Search results for: shore protective structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5140

Search results for: shore protective structures

4390 Probabilistic Study of Impact Threat to Civil Aircraft and Realistic Impact Energy

Authors: Ye Zhang, Chuanjun Liu

Abstract:

In-service aircraft is exposed to different types of threaten, e.g. bird strike, ground vehicle impact, and run-way debris, or even lightning strike, etc. To satisfy the aircraft damage tolerance design requirements, the designer has to understand the threatening level for different types of the aircraft structures, either metallic or composite. Exposing to low-velocity impacts may produce very serious internal damages such as delaminations and matrix cracks without leaving visible mark onto the impacted surfaces for composite structures. This internal damage can cause significant reduction in the load carrying capacity of structures. The semi-probabilistic method provides a practical and proper approximation to establish the impact-threat based energy cut-off level for the damage tolerance evaluation of the aircraft components. Thus, the probabilistic distribution of impact threat and the realistic impact energy level cut-offs are the essential establishments required for the certification of aircraft composite structures. A new survey of impact threat to civil aircraft in-service has recently been carried out based on field records concerning around 500 civil aircrafts (mainly single aisles) and more than 4.8 million flight hours. In total 1,006 damages caused by low-velocity impact events had been screened out from more than 8,000 records including impact dents, scratches, corrosions, delaminations, cracks etc. The impact threat dependency on the location of the aircraft structures and structural configuration was analyzed. Although the survey was mainly focusing on the metallic structures, the resulting low-energy impact data are believed likely representative to general civil aircraft, since the service environments and the maintenance operations are independent of the materials of the structures. The probability of impact damage occurrence (Po) and impact energy exceedance (Pe) are the two key parameters for describing the statistic distribution of impact threat. With the impact damage events from the survey, Po can be estimated as 2.1x10-4 per flight hour. Concerning the calculation of Pe, a numerical model was developed using the commercial FEA software ABAQUS to backward estimate the impact energy based on the visible damage characteristics. The relationship between the visible dent depth and impact energy was established and validated by drop-weight impact experiments. Based on survey results, Pe was calculated and assumed having a log-linear relationship versus the impact energy. As the product of two aforementioned probabilities, Po and Pe, it is reasonable and conservative to assume Pa=PoxPe=10-5, which indicates that the low-velocity impact events are similarly likely as the Limit Load events. Combing Pa with two probabilities Po and Pe obtained based on the field survey, the cutoff level of realistic impact energy was estimated and valued as 34 J. In summary, a new survey was recently done on field records of civil aircraft to investigate the probabilistic distribution of impact threat. Based on the data, two probabilities, Po and Pe, were obtained. Considering a conservative assumption of Pa, the cutoff energy level for the realistic impact energy has been determined, which provides potential applicability in damage tolerance certification of future civil aircraft.

Keywords: composite structure, damage tolerance, impact threat, probabilistic

Procedia PDF Downloads 308
4389 Behavior of Reinforced Concrete Structures Subjected to Multiple Floor Fire Loads

Authors: Suresh Narayana, Chaitanya Akkannavar

Abstract:

Assessment of behavior of reinforced concrete structures subjected to fire load, and its behavior for the multi-floor fire have been presented in this paper. This research is the part of the study to evaluate the performance of ten storied RC structure when it is subjected to fire loads at multiple floors and to evaluate the post-fire effects on structure such as deflection and stresses occurring due to combined effect of static and thermal loading. Thermal loading has been assigned to different floor levels to estimate the critical floors that initiate the collapse of the structure. The structure has been modeled and analyzed in Solid Works and commercially available Finite Element Software ABAQUS. Results are analyzed, and particular design solution has been suggested.

