoma, image processing, pattern recognition

Procedia PDF Downloads 302
7494 Investigating Factors Influencing Generation Z’s Pro-Environmental Behavior to Support the Energy Transition in Jakarta, Indonesia

Authors: Phimsupha Kokchang, Divine Ifransca Wijaya

Abstract:

The energy transition is crucial for mitigating climate change and achieving sustainable development and resilience. As the energy transition advances, generation Z is entering the economic world and will soon be responsible for taking care of the environment. This study aims to investigate the factors influencing generation Z’s pro-environmental behavior to support the energy transition. The theory of planned behavior approach was combined with the pro-environmental behavior concept to examine generation Z’s support toward the energy transition through participating in activism, using energy from renewable sources, opting for energy-efficient utilities or vehicles, and influencing others. Data were collected through an online questionnaire of 400 respondents aged 18-26 living in Jakarta, Indonesia. Partial least square structural equation modeling (PLS-SEM) using SmartPLS 3.0 software was used to analyze the reliability and validity of the measurement model. The results show that attitude, subjective norms, and perceived behavior control positively correlate with generation Z’s pro-environmental behavior to support the energy transition. This finding could enhance understanding and provide insights to formulate effective strategies and policies to increase generation Z’s support towards the energy transition. This study contributes to the energy transition discussion as it is included in the Sustainable Development Goals, as well as pro-environmental behavior and theory of planned behavior literature.

Keywords: energy transition, pro-environmental behavior, theory of planned behavior, generation Z

Procedia PDF Downloads 118
7493 Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg

Authors: Tobias Schmithuesen, Johannes Henrich Schleifenbaum

Abstract:

The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg.

Keywords: additive manufacturing, laser powder bed fusion, laser beam melting, selective laser melting, post processing, tool-free, wet chemical ablation, thermal deburring, aluminum alloy, AlSi10Mg

Procedia PDF Downloads 91
7492 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field

Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar

Abstract:

A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.

Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain

Procedia PDF Downloads 397
7491 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 167
7490 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 82
7489 Legal Framework of Islamic Social Finance to Support M40 Income Group in Malaysia

Authors: Azlin Suzana Salim

Abstract:

The 12th Malaysian Plan 2021-2025, issued by the Economic Planning Unit in 2021, outlined one of the six important priorities to support M40 towards equitable society. The Financial Sector Blueprint 2022-2026, released by Bank Negara Malaysia in 2022, further outlined the fifth key thrust focusing on Islamic Social Finance. The purpose of this research is to examine the Legal Framework of bridging Islamic Social Finance to support M40 Income Group in Malaysia. This study adopts a doctrinal legal research method to examine the laws and regulations governing Islamic Social Finance in Malaysia and a qualitative method to examine the Islamic Social Finance Instrument to support the M40 income group. The implication of this study is important to propose the legal framework and bridge the Islamic Social Finance instrument to support the M40 income group in Malaysia. The significance of this study is to realign between priorities of the 12th Malaysian Plan 2021-2025 and the Financial Sector Blueprint 2022-2026.

Keywords: legal framework, Islamic social finance, m40 income group, law and regulation

Procedia PDF Downloads 69
7488 A Script for Presentation to the Management of a Teaching Hospital on MYCIN: A Clinical Decision Support System

Authors: Rashida Suleiman, Asamoah Jnr. Boakye, Suleiman Ahmed Ibn Ahmed

Abstract:

In recent years, there has been an enormous success in discoveries of scientific knowledge in medicine coupled with the advancement of technology. Despite all these successes, diagnoses and treatment of diseases have become complex. MYCIN is a groundbreaking illustration of a clinical decision support system (CDSS), which was developed to assist physicians in the diagnosis and treatment of bacterial infections by providing suggestions for antibiotic regimens. MYCIN was one of the earliest expert systems to demonstrate how CDSSs may assist human decision-making in complicated areas. Relevant databases were searched using google scholar, PubMed and general Google search, which were peculiar to clinical decision support systems. The articles were then screened for a comprehensive overview of the functionality, consultative style and statistical usage of MYCIN, a clinical decision support system. Inferences drawn from the articles showed some usage of MYCIN for problem-based learning among clinicians and students in some countries. Furthermore, the data demonstrated that MYCIN had completed clinical testing at Stanford University Hospital following years of research. The system (MYCIN) was shown to be extremely accurate and effective in diagnosing and treating bacterial infections, and it demonstrated how CDSSs might enhance clinical decision-making in difficult circumstances. Despite the challenges MYCIN presents, the benefits of its usage to clinicians, students and software developers are enormous.

