Search results for: power consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9059

Search results for: power consumption

8309 Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company

Authors: Miguel A. Jimenez Barros, Elyn L. Solano Charris, Luis E. Ramirez, Lauren Castro Bolano, Carlos Torres Barreto, Juliana Morales Cubillo

Abstract:

This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact.

Keywords: bio-reactor, potable water, reverse osmosis, water treatment

Procedia PDF Downloads 236
8308 Pulsed Electric Field as Pretreatment for Different Drying Method in Chilean Abalone (Concholepas Concholepas) Mollusk: Effects on Product Physical Properties and Drying Methods Sustainability

Authors: Luis González-Cavieres, Mario Perez-Won, Anais Palma-Acevedo, Gipsy Tabilo-Munizaga, Erick Jara-Quijada, Roberto Lemus-Mondaca

Abstract:

In this study, pulsed electric field (PEF: 2.0 kV/cm) was used as pretreatment in drying methods, vacuum microwave (VMD); freeze-drying (FD); and hot air (HAD), in Chilean abalone mollusk. Drying parameters, quality, energy consumption, and Sustainability parameters were evaluated. PEF+VMD showed better values than the other drying systems, with drying times 67% and 83% lower than PEF+FD and FD. In the quality parameters, PEF+FD showed a significantly lower value for hardness (250 N), and a lower change of color value (ΔE = 12). In the case of HAD, the PEF application did not significantly influence its processing. In energy parameters, VMD and PEF+VMD reduced energy consumption and CO2 emissions.

Keywords: PEF technology, vacuum microwave drying, energy consumption, CO2 emissions

Procedia PDF Downloads 94
8307 Numerical Investigation of Supertall Buildings and Using Aerodynamic Characteristics to Create New Wind Power Sources

Authors: Mohammad A. Masoumi, Mohammad Zare, Soroush Sabouki

Abstract:

This study investigates the aerodynamic characteristics of supertall buildings to evaluate wind turbine installation at high altitudes. Most recent studies have investigated supertall buildings at a horizontal plane, while a vertical plan could be as important, especially to install wind turbines. A typical square-plan building with a height of 500 m is investigated numerically at horizontal and vertical plans to evaluate wind power generation potentials. The results show good agreement with experimental data and past studies. Then four new geometries are proposed to improvise regions at high altitudes to install wind turbines. Evaluating the simulations shows two regions with high power density, which have the possibility to install wind turbines. Results show that improvised regions to install wind turbines at high altitudes contain significant power density while higher power density is found behind buildings in a far distance. In addition, power density fluctuations behind buildings are investigated, which show decreasing fluctuations by reaching 50 m altitude while altitudes lower than 20 m have the most fluctuations.

Keywords: wind power, supertall building, power density, aerodynamic characteristics, wind turbine mobile, quality assurance, testing, applications

Procedia PDF Downloads 168
8306 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 140
8305 A Theory and Empirical Analysis on the Efficency of Chinese Electricity Pricing

Authors: Jianlin Wang, Jiajia Zhao

Abstract:

This paper applies the theory and empirical method to examine the relationship between electricity price and coal price, as well as electricity and industry output, for China during Jan 1999-Dec 2012. Our results indicate that there is no any causality between coal price and electricity price under other factors are controlled. However, we found a bi-directional causality between electricity consumption and industry output. Overall, the electricity price set by China’s NDRC is inefficient, which lead to the electricity supply shortage after 2004. It is time to reform electricity price system for China’s reformers.