Keywords: collapse mechanism, fire analysis, RC structure, stress vs temperature

Procedia PDF Downloads 473
4388 Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Authors: Firooz Bakhtiari-Nejad, Hamidreza Rostami, Meysam Mirzaee, Mona Zandbaf

Abstract:

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-Contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employed for a modal analysis of a beam and detecting crack of the beam. The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

Keywords: experimental analysis, moving load, non-contact excitation, materials engineering

Procedia PDF Downloads 465
4387 Differences Choosing Closed Approach or Open Approach in Rhinoplasty Outcomes

Authors: Alessandro Marano

Abstract:

Aim: The author describes a strategy for choosing between two different rhinoplasty approaches for outcomes treatment. Methods: Series of the case study. There are advantages and disadvantages on both approaches for rhinoplasty. On the side of the open approach, we are be able to better manage the techniques for shaping and restoring nasal structures in rhinoplasty outcomes; on the other side, the closed approach requires more practice and experience to achieve good results. Results: Author’s choice is the closed approach on rhinoplasty outcomes. Anyway, the open approach is most commonly preferred due to superior management and better vision on nasal structures. Conclusions: Both approaches are valid for the treatment of rhinoplasty outcomes, author's preferred approach is closed, with minimally invasive modification focused on restoring outcomes in nasal function and aesthetics.

Keywords: rhinoplasty, aesthetic, face, outcomes

Procedia PDF Downloads 111
4386 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 532
4385 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 129
4384 Comparison of Steel and Composite Analysis of a Multi-Storey Building

Authors: Çiğdem Avcı Karataş

Abstract:

Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.

Keywords: composite analysis, earthquake, steel, multi-storey building

Procedia PDF Downloads 571
4383 Prediction of Nonlinear Torsional Behavior of High Strength RC Beams

Authors: Woo-Young Jung, Minho Kwon

Abstract:

Seismic design criteria based on performance of structures have recently been adopted by practicing engineers in response to destructive earthquakes. A simple but efficient structural-analysis tool capable of predicting both the strength and ductility is needed to analyze reinforced concrete (RC) structures under such event. A three-dimensional lattice model is developed in this study to analyze torsions in high-strength RC members. Optimization techniques for determining optimal variables in each lattice model are introduced. Pure torsion tests of RC members are performed to validate the proposed model. Correlation studies between the numerical and experimental results confirm that the proposed model is well capable of representing salient features of the experimental results.

Keywords: torsion, non-linear analysis, three-dimensional lattice, high-strength concrete

Procedia PDF Downloads 351
4382 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives

Authors: Z. Bayat

Abstract:

A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.

Keywords: DFT, adamantane, QSAR, Kovat

Procedia PDF Downloads 366
4381 Form-Finding of Tensioned Fabric Structure in Mathematical Monkey Saddle Model

Authors: Yee Hooi Min, Abdul Hadi, M. N., A. G. Kay Dora

Abstract:

Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and pre-stress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Monkey Saddle. Computational form-finding is frequently used to determine the possible form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Monkey Saddle applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface. Such in-sight will lead to improvement of rural basic infrastructure, economic gains, sustainability of built environment and green technology initiative.

Keywords: anticlastic, curvatures, form-finding, initial equilibrium shape, minimal surface, tensioned fabric structure

Procedia PDF Downloads 537
4380 Oil-Spill Monitoring in Istanbul Strait and Marmara Sea by RASAT Remote Sensing Images

Authors: Ozgun Oktar, Sevilay Can, Cengiz V. Ekici

Abstract:

The oil spill is a form of pollution caused by releasing of a liquid petroleum hydrocarbon into the marine environment. Considering the growth of ship traffic, increasing of off-shore oil drilling and seaside refineries affect the risk of oil spill upward. The oil spill is easy to spread to large areas when occurs especially on the sea surface. Remote sensing technology offers the easiest way to control/monitor the area of the oil spill in a large region. It’s usually easy to detect pollution when occurs by the ship accidents, however monitoring non-accidental pollution could be possible by remote sensing. It is also needed to observe specific regions daily and continuously by satellite solutions. Remote sensing satellites mostly and effectively used for monitoring oil pollution are RADARSAT, ENVISAT and MODIS. Spectral coverage and transition period of these satellites are not proper to monitor Marmara Sea and Istanbul Strait continuously. In this study, RASAT and GOKTURK-2 are suggested to use for monitoring Marmara Sea and Istanbul Strait. RASAT, with spectral resolution 420 – 730 nm, is the first Turkish-built satellite. GOKTURK-2’s resolution can reach up to 2,5 meters. This study aims to analyze the images from both satellites and produce maps to show the regions which have potentially affected by spills from shipping traffic.