Keywords: clinical decision support system, MYCIN, diagnosis, bacterial infections, support systems

Procedia PDF Downloads 145
7487 The Importance of Visual Communication in Artificial Intelligence

Authors: Manjitsingh Rajput

Abstract:

Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.

Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.

Procedia PDF Downloads 95
7486 Measuring Financial Asset Return and Volatility Spillovers, with Application to Sovereign Bond, Equity, Foreign Exchange and Commodity Markets

Authors: Petra Palic, Maruska Vizek

Abstract:

We provide an in-depth analysis of interdependence of asset returns and volatilities in developed and developing countries. The analysis is split into three parts. In the first part, we use multivariate GARCH model in order to provide stylized facts on cross-market volatility spillovers. In the second part, we use a generalized vector autoregressive methodology developed by Diebold and Yilmaz (2009) in order to estimate separate measures of return spillovers and volatility spillovers among sovereign bond, equity, foreign exchange and commodity markets. In particular, our analysis is focused on cross-market return, and volatility spillovers in 19 developed and developing countries. In order to estimate named spillovers, we use daily data from 2008 to 2017. In the third part of the analysis, we use a generalized vector autoregressive framework in order to estimate total and directional volatility spillovers. We use the same daily data span for one developed and one developing country in order to characterize daily volatility spillovers across stock, bond, foreign exchange and commodities markets.

Keywords: cross-market spillovers, sovereign bond markets, equity markets, value at risk (VAR)

Procedia PDF Downloads 261
7485 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 145
7484 Going the Distance – Building Peer Support during a Time of Crisis

Authors: Lisa Gray, Henry Kronner, Tameca Harris-Jackson, Mimi Sodhi, Ruth Gerritsen-McKane, Donette Considine

Abstract:

The MSW Peer Mentorship Program (PMP) was developed as one of several approaches to foster student success. The key purposes of the PMP are to help new graduate students transition to a graduate program, facilitate relationship building between students, grow and sustain student satisfaction, and build a strong connection to the MSW program. This pilot program also serves as an additional source of support for students during the era of the Covid-19 pandemic. Further, the long-term goals of the program are to assist in student retention. Preliminary findings suggest that both mentors and mentees enrolled in PMP find the peer mentoring relationship to have a positive impact on their graduate learning experience.

Keywords: covid-19, mentorship, peer support, student success

Procedia PDF Downloads 220
7483 An Ecofriendly Approach for the Management of Aedes aegypti L (Diptera: Culicidae) by Ocimum sanctum

Authors: Mohd Shazad, Kamal Kumar Gupta

Abstract:

Aedes aegypti (Diptera: Culicidae), commonly known as tiger mosquito is the vector of dengue fever, yellow fever, chikungunya and zika virus. In the absence of any effective vaccine against these diseases, control the mosquito population is the only promising mean to prevent the diseases. Currently used chemical insecticides cause environmental contamination, high mammalian toxicity and hazards to non-target organisms, insecticide resistance and vector resurgence. Present research work aimed to explore the potentials of phytochemicals present in the Ocimum sanctum in management of mosquito population. The leaves of Ocimum were extracted with ethanol by ‘cold extraction method’. 0-24h old fourth instar larvae of Aedes aegypti were treated with the extract of concentrations 50ppm, 100ppm, 200ppm and 400ppm for 24h. Survival, growth and development of the treated larvae were evaluated. The adults emerged from the treated larvae were used for the reproductive fitness studies. Our results indicate 77.2% mortality in the larvae exposed to 400 ppm. At lower doses, although there was no significant reduction in the survival after 24h however, it decreased during subsequent days of observations. In control experiments, no mortality was observed. It was also observed that the larvae survived after treatment showed severe growth and developmental abnormalities. There was significant increase in larval duration. In control, fourth instar moulted into pupa after 3 days while larvae treated with 400 ppm extract were moulted after 4.6 days. Larva-pupa intermediates and the pupa-adult intermediates were observed in many cases. The adults emerged from the treated larvae showed impaired mating and oviposition behaviour. The females exhibited longer preoviposition period, reduced oviposition rate and decreased egg output. GCMS analysis of the ethanol extract revealed presence of JH mimics and intermediates of JH biosynthetic pathway. Potentials of Ocimum sanctum in integrated vector management programme of Aedes aegypti were discussed.