Keywords: electricity price, coal price, power supply, China

Procedia PDF Downloads 472
8304 China's Soft Power and Its Strategy in West Asia

Authors: Iman Shabanzadeh

Abstract:

The economic growth and the special model of development in China have caused sensitivity in the public opinion of the world regarding the nature of this growth and development. In this regard, the Chinese have tried to put an end to such alarming procedures by using all the tools at their disposal and seek to present a peaceful and cooperative image of themselves. In this way, one of the most important diplomatic tools that Beijing has used to reduce the concerns caused by the Threat Theory has been the use of soft power resources and its tools in its development policies. This article begins by analyzing the concept of soft power and examining its foundations in international relations, and continues to examine the components of soft power in its Chinese version. The main purpose of the article is to figure out about the position of West Asia in China's soft power strategy and resources China use to achieve its goals in this region. In response to the main question, the paper's hypothesis is that soft power in its Chinese version had significant differences from Joseph Nye's original idea. In fact, the Chinese have imported the American version of soft power and adjusted, strengthened and, in other words, internalized it with their abilities, capacities and political philosophy. Based on this, China's software presence in West Asia can be traced in three areas. The first source of China's soft power in this region of West Asia is cultural in nature and is realized through strategies such as "use of educational tools and methods", "media methods" and "tourism industry". The second source is related to political soft power, which is applied through the policy of "balance of influence" and the policy of "mediation" and relying on the "ideological foundations of Confucianism". The third source also refers to China's economic soft power and is realized through three tools: "energy exchanges", "foreign investments" and "Belt-Road initiative". The research method of this article is descriptive-analytical.

Keywords: soft power, cooperative power, china, west asia

Procedia PDF Downloads 63
8303 The Incidence of Obesity among Adult Women in Pekanbaru City, Indonesia, Related to High Fat Consumption, Stress Level, and Physical Activity

Authors: Yudia Mailani Putri, Martalena Purba, B. J. Istiti Kandarina

Abstract:

Background: Obesity has been recognized as a global health problem. Individuals classified as overweight and obese are increasing at an alarming rate. This condition is associated with psychological and physiological problems. as a person reaches adulthood, somatic growth ceases. At this stage, the human body has developed fully, to a stable state. As the capital of Riau Province in Indonesia, Pekanbaru is dominated by Malay ethnic population habitually consuming cholesterol-rich fatty foods as a daily menu, a trigger to the onset of obesity resulting in high prevalence of degenerative diseases. Research objectives: The aim of this study is elaborating the relationship between high-fat consumption pattern, stress level, physical activity and the incidence of obesity in adult women in Pekanbaru city. Research Methods: Among the combined research methods applied in this study, the first stage is quantitative observational, analytical cross-sectional research design with adult women aged 20-40 living in Pekanbaru city. The sample consists of 200 women with BMI≥25. Sample data is processed with univariate, bivariate (correlation and simple linear regression) and multivariate (multiple linear regression) analysis. The second phase is qualitative descriptive study purposive sampling by in-depth interviews. six participants withdrew from the study. Results: According to the results of the bivariate analysis, there are relationships between the incidence of obesity and the pattern of high fat foods consumption (energy intake (p≤0.000; r = 0.536), protein intake (p≤0.000; r=0.307), fat intake (p≤0.000; r=0.416), carbohydrate intake (p≤0.000; r=0.430), frequency of fatty food consumption (p≤0.000; r=0.506) and frequency of viscera foods consumption (p≤0.000; r=0.535). There is a relationship between physical activity and incidence of obesity (p≤0.000; r=-0.631). However, there is no relationship between the level of stress (p=0.741; r=0.019-) and the incidence of obesity. Physical activity is a predominant factor in the incidence of obesity in adult women in Pekanbaru city. Conclusion: There are relationships between high-fat food consumption pattern, physical activity and the incidence of obesity in Pekanbaru city whereas physical activity is a predominant factor in the occurrence of obesity, supported by the unchangeable pattern of high-fat foods consumption.

Keywords: obesity, adult, high in fat, stress, physical activity, consumption pattern

Procedia PDF Downloads 234
8302 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique

Authors: Yogish Huchaiah, Chandrashekara Krishnappa

Abstract:

This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.

Keywords: COME, IP, MFCT, optimization, PI, PN, PV

Procedia PDF Downloads 211
8301 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.

Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant

Procedia PDF Downloads 413
8300 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 83
8299 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility

Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir

Abstract:

The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.

Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources

Procedia PDF Downloads 395
8298 Energy Potential of Organic Fraction of Municipal Solid Waste - Colombian Housing

Authors: Esteban Hincapie

Abstract:

The growing climate change, global warming and population growth have contributed to the energy crisis, aggravated by the generation of organic solid waste, as a material with high energy potential. From the context of waste generation in the Metropolitan Area of the Aburrá Valley, was evaluated the potential of energy content in organic solid waste generated in La Herradura housing complex, through anaerobic digestion process in batch reactors, with mixtures of substrate, water and inoculum 1: 3: 0.2 and 1: 3: 0, reaching a total biogas production of 0,2 m³/Kg y 0,14 m³/Kg respectively, in a period of 38 days under temperature conditions of 24°C. The volume of biogas obtained was equivalent to the monthly consumption of natural gas for 75 apartments or 1.856 Kw of electric power. For the Metropolitan Area of the Aburrá Valley, a production of 7.152Kw of electric power was estimated for a month, from the treatment of 22.319 tons of organic solid waste that would not be taken to the landfill. The results indicate that the treatment of organic waste from anaerobic digestion is a sustainable option to reduce pollution, contribute to the production of alternative energies and improve the efficiency of urban metabolism.

Keywords: alternative energies, anaerobic digestion, solid waste, sustainable construction, urban metabolism, waste management

Procedia PDF Downloads 181
8297 Solar Energy Management: A Case Study of Bhubaneswar City

Authors: Rachita Lal

Abstract:

Solar energy is a clean energy source. Because it is readily available in India and has many potential decentralized uses, urban local authorities may use it in various ways to manage the energy needs in the territory under their control. Apart from these and other services for which people pay a substantial number of money, urban local councils play a crucial role in administering essential services like water supply, street lighting, and health care. ULBs may contribute considerably to the transition to solar energy, both for their benefit and simultaneously for several additional direct and indirect advantages at multiple levels. The research primarily focuses on using clean energy management to reduce urban areas' reliance on traditional (electricity) energy. A technique for estimating the rooftop solar power potential using GIS (Geographical Information System) is described. Given that the combustion of fossil fuels produces 75% of India's power, meeting the country's energy needs through renewable energy sources is a step toward sustainable development and combating climate change. The study will further help in categorization, phasing, and understanding the demand and supply and thus calculating the cumulative benefits. The main objectives are to study the consumption of conventional energy in the study area and to identify the potential areas where solar photovoltaic intervention can be installed.

Keywords: solar energy, GIS, clean energy management, sustainable development

Procedia PDF Downloads 88
8296 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: global warming countermeasure, energy technology, solid fuel production, biogas

Procedia PDF Downloads 387
8295 Optimization of Line Loss Minimization Using Distributed Generation

Authors: S. Sambath, P. Palanivel

Abstract:

Research conducted in the last few decades has proven that an inclusion of Distributed Genaration (DG) into distribution systems considerably lowers the level of power losses and the power quality improved. Moreover, the choice of DG is even more attractive since it provides not only benefits in power loss minimisation, but also a wide range of other advantages including environment, economic, power qualities and technical issues. This paper is an intent to quantify and analyse the impact of distributed generation (DG) in Tamil Nadu, India to examine what the benefits of decentralized generation would be for meeting rural loads. We used load flow analysis to simulate and quantify the loss reduction and power quality enhancement by having decentralized generation available line conditions for actual rural feeders in Tamil Nadu, India. Reactive and voltage profile was considered. This helps utilities to better plan their system in rural areas to meet dispersed loads, while optimizing the renewable and decentralised generation sources.