Keywords: Marmara Sea, monitoring, oil spill, satellite remote sensing

Procedia PDF Downloads 423
4379 Development of Tourism Infrastructure and Cultural Heritage: Case of Gobustan Preserve

Authors: Rufat Nuriyev

Abstract:

Located in the eastern part of the Republic of Azerbaijan and on the western shore of the Caspian Sea, Gobustan National Reserve was inscribed as Gobustan Rock Art Cultural Landscape into the World Heritage List in 2007. Gobustan is an outstanding rock art landscape, where over 6000 rock engravings were found and registered, since the end of Upper Paleolithic up to the Middle Ages. Being a rock art center, the Gobustan seeks to stimulate public awareness and disseminate knowledge of prehistoric art to enrich educational, cultural and artistic communities regionally, nationally and internationally. Due to the Decree of the President of the Republic of Azerbaijan and the “Action Plan” , planned actions started to realize. Some of them implemented before of stipulated date. For the attraction of visitors and improvement of service quality in the museum-reserve, various activities are organized. The building of a new museum center at the foot of the Beyukdash Mountain has been completed in 2011. Main aims of the new museum building and exhibition was to provide better understanding of the importance of this monument for local community, Azerbaijanian culture and the world. In the Petroglyph Museum at Gobustan, digital and traditional media are closely integrated to reveal the complexity of historical, cultural and artistic meaning of prehistoric rock carvings of Gobustan. Alongside with electronic devices, the visitor gets opportunity of direct contact with artifacts and ancient rock carvings.

Keywords: Azerbaijan, Gobustan, rock art, museum

Procedia PDF Downloads 302
4378 Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force

Authors: Abdelouaheb Rouabhi

Abstract:

In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS.

Keywords: elastic-plastic, single degree of freedom model, rigid-plastic system, plastic resource, complex plastic deformation, macro-model

Procedia PDF Downloads 379
4377 Collocation Errors Made by Saudi Learners of English

Authors: Pakenam Shiha, Nadine Lacsina

Abstract:

Systematic and in-depth analysis of ESL learners’ lexical errors, in general, and of collocation errors, in particular, are relatively rare. Analysis as such proves crucial in understanding how ESL learners construct and use these fixed expressions. Collocational competence of ESL learners is necessary for achieving a native-like proficiency level, which is one of the objectives of foundation programs. This study aims to examine the collocational competence of 50 Saudi foundation program students and identify the collocation errors that they often make. Furthermore, using a questionnaire, the challenges that students encounter in learning collocations and the ways in which their L1 affects their ability to recognize these expressions are identified. To identify the lexical errors and the collocational competence of the students a collocation test was administered. The 150-item lexical collocation test consists of verb-noun and adjective-noun structures. Results of the study reveal that there is a significant difference between the scores of students in the verb-noun and adjective-noun structures. The majority of errors were recorded in the adjective-noun structures due to the students’ L1 influence on the English collocations and the inability to distinguish between synonyms. Moreover, some challenges that students encountered were problems in translation, non-exposure to certain collocations, and degree of L1-L2 difference. All in all, the findings of this study can be interpreted in relation to the student's proficiency level and L2 instruction. Other findings of the study provide insights into language pedagogy—specifically strategies to help students learn collocations more effectively.

Keywords: collocations, ESL, applied linguistics, lexical collocations

Procedia PDF Downloads 122
4376 Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities

Authors: Saraswati Verma, Ankit Batra

Abstract:

In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions.