Keywords: Aedes aegypti, Ocimum sanctum, oviposition, survival

Procedia PDF Downloads 183
7482 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 377
7481 The Needs of People with a Diagnosis of Dementia and Their Carers and Families

Authors: James Boag

Abstract:

The needs of people with a diagnosis of dementia and their carers and families are physical, psychosocial, and psychological and begin at the time of diagnosis. There is frequently a lack of emotional support and counselling. Care- giving support is required from the presentation of the first symptoms of dementia until death. Alzheimer's disease begins decades before the clinical symptoms begin to appear, and in many cases, it remains undiagnosed, or diagnosed too late for any possible interventions to have any effect. However, if an incorrect diagnosis is given, it may result in a person being treated, without effect, for a type of dementia they do not have and delaying the interventions they should have received. Being diagnosed with dementia can cause emotional distress to the person, and physical and emotional support is needed, which will become more important as the disease progresses. The severity of the patient's dementia and their symptoms has a bearing of the impact on the carer and the support needed. A lack of insight and /or a denial of the diagnosis, grief, reacting to anticipated future losses, and coping methods to maximise the disease outcome, are things that should be addressed. Because of the stigma, it is important for carers not to lose contact with family and others because social isolation leads to depression and burnout. The impact on a carer's well- being and quality of life can be influenced by the severity of the illness, its type of dementia, its symptoms, healthcare support, financial and social status, career, age, health, residential setting, and relationship to the patient. Carer burnout due to lack of support leads to people diagnosed with dementia being put into residential care prematurely. Often dementia is not recognised as a terminal illness, limiting the ability of the person diagnosed with dementia and their carers to work on advance care planning and getting access to palliative and other support. Many carers have been satisfied with the physical support they were given in their everyday life, however, it was agreed that there was an immense unmet need for psychosocial support, especially after diagnosis and approaching end of life. Providing continuity and coordination of care is important. Training is necessary for providers to understand that every case is different, and they should understand the complexities. Grief, the emotional response to loss, is suffered during the progression of the disease and long afterwards, and carers should continue to be supported after the death of the person they were caring for.

Keywords: dementia, caring, challenges, needs

Procedia PDF Downloads 97
7480 Insecticide Resistance Detection on Dengue Vector, Aedes albopictus Obtained from Kapit, Kuching and Sibu Districts in Sarawak State, Malaysia

Authors: Koon Weng Lau, Chee Dhang Chen, Abdul Aziz Azidah, Mohd Sofian-Azirun

Abstract:

Recently, Sarawak state of Malaysia encounter an outbreak of dengue fever. Aedes albopictus has incriminated as one of the important vectors of dengue transmission. Without an effective vaccine, approaches to control or prevent dengue will be a focus on the vectors. The control of Aedes mosquitoes is still dependent on the use of chemical insecticides and insecticide resistance represents a threat to the effectiveness of vector control. This study was conducted to determine the resistance status of 11 active ingredients representing four major insecticide classes: DDT, dieldrin, malathion, fenitrothion, bendiocarb, propoxur, etofenprox, deltamethrin, lambda-cyhalothrin, cyfluthrin, and permethrin. Standard WHO test procedures were conducted to determine the insecticide susceptibility. Aedes albopictus collected from Kapit (resistance ratio, RR = 1.04–3.02), Kuching (RR = 1.17–4.61), and Sibu (RR = 1.06–3.59) exhibited low resistance toward all insecticides except dieldrin. This study reveled that dieldrin is still effective against Ae. albopictus, followed by fenitrothion, cyfluthrin, and deltamethrin. In conclusion, Ae. albopictus in Sarawak exhibited different resistance levels toward various insecticides and alternative solutions should be implemented to prevent further deterioration of the condition.