Keywords: distributed generation, distribution system, load flow analysis, optimal location, power quality

Procedia PDF Downloads 400
8294 Numerical Modeling of a Molten Salt Power Tower Configuration Adaptable for Harsh Winter Climate

Authors: Huiqiang Yang, Domingo Santana

Abstract:

This paper proposes a novel configuration which introduces a natural draft dry cooling tower system in a molten salt power tower. A three-dimensional numerical modeling was developed based on the novel configuration. A plan of building 20 new concentrating solar power plants has been announced by Chinese government in September 2016, and among these 20 new plants, most of them are located in regions with long winter and harsh winter climate. The innovative configuration proposed includes an external receiver concrete tower at the center, a natural draft dry cooling tower which is surrounding the external receiver concrete tower and whose shell is fixed on the external receiver concrete tower, and a power block (including a steam generation system, a steam turbine system and hot/cold molten salt tanks, and water treatment systems) is covered by the roof of the natural draft dry cooling tower. Heat exchanger bundles are vertically installed at the furthest edge of the power block. In such a way, all power block equipment operates under suitable environmental conditions through whole year operation. The monthly performance of the novel configuration is simulated as compared to a standard one. The results show that the novel configuration is much more efficient in each separate month in a typical meteorological year. Moreover, all systems inside the power block have less thermal losses at low ambient temperatures, especially in harsh winter climate. It is also worthwhile mentioning that a photovoltaic power plant can be installed on the roof of the cooling tower to reduce the parasites of the molten salt power tower.

Keywords: molten salt power tower, natural draft dry cooling, commercial scale, power block, harsh winter climate

Procedia PDF Downloads 341
8293 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 100
8292 Disperse Innovation in the Turning German Energy Market

Authors: J. Gochermann

Abstract:

German energy market is under historical change. Turning-off the nuclear power plants and intensive subsidization of the renewable energies causes a paradigm change from big central energy production and distribution to more local structures, bringing the energy production near to the consumption. The formerly big energy market with only a few big energy plants and grid operating companies is changing into a disperse market with growing numbers of small and medium size companies (SME) generating new value-added products and services. This change in then energy market, in Germany called the “Energiewende”, inverts also the previous innovation system. Big power plants and large grids required also big operating companies. Innovations in the energy market focused mainly on big projects and complex energy technologies. Innovation in the new energy market structure is much more dispersed. Increasing number of SME is now able to develop energy production and storage technologies, smart technologies to control the grids, and numerous new energy related services. Innovation is now regional distributed, which is a remarkable problem for the old big energy companies. The paper will explain the change in the German energy market and the paradigm change as well as the consequences for the innovation structure in the German energy market. It will show examples how SME participate from this change and how innovation systems, as well for the big companies and for SME, can be adapted.

Keywords: changing energy markets, disperse innovation, new value-added products and services, SME

Procedia PDF Downloads 349
8291 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings

Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt

Abstract:

Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.

Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy

Procedia PDF Downloads 176
8290 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 301
8289 Feasibility Study of Potential and Economic of Rice Straw VSPP Power Plant in Thailand

Authors: Sansanee Sansiribhan, Anusorn Rattanathanaophat, Chirapan Nuengchaknin

Abstract:

The potential feasibility of a 9.5 MWe capacity rice straw power plant project in Thailand was studied by evaluating the rice straw resource. The result showed that Thailand had a high rice straw biomass potential at the provincial level, especially, the provinces in the central, northeastern and western Thailand, which could feasibly develop plants. The economic feasibility of project was also investigated. The financial feasibility is also evaluated based on two important factors in the project, i.e., NPV ≥ 0 and IRR ≥ 11%. It was found that the rice straw power plant project at 9.5 MWe was financially feasible with the cost of fuel in the range of 30.6-47.7 USD/t.

Keywords: power plant, project feasibility, rice straw, Thailand

Procedia PDF Downloads 335
8288 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator

Procedia PDF Downloads 325
8287 High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications

Authors: Meng-Chyi Wu, Bonn Lin, Jyun-Hao Liao, Chein-Ju Chen, Yu-Cheng Jhuang, Mau-Phon Houng, Fang-Hsing Wang, Min-Chu Liu, Cheng-Fu Yang, Cheng-Shong Hong

Abstract:

Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in.