Keywords: soft storey, mass irregularity, geometric irregularity, column orientation, square column

Procedia PDF Downloads 378
4375 Studies of Single Nucleotide Polymorphism of Proteosomal Gene Complex and Their Association with HBV Infection Risk in India

Authors: Jasbir Singh, Devender Kumar, Davender Redhu, Surender Kumar, Vandana Bhardwaj

Abstract:

Single Nucleotide polymorphism (SNP) of proteosomal gene complex is involved in the pathogenesis of hepatitis B Virus (HBV) infection. Some of such proteosomal gene complex are large multifunctional proteins (LMP) and antigen associated transporters that help in antigen presentation. Both are involved in intracellular processing and presentation of viral antigens in association with Major Histocompatability Complex (MHC) Class I molecules. A total of hundred each of hepatitis B virus infected and control samples from northern India were studied. Genomic DNA was extracted from all studied samples and PCR-RFLP method was used for genotyping at different positions of LMP genes. Genotypes at a given position were inferred from the pattern of bands and genotype frequencies and haplotype frequencies were also calculated. Homozygous SNP {A>C} was observed at codon 145 of LMP7 gene and having a protective role against HBV as there was statistically significant high distribution of this SNP among controls than cases. Heterozygous SNP {A>C} was observed at codon 145 of LMP7 gene and made individuals more susceptible to HBV infection as there was statistically significant high distribution of this SNP among cases than control. SNP {T>C} was observed at codon 60 of LMP2 gene but statistically significant differences were not observed among controls and cases. For codon 145 of LMP7 and codon 60 of LMP2 genes, four haplotypes were constructed. Haplotype I (LMP2 ‘C’ and LMP7 ‘A’) made individuals carrying it more susceptible to HBV infection as there was statistically significant high distribution of this haplotype among cases than control. Haplotype II (LMP2 ‘C’ and LMP7 ‘C’) made individuals carrying it more immune to HBV infection as there was statistically significant high distribution of this haplotype among control than cases. Thus it can be concluded that homozygous SNP {A>C} at codon 145 of LMP7 and Haplotype II (LMP2 ‘C’ and LMP7 ‘C’) has a protective role against HBV infection whereas heterozygous SNP {A>C} at codon 145 of LMP7 and Haplotype I (LMP2 ‘C’ and LMP7 ‘A’) made individuals more susceptible to HBV infection.

Keywords: Hepatitis B Virus, single nucleotide polymorphism, low molecular weight proteins, transporters associated with antigen presentation

Procedia PDF Downloads 308
4374 Comparison of Spiral Circular Coil and Helical Coil Structures for Wireless Power Transfer System

Authors: Zhang Kehan, Du Luona

Abstract:

Wireless power transfer (WPT) systems have been widely investigated for advantages of convenience and safety compared to traditional plug-in charging systems. The research contents include impedance matching, circuit topology, transfer distance et al. for improving the efficiency of WPT system, which is a decisive factor in the practical application. What is more, coil structures such as spiral circular coil and helical coil with variable distance between two turns also have indispensable effects on the efficiency of WPT systems. This paper compares the efficiency of WPT systems utilizing spiral or helical coil with variable distance between two turns, and experimental results show that efficiency of spiral circular coil with an optimum distance between two turns is the highest. According to efficiency formula of resonant WPT system with series-series topology, we introduce M²/R₋₁ to measure the efficiency of spiral circular coil and helical coil WPT system. If the distance between two turns s is too close, proximity effect theory shows that the induced current in the conductor, caused by a variable flux created by the current flows in the skin of vicinity conductor, is the opposite direction of source current and has assignable impart on coil resistance. Thus in two coil structures, s affects coil resistance. At the same time, when the distance between primary and secondary coils is not variable, s can also make the influence on M to some degrees. The aforementioned study proves that s plays an indispensable role in changing M²/R₋₁ and then can be adjusted to find the optimum value with which WPT system achieves the highest efficiency. In actual application situations of WPT systems especially in underwater vehicles, miniaturization is one vital issue in designing WPT system structures. Limited by system size, the largest external radius of spiral circular coil is 100 mm, and the largest height of helical coil is 40 mm. In other words, the turn of coil N changes with s. In spiral circular and helical structures, the distance between each two turns in secondary coil is set as a constant value 1 mm to guarantee that the R2 is not variable. Based on the analysis above, we set up spiral circular coil and helical coil model using COMSOL to analyze the value of M²/R₋₁ when the distance between each two turns in primary coil sp varies from 0 mm to 10 mm. In the two structure models, the distance between primary and secondary coils is 50 mm and wire diameter is chosen as 1.5 mm. The turn of coil in secondary coil are 27 in helical coil model and 20 in spiral circular coil model. The best value of s in helical coil structure and spiral circular coil structure are 1 mm and 2 mm respectively, in which the value of M²/R₋₁ is the largest. It is obviously to select spiral circular coil as the first choice to design the WPT system for that the value of M²/R₋₁ in spiral circular coil is larger than that in helical coil under the same condition.