Keywords: Aedes albopictus, dengue, insecticide resistance, Malaysia

Procedia PDF Downloads 354
7479 Relationship between Pain, Social Support and Socio-Economic Indicators in Individuals with Spinal Cord Injury

Authors: Zahra Khazaeipour, Ehsan Ahmadipour, Vafa Rahimi-Movaghar, Fereshteh Ahmadipour

Abstract:

Research Objectives: Chronic pain is one of the common problems associated with spinal cord injuries (SCI), which causes many complications. Therefore, this study intended to evaluate the relationship between pain and demographic, injury characteristics, socio-economic and social support in individuals with spinal cord Injury in Iran. Design: Descriptive cross-sectional study. Setting: Brain and Spinal Cord Injury Research Center (BASIR), Tehran University of Medical Sciences, Tehran, Iran, between 2012 and 2013. Participants: The participants were 140 individuals with SCI, 101 (72%) men and 39 (28%) women, with mean age of 29.4 ±7.9 years. Main Outcome Measure: The Persian version of the Brief Pain Inventory (BPI) was used to measure the pain, and the Multidimensional Scale of Perceived Social Support (MSPSS) was used to measure social support. Results: About 50.7% complained about having pain, which 79.3% had bilateral pain. The most common locations of pain were lower limbs and back. The most quality of pain was described as aching (41.4%), and tingling (32.9%). Patients with a medium level of education had the least pain compared to high and low level of education. SCI individuals with good economic situation reported higher frequency of having pain. There was no significant relationship between pain and social support. There was positive correlation between pain and impairment of mood, normal work, relations with other people and lack of sleep (P < 0.001). Conclusion: These findings revealed the importance of socioeconomic factors such as economic situation and educational level in understanding chronic pain in people with SCI and provide further support for the bio-psychosocial model. Hence, multidisciplinary evaluations and treatment strategies are advocated, including biomedical, psychological, and psycho-social interventions.

Keywords: pain, social support, socio-economic indicators, spinal cord injury

Procedia PDF Downloads 296
7478 A Computationally Intelligent Framework to Support Youth Mental Health in Australia

Authors: Nathaniel Carpenter

Abstract:

Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.

Keywords: artificial intelligence, information systems, machine learning, youth mental health

Procedia PDF Downloads 110
7477 Early Help Family Group Conferences: An Analysis of Family Plans

Authors: Kate Parkinson

Abstract:

A Family Group Conference (FGC) is a family-led decision-making process through which a family/kinship group, rather than the professionals involved, is asked to develop a plan for the care or the protection of children in the family. In England and Wales, FGCs are used in 76% of local authorities and in recent years, have tended to be used in cases where the local authority are considering the court process to remove children from their immediate family, to explore kinship alternatives to local authority care. Some local authorities offer the service much earlier, when families first come to the attention of children's social care, in line with research that suggests the earlier an FGC is held, the more likely they are to be successful. Family plans that result from FGCs are different from professional plans in that they are unique to a family and, as a result, reflect the diversity of families. Despite the fact that FGCs are arguable the most researched area of social work globally, there is a dearth of research that examines the nature of family plans and their substance. This paper presents the findings of a documentary analysis of 42 Early Help FGC plans from local authorities in England, with the aim of exploring the level and type of support that family members offer at a FGC. A thematic analysis identified 5 broad areas of support: Practical Support, Building Relationships, Child-care Support, Emotional Support and Social Support. In the majority of cases, family members did not want or ask for any formal support from the local authority or other agencies. Rather, the families came together to agree a plan of support, which was within the parameters of the resources that they as a family could provide. Perhaps then the role of the Early Help professional should be one of a facilitating and enabling role, to support families to develop plans that address their own specific difficulties, rather than the current default option, which is to either close the case because the family do not meet service thresholds or refer to formal support if they do, which may offer very specific support, have rigid referral criteria, long waiting lists and may not reflect the diverse and unique nature of families. FGCs are argued to be culturally appropriate social work practices in that they are appropriate for families from a range of cultural backgrounds and can be adapted to meet particular cultural needs. Furthermore, research on the efficacy of FGCs at an Early Help Level has demonstrated that Early Help FGCs have the potential to address difficulties in family life and prevent the need for formal support services, which are potentially stigmatising and do not reflect the uniqueness and diversity of families. The paper concludes with a recommendation for the use of FGCs across Early Help Services in England and Wales.