Keywords: ultraviolet (UV) communication, light-emitting diodes (LEDs), modulation bandwidth, LED array, 370 nm

Procedia PDF Downloads 414
8286 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)

Procedia PDF Downloads 312
8285 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: electric machine, electric motor, electromagnet, efficiency of electric motor

Procedia PDF Downloads 338
8284 Heat Recovery System from Air-Cooled Chillers in Iranian Hospitals

Authors: Saeed Vahidifar, Mohammad Nakhaee Sharif, Mohammad Ghaffari

Abstract:

Few people would dispute the fact that one of the most common applications of energy is creating comfort in buildings, so it is probably true to say that management of energy consumption is required due to the environmental issues and increasing the efficiency of mechanical systems. From the geographical point of view, Iran is located in a warm and semi-arid region; therefore, air-cooled chillers are usually used for cooling residential buildings, commercial buildings, medical buildings, etc. In this study, a heat exchanger was designed for providing laundry hot water by utilizing condenser heat lost base on analytical results of a 540-bed hospital in the city of Mashhad in Iran. In this paper, by using the analytical method, energy consumption reduces about 13%, and coefficient of performance increases a bit. Results show that this method can help in the management of energy consumption a lot.

Keywords: air cooled chiller, energy management, environmental issues, heat exchanger, hospital laundry system

Procedia PDF Downloads 161
8283 Power Supply Feedback Regulation Loop Design Using Cadence PSpice Tool: Determining Converter Stability by Simulation

Authors: Debabrata Das

Abstract:

This paper explains how to design a regulation loop for a power supply circuit. It also discusses the need of a regulation loop and the improvement of a circuit with regulation loop. A sample design is used to demonstrate how to use PSpice to design feedback loop to control output voltage of a power supply and how to check if the power supply is stable or oscillatory. A sample design is made using a specific Integrated Circuit (IC) available in the PSpice library. A designer can experiment feedback loop design using Cadence Pspice tool. PSpice is easy to use, reliable, and convenient. To test a feedback loop, generally, engineers use trial and error method with the hardware which takes a lot of time and manpower. Moreover, it is expensive because component and Printed Circuit Board (PCB) may go bad. PSpice can be used by designers to test their loop designs without using hardware circuits. A designer can save time, cost, manpower and simulate his/her power supply circuit accurately before making a real hardware using this software package.

Keywords: power electronics, feedback loop, regulation, stability, pole, zero, oscillation

Procedia PDF Downloads 348
8282 Performance of an Improved Fluidized System for Processing Green Tea

Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko

Abstract:

Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.

Keywords: evaporation rate, fluid bed dryer, maceration, specific energy consumption

Procedia PDF Downloads 314
8281 Mathematical Modeling of Carotenoids and Polyphenols Content of Faba Beans (Vicia faba L.) during Microwave Treatments

Authors: Ridha Fethi Mechlouch, Ahlem Ayadi, Ammar Ben Brahim

Abstract:

Given the importance of the preservation of polyphenols and carotenoids during thermal processing, we attempted in this study to investigate the variation of these two parameters in faba beans during microwave treatment using different power densities (1; 2; and 3W/g), then to perform a mathematical modeling by using non-linear regression analysis to evaluate the models constants. The variation of the carotenoids and polyphenols ratio of faba beans and the models are tested to validate the experimental results. Exponential models were found to be suitable to describe the variation of caratenoid ratio (R²= 0.945, 0.927 and 0.946) for power densities (1; 2; and 3W/g) respectively, and polyphenol ratio (R²= 0.931, 0.989 and 0.982) for power densities (1; 2; and 3W/g) respectively. The effect of microwave power density Pd(W/g) on the coefficient k of models were also investigated. The coefficient is highly correlated (R² = 1) and can be expressed as a polynomial function.

Keywords: microwave treatment, power density, carotenoid, polyphenol, modeling

Procedia PDF Downloads 260
8280 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 589