Keywords: distance between two turns, helical coil, spiral circular coil, wireless power transfer

Procedia PDF Downloads 345
4373 Cognitive Emotion Regulation Strategies in 9–14-Year-Old Hungarian Children with Neurotypical Development in the Light of the Hungarian Version of Cognitive Emotion Regulation Questionnaire for Children

Authors: Dorottya Horváth, Andras Lang, Diana Varro-Horvath

Abstract:

This research activity and study is part of a major research effort to gain an integrative, neuropsychological, and personality psychological understanding of Attention Deficit Hyperactivity Disorder (ADHD) and thus improve the specification of diagnostic and therapeutic care. In the past, the neuropsychology section has investigated working memory, executive function, attention, and behavioural manifestations in children. Currently, we are looking for personality psychological protective factors for ADHD and its symptomatic exacerbation. We hypothesise that secure attachment, adaptive emotion regulation, and high resilience are protective factors. The aim of this study is to measure and report the results of a Hungarian sample of the Cognitive Emotion Regulation Questionnaire for Children (CERQ-k) because before studying groups with different developmental differences, it is essential to know the average scores of groups with neurotypical devel-opment. Until now, there was no Hungarian version of the above test, so we used our own translation. This questionnaire has been developed to assess children's thoughts after experiencing negative life events. It consists of 4-4 items per subscale, for a total of 36 items. The response categories for each item range from 1 (almost never) to 5 (almost always). The subscales were self-blame, blaming others, acceptance, planning, positive refocusing, rumination or thought-focusing, positive reappraisal, putting into perspective, and catastrophizing. The data for this study were collected from 120 children aged 9-14 years. It was analysed using descriptive statistical analysis, where the mean and standard deviation values for each age group, as well as the Cronbach's alpha value, were significant in testing the reliability of the questionnaire. The results showed that the questionnaire is a reliable and valid measuring instrument also on a Hungarian sample. These developments and results will allow the use of a version of the Cognitive Emotion Regulation Questionnaire for children in Hungarian and pave the way for the study of different developmental groups such as children with learning disabilities and/or with ADHD.

Keywords: neurotypical development, emotion regulation, negative life events, CERQ-k, Hungarian average scores

Procedia PDF Downloads 76
4372 Dosimetry in Interventional Radiology Examinations for Occupational Exposure Monitoring

Authors: Ava Zarif Sanayei, Sedigheh Sina

Abstract:

Interventional radiology (IR) uses imaging guidance, including X-rays and CT scans, to deliver therapy precisely. Most IR procedures are performed under local anesthesia and start with a small needle being inserted through the skin, which may be called pinhole surgery or image-guided surgery. There is increasing concern about radiation exposure during interventional radiology procedures due to procedure complexity. The basic aim of optimizing radiation protection as outlined in ICRP 139, is to strike a balance between image quality and radiation dose while maximizing benefits, ensuring that diagnostic interpretation is satisfactory. This study aims to estimate the equivalent doses to the main trunk of the body for the Interventional radiologist and Superintendent using LiF: Mg, Ti (TLD-100) chips at the IR department of a hospital in Shiraz, Iran. In the initial stage, the dosimeters were calibrated with the use of various phantoms. Afterward, a group of dosimeters was prepared, following which they were used for three months. To measure the personal equivalent dose to the body, three TLD chips were put in a tissue-equivalent batch and used under a protective lead apron. After the completion of the duration, TLDs were read out by a TLD reader. The results revealed that these individuals received equivalent doses of 387.39 and 145.11 µSv, respectively. The findings of this investigation revealed that the total radiation exposure to the staff was less than the annual limit of occupational exposure. However, it's imperative to implement appropriate radiation protection measures. Although the dose received by the interventional radiologist is a bit noticeable, it may be due to the reason for using conventional equipment with over-couch x-ray tubes for interventional procedures. It is therefore important to use dedicated equipment and protective means such as glasses and screens whenever compatible with the intervention when they are available or have them fitted to equipment if they are not present. Based on the results, the placement of staff in an appropriate location led to increasing the dose to the radiologist. Manufacturing and installation of moveable lead curtains with a thickness of 0.25 millimeters can effectively minimize the radiation dose to the body. Providing adequate training on radiation safety principles, particularly for technologists, can be an optimal approach to further decreasing exposure.