Keywords: family group conferences, family led decision making, early help, prevention

Procedia PDF Downloads 92
7476 Electroencephalogram Based Approach for Mental Stress Detection during Gameplay with Level Prediction

Authors: Priyadarsini Samal, Rajesh Singla

Abstract:

Many mobile games come with the benefits of entertainment by introducing stress to the human brain. In recognizing this mental stress, the brain-computer interface (BCI) plays an important role. It has various neuroimaging approaches which help in analyzing the brain signals. Electroencephalogram (EEG) is the most commonly used method among them as it is non-invasive, portable, and economical. Here, this paper investigates the pattern in brain signals when introduced with mental stress. Two healthy volunteers played a game whose aim was to search hidden words from the grid, and the levels were chosen randomly. The EEG signals during gameplay were recorded to investigate the impacts of stress with the changing levels from easy to medium to hard. A total of 16 features of EEG were analyzed for this experiment which includes power band features with relative powers, event-related desynchronization, along statistical features. Support vector machine was used as the classifier, which resulted in an accuracy of 93.9% for three-level stress analysis; for two levels, the accuracy of 92% and 98% are achieved. In addition to that, another game that was similar in nature was played by the volunteers. A suitable regression model was designed for prediction where the feature sets of the first and second game were used for testing and training purposes, respectively, and an accuracy of 73% was found.

Keywords: brain computer interface, electroencephalogram, regression model, stress, word search

Procedia PDF Downloads 187
7475 The Role of Family Support and Work Life Balance of Women Entrepreneurs in Jaffna District

Authors: Thevaranchany Sivaskaran

Abstract:

Women entrepreneurs are the key players in the society and their contributions is highly highlighted to enhance economic stability in the country. In Sri Lanka, especially in North and East provinces people badly affected by war. Most of them are widows and women headed families. Due to this changing environment, Educational opportunities, and the support of NGO’s Most of the women have started their business and become entrepreneurs. Even though existing family setup and social setup entrepreneurial women are overburdened and difficult to balance their business and family roles. The research has been conducted on the experiences of women entrepreneurs with the family role support and work-life balance within the small and micro- enterprise sector in Jaffna, Srilanka. This study aims to identify that what extent the role of family support will be the tool to balancing work and life effectively and, secondly, the main challenges they face in achieving work-life balance. This is done by drawing on literatures including those on work-life balance, small-and micro enterprises, and entrepreneurship theories. To find out this objective, the data were collected from 50 entrepreneurs among the members of Jaffna women chamber in each GS division basis (cluster random sampling). A qualitative methodological technique and semi-structured interviews were used to collect the data for the case study on these entrepreneurs. The results indicate that the majority of entrepreneurs do not enjoy a sense of work-life balance because most of them are women headed family and they need to work hard to generate financial profit for the benefit of family. The motivation for them to work in this way is to provide basic needs. Results confirmed for others that support of husbands is very important. Mostly, emotional support (belief and empowerment) is exposed; however, getting financial contribution seems to be highly appreciated. More responsibilities which spouses were ready to take over regarding the home responsibilities (that is, childcare) should also not be neglected in the system of support to their entrepreneurial wives. Although, more important for all, women with children appreciated other members and spouses help and assistance to a higher extent. Results showed that majority of women who started their own business feel that in the first year of ope-ration the emotional support of family members was more important.

Keywords: family support, work life balance, women entrepreneurs, Jaffna District, Sri Lanka

Procedia PDF Downloads 459
7474 Exploring Strategies Used by Victims of Intimate Partner Violence to Increase Sense of Safety: A Systematic Review and Quantitative Study

Authors: Thomas Nally, Jane Ireland, Roxanne Khan, Philip Birch

Abstract:

Intimate Partner Violence (IPV), a significant societal problem, affects individuals worldwide. However, the strategies victims use to keep safe are under-researched. IPV is significantly under-reported, and services often are not able to be accessed by all victims. Thus they are likely to use their own strategies to manage their victimization before being able to seek support. Two studies were completed to understand these strategies. A systematic review of the literature and study completed with professionals who work with victims was undertaken to understand this area. In study one, a systematic review of the literature (n=61 papers), were analyzed using Thematic Analysis. The results indicated that victims use a large array of behaviors to increase their sense of safety and coping with emotions but also experience significant barriers to help-seeking. In study 2, sixty-nine professionals completed a measure exploring the likelihood and effectiveness of various victim strategies regarding increasing their sense of safety. Strategies included in the measure were obtained from those identified in study 1. Findings indicated that professionals perceived victims of IPV to be more likely to employ safety strategies and coping behaviors that may be ineffective but not help-seeking behaviors. Further, the responses were analyzed using Cluster Analysis. Safety strategies resulted in five clusters; perpetrator-directed strategies, prevention strategies, cognitive reappraisal, safety planning and avoidance strategies. Help-Seeking resulted in six clusters; information or practical support, abuse-related support, emotional support, secondary support and informal support. Finally, coping resulted in four clusters; emotional coping, self-directed coping, thought recording/change and cognitive coping. Both studies indicate that victims may use a variety of strategies to manage their safety besides seeking help. Professionals working with victims, using a strength-based approach, should understand what is used and is effective for victims who are unable to leave the relationships or access external support.