Keywords: interventional radiology, personal monitoring, radiation protection, thermoluminescence dosimetry

Procedia PDF Downloads 62
4371 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method

Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev

Abstract:

The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.

Keywords: activation energy, aluminum, low temperature diffusion, SiC

Procedia PDF Downloads 279
4370 Efficient Neural and Fuzzy Models for the Identification of Dynamical Systems

Authors: Aouiche Abdelaziz, Soudani Mouhamed Salah, Aouiche El Moundhe

Abstract:

The present paper addresses the utilization of Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) for the identification and control of dynamical systems with some degree of uncertainty. Because ANNs and FISs have an inherent ability to approximate functions and to adapt to changes in input and parameters, they can be used to control systems too complex for linear controllers. In this work, we show how ANNs and FISs can be put in order to form nets that can learn from external data. In sequence, it is presented structures of inputs that can be used along with ANNs and FISs to model non-linear systems. Four systems were used to test the identification and control of the structures proposed. The results show the ANNs and FISs (Back Propagation Algorithm) used were efficient in modeling and controlling the non-linear plants.

Keywords: non-linear systems, fuzzy set Models, neural network, control law

Procedia PDF Downloads 212
4369 Investigating the Role of Combined Length Scale Effect on the Mechanical Properties of Ni/Cu Multilayer Structures

Authors: Naresh Radaliyagoda, Nigel M. Jennett, Rong Lan, David Parfitt

Abstract:

A series of length scale engineered multilayer material with temperature robust mechanical properties has been suggested. A range of polycrystalline copper sub-layers with the thickness varying from 1 to 25μm and buried in between two nickel layers was produced using electrodeposition dual bath technique. The structure of the multilayers was characterized using Electron Backscatter Diffraction and Scanning Electron Microscope. The interface effect on the hardness and elastic modulus was tested using Nano-indentation. Results of the grain size and layer thickness measurements, and indentation hardness have been compared. It is found that there is a combined length scale effect that improves mechanical properties in Ni/Cu multilayer structures.

Keywords: nano-indentation, size effect, multilayers, electrodeposition

Procedia PDF Downloads 151
4368 Prediction of Pile-Raft Responses Induced by Adjacent Braced Excavation in Layered Soil

Authors: Linlong Mu, Maosong Huang

Abstract:

Considering excavations in urban areas, the soil deformation induced by the excavations usually causes damage to the surrounding structures. Displacement control becomes a critical indicator of foundation design in order to protect the surrounding structures. Evaluation, the damage potential of the surrounding structures induced by the excavations, usually depends on the finite element method (FEM) because of the complexity of the excavation and the variety of the surrounding structures. Besides, evaluation the influence of the excavation on surrounding structures is a three-dimensional problem. And it is now well recognized that small strain behaviour of the soil influences the responses of the excavation significantly. Three-dimensional FEM considering small strain behaviour of the soil is a very complex method, which is hard for engineers to use. Thus, it is important to obtain a simplified method for engineers to predict the influence of the excavations on the surrounding structures. Based on large-scale finite element calculation with small-strain based soil model coupling with inverse analysis, an empirical method is proposed to calculate the three-dimensional soil movement induced by braced excavation. The empirical method is able to capture the small-strain behaviour of the soil. And it is suitable to be used in layered soil. Then the free-field soil movement is applied to the pile to calculate the responses of the pile in both vertical and horizontal directions. The asymmetric solutions for problems in layered elastic half-space are employed to solve the interactions between soil points. Both vertical and horizontal pile responses are solved through finite difference method based on elastic theory. Interactions among the nodes along a single pile, pile-pile interactions, pile-soil-pile interaction action and soil-soil interactions are counted to improve the calculation accuracy of the method. For passive piles, the shadow effects are also calculated in the method. Finally, the restrictions of the raft on the piles and the soils are summarized as: (1) the summations of the internal forces between the elements of the raft and the elements of the foundation, including piles and soil surface elements, is equal to 0; (2) the deformations of pile heads or of the soil surface elements are the same as the deformations of the corresponding elements of the raft. Validations are carried out by comparing the results from the proposed method with the results from the model tests, FEM and other existing literatures. From the comparisons, it can be seen that the results from the proposed method fit with the results from other methods very well. The method proposed herein is suitable to predict the responses of the pile-raft foundation induced by braced excavation in layered soil in both vertical and horizontal directions when the deformation is small. However, more data is needed to verify the method before it can be used in practice.

Keywords: excavation, pile-raft foundation, passive piles, deformation control, soil movement

Procedia PDF Downloads 231
4367 Assessing the Implementation of Community Driven Development through Social Capital in Migrant and Indigenous Informal Settlements in Accra, Ghana

Authors: Beatrice Eyram Afi Ziorklui, Norihisa Shima

Abstract:

Community Driven Development (CDD) is now a widely recommended and accepted development strategy for informal communities across the continent. Centered on the utilization of social capital through community structures, different informal settlements have different structures and different levels of social capital, which affect the implementation and ability to overcome CDD challenges. Although known to be very successful, there are few perspectives on the implementation of CDD initiatives in different informal settlements. This study assesses the implementation of CDD initiatives in migrant and indigenous informal settlements and their ability to navigate challenges. The case study research design was adopted in this research, and respondents were chosen through simple random sampling. Using the Statistical Package for social scientists (SPSS) for data analysis, the study found that migrant informal settlements implement CDD projects through the network of hierarchical structures based on government systems, whereas indigenous informal settlements implement through the hierarchical social structure based on traditions and culture. The study also found that, with the exception of the challenge of land accessibility in migrant informal settlements, all other challenges, such as participation, resource mobilization, and maintenance, have a significant relationship with social capital, although indigenous informal settlements have higher levels of social capital than migrant informal settlements. The study recommends a framework that incorporates community characteristics and the underlying social capital to facilitate upgrading strategies in informal in Ghana.

Keywords: community driven development, informal settlements, social capital, upgrading

Procedia PDF Downloads 102
4366 Leadership Succession and Renewal in Zimbabwe Political Parties: A Critical Analysis of the Bhora Remusango Concept

Authors: A. F. Chikerema

Abstract:

Political leadership in Africa vary from the “criminalization” of the state to political leadership as “dispensing patrimony”, the “recycling” of elites and the use of state power and resources to consolidate political and economic power (Van Wyk:2007: p1). Political parties just like any other organizations always need leadership renewal and revamping, besides ideological and policy renewal. Zimbabwean politics present a shunned leadership renewal as reflected by the two champion political parties namely ZANU PF and MDC-T. Despite hot political power contestation between MDC and ZANUPF, the parties` internal structures are hinged on the two Godfather or Father figure that is Mugabe and Tsvangirai. They are the “labels “behind the two political parties. The suppressing of dissent voice on succession and renewal of leadership in the two parties has brew resistance from within and this has resulted in factional fights within the two political parties. The disgruntlement in the political parties has led to the stemming of the ‘bhoramusango concept’ from the electorate and party cadres whereby they are throwing or donating away their votes to other political parties. The ‘bhoramusango’ concept haunted ZANUPF in 2008 leading to its defeat by the opposition MDC-T .The paper takes the form of an analytic approach on leadership crisis in Zimbabwe. The narrative is framed on key concepts of leadership: namely leadership renewal and leadership succession, as agents operating within inherited structures negotiated political settlements, and form structures of leadership. Rulers gave priority to the consolidation of state power by installing party loyalists in the armed forces, civil service and local government. As part of this process, rulers have ensured consolidated power and authority.