Keywords: intimate partner violence, help-seeking, professional support, victims, victim coping, victim safety

Procedia PDF Downloads 186
7473 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 572
7472 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan

Authors: Ciwang Teyra, A. H. Y. Lai

Abstract:

Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.

Keywords: microaggressions, intersectionality, indigenous population, mental health, social support

Procedia PDF Downloads 146
7471 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems

Authors: Nasser Almonawer

Abstract:

Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.

Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method

Procedia PDF Downloads 47
7470 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 420
7469 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: earthquake early warning, on-site, seismometer location, support vector machine

Procedia PDF Downloads 243
7468 Immobilization of Enzymes and Proteins on Epoxy-Activated Supports

Authors: Ehsan Khorshidian, Afshin Farahbakhsh, Sina Aghili

Abstract:

Enzymes are promising biocatalysts for many organic reactions. They have excellent features like high activity, specificity and selectivity, and can catalyze under mild and environment friendly conditions. Epoxy-activated supports are almost-ideal ones to perform very easy immobilization of proteins and enzymes at both laboratory and industrial scale. The activated epoxy supports (chitosan/alginate, Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. The enzyme is firstly covalently immobilized under conditions pH 7.0 and 10.0. The remaining groups of the support are blocked to stop additional interaction between the enzyme and support by mercaptoethanol or Triton X-100. The results show support allowed obtaining biocatalysts with high immobilized protein amount and hydrolytic activity. The immobilization of lipases on epoxy support may be considered as attractive tool for obtaining highly active biocatalysts to be used in both aqueous and anhydrous aqueous media.

Keywords: immobilization of enzymes, epoxy supports, enzyme multipoint covalent attachment, microbial lipases

Procedia PDF Downloads 387
7467 Re-Stating the Origin of Tetrapod Using Measures of Phylogenetic Support for Phylogenomic Data

Authors: Yunfeng Shan, Xiaoliang Wang, Youjun Zhou

Abstract:

Whole-genome data from two lungfish species, along with other species, present a valuable opportunity to re-investigate the longstanding debate regarding the evolutionary relationships among tetrapods, lungfishes, and coelacanths. However, the use of bootstrap support has become outdated for large-scale phylogenomic data. Without robust phylogenetic support, the phylogenetic trees become meaningless. Therefore, it is necessary to re-evaluate the phylogenies of tetrapods, lungfishes, and coelacanths using novel measures of phylogenetic support specifically designed for phylogenomic data, as the previous phylogenies were based on 100% bootstrap support. Our findings consistently provide strong evidence favoring lungfish as the closest living relative of tetrapods. This conclusion is based on high internode certainty, relative gene support, and high gene concordance factor. The evidence stems from five previous datasets derived from lungfish transcriptomes. These results yield fresh insights into the three hypotheses regarding the phylogenies of tetrapods, lungfishes, and coelacanths. Importantly, these hypotheses are not mere conjectures but are substantiated by a significant number of genes. Analyzing real biological data further demonstrates that the inclusion of additional taxa leads to more diverse tree topologies. Consequently, gene trees and species trees may not be identical even when whole-genome sequencing data is utilized. However, it is worth noting that many gene trees can accurately reflect the species tree if an appropriate number of taxa, typically ranging from six to ten, are sampled. Therefore, it is crucial to carefully select the number of taxa and an appropriate outgroup, such as slow-evolving species, while excluding fast-evolving taxa as outgroups to mitigate the adverse effects of long-branch attraction and achieve an accurate reconstruction of the species tree. This is particularly important as more whole-genome sequencing data becomes available.

Keywords: novel measures of phylogenetic support for phylogenomic data, gene concordance factor confidence, relative gene support, internode certainty, origin of tetrapods

Procedia PDF Downloads 60
7466 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 143