Keywords: leadership renewal, leadership succession, ‘Bhora Musango’, political culture, political legitimacy

Procedia PDF Downloads 412
4365 Air Flows along Perforated Metal Plates with the Heat Transfer

Authors: Karel Frana, Sylvio Simon

Abstract:

The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered.

Keywords: perforations, convective heat transfers, turbulent flows, numerical simulations

Procedia PDF Downloads 580
4364 Morphological Transformations and Variations in Architectural Language from Tombs to Mausoleums: From Ottoman Empire to the Turkish Republic

Authors: Uğur Tuztaşi, Mehmet Uysal, Yavuz Arat

Abstract:

The tomb (grave) structures that have influenced the architectural culture from the Seljuk times to the Ottoman throughout Anatolia are members of a continuing building tradition in terms of monumental expression and styles. This building typology which has religious and cultural permeability in view of spatial traces and structural formations follows the entire trajectory of the respect to death and the deceased from the Seljuks to the Ottomans and also the changing burial traditions epitomised in the form of mausoleums in the Turkish Republic. Although the cultural layers have the same contents with regards to the cult of monument this architectural tradition which evolved from tombs to mausoleums changed in both typological formation and structural size. In short, the tomb tradition with unique examples of architectural functions and typological formations has been encountered from 13th century onwards and continued during the Ottoman period with changes in form and has transformed to mausoleums during the 20th century. This study analyses the process of transformation from complex structures to simple structures and then to monumental graves in terms of architectural expression. Moreover, the study interrogates the architectural language of Anatolian Seljuk tombs to Ottoman tombs and monumental graves built during the republican period in terms of spatial and structural contexts.

Keywords: death and space in Turks, monumental graves, language of architectural style, morphological transformations

Procedia PDF Downloads 356
4363 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings

Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi

Abstract:

One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.

Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis

Procedia PDF Downloads 93
4362 Applications of Engineering Geology in Hydro Power Tunnel Projects in Himalayan Geological Regime

Authors: Rameh Chauhan

Abstract:

Tunnel construction in Himalayan rock is a challenging task due to fragile nature of the strata. Tunnel excavation carried out from lower Himalayas to high Himalayas in different metamorphic rock. Therefore application of engineering geology plays a vital role during various stage of the tunneling projects. Engineering geology is defined as application of geology to construction of civil structures through engineering practice. It is applied to the design, construction and performance aspects of engineering structure on the surface or sub-surface like dam, underground and surface power house, cut slopes, tunnels and underground storage cavern for nuclear material. But this paper emphasized mostly on underground structures like big caverns of Power house, desilting chambers, and tunnels of various sizes. Construction of these structures in the fragile rock conditions of Himalayan geology from Western Himalayas to Eastern Himalayas necessitated the application of the engineering geology on the micro-scale base for the stability, performance, and longevity of the civil structures. Number of hydropower projects have been constructed, some of them are under construction and under investigation stage. These projects are located in various parts of Himalayas under various seismic-tectonic zones. Tunneling works are involved in these projects. This paper represents the various engineering geological practices adopted in investigation and construction stage of various projects based on experiences gained during past construction histories in Himalayan geology of young mountains in very fragile geological conditions. Highlighting and sharing of use of these techniques on various platforms will definitely enhance the knowledge for carrying out the construction of various projects for the development of society. Construction of the tunnels, surface, and sub-surface caverns, dams, highway, metro, highway tunnels are all based on engineering geological parameters in combinations with other engineering considerations.

Keywords: cavern-power house, desilting chambers and tunnels, seismic-tectonic-zones, earthquake-prone zones based on intensities

Procedia PDF Downloads 223
4361 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 81