Search results for: modified simplex algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5895

Search results for: modified simplex algorithm

5145 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing

Authors: Jaimin Patel

Abstract:

Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.

Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack

Procedia PDF Downloads 282
5144 Optimal Design of Substation Grounding Grid Based on Genetic Algorithm Technique

Authors: Ahmed Z. Gabr, Ahmed A. Helal, Hussein E. Said

Abstract:

With the incessant increase of power systems capacity and voltage grade, the safety of grounding grid becomes more and more prominent. In this paper, the designing substation grounding grid is presented by means of genetic algorithm (GA). This approach purposes to control the grounding cost of the power system with the aid of controlling grounding rod number and conductor lengths under the same safety limitations. The proposed technique is used for the design of the substation grounding grid in Khalda Petroleum Company “El-Qasr” power plant and the design was simulated by using CYMGRD software for results verification. The result of the design is highly complying with IEEE 80-2000 standard requirements.

Keywords: genetic algorithm, optimum grounding grid design, power system analysis, power system protection, single layer model, substation

Procedia PDF Downloads 537
5143 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 13
5142 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm

Procedia PDF Downloads 145
5141 Sorghum Polyphenols Encapsulated by Spray Drying, Using Modified Starches as Wall Materials

Authors: Adriana Garcia G., Alberto A. Escobar P., Amira D. Calvo L., Gabriel Lizama U., Alejandro Zepeda P., Fernando Martínez B., Susana Rincón A.

Abstract:

Different studies have recently been focused on the use of antioxidants such as polyphenols because of to its anticarcinogenic capacity. However, these compounds are highly sensible to environmental factors such as light and heat, so lose its long-term stability, besides possess an astringent and bitter taste. Nevertheless, the polyphenols can be protected by microcapsule formulation. In this sense, a rich source of polyphenols is sorghum, besides presenting a high starch content. Due to the above, the aim of this work was to obtain modified starches from sorghum by extrusion to encapsulate polyphenols the sorghum by spray drying. Polyphenols were extracted by ethanol solution from sorghum (Pajarero/red) and determined by the method of Folin-Ciocalteu, obtaining GAE at 30 mg/g. Moreover, was extracted starch of sorghum (Sinaloense/white) through wet milling (yield 32 %). The hydrolyzed starch was modified with three treatments: acetic anhydride (2.5g/100g), sodium tripolyphosphate (4g/100g), and sodium tripolyphosphate/ acetic anhydride (2g/1.25g by each 100 g) by extrusion. Processing conditions of extrusion were as follows: barrel temperatures were of 60, 130 and 170 °C at the feeding, transition, and high-pressure extrusion zones, respectively. Analysis of Fourier Transform Infrared spectroscopy (FTIR), showed bands exhibited of acetyl groups (1735 cm-1) and phosphates (1170 cm-1, 910 cm-1 and 525 cm-1), indicating the respective modification of starch. Besides, all modified starches not developed viscosity, which is a characteristic required for use in the encapsulation of polyphenols using the spray drying technique. As result of the modification starch, was obtained a water solubility index (WSI) from 33.8 to 44.8 %, and crystallinity from 8 to 11 %, indicating the destruction of the starch granule. Afterwards, microencapsulation of polyphenols was developed by spray drying, with a blend of 10 g of modified starch, 60 ml polyphenol extract and 30 ml of distilled water. Drying conditions were as follows: inlet air temperature 150 °C ± 1, outlet air temperature 80°C ± 5. As result of the microencapsulation: were obtained yields of 56.8 to 77.4 % and an efficiency of encapsulation from 84.6 to 91.4 %. The FTIR analysis showed evidence of microcapsules loaded with polyphenols in bands 1042 cm-1, 1038 cm-1 and 1148 cm-1. Analysis Differential scanning calorimetry (DSC) showed transition temperatures from 144.1 to 173.9 °C. For the order hand, analysis of Scanning Electron Microscopy (SEM), were observed rounded surfaces with concavities, typical feature of microcapsules produced by spray drying, how result of rapid evaporation of water. Finally, the modified starches were obtained by extrusion with good characteristics for use as cover materials by spray drying, where the phosphorylated starch was the best treatment in this work, according to the encapsulation yield, efficiency, and transition temperature.

Keywords: encapsulation, extrusion, modified starch, polyphenols, spray drying

Procedia PDF Downloads 310
5140 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 124
5139 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm

Procedia PDF Downloads 430
5138 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System

Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie

Abstract:

In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.

Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection

Procedia PDF Downloads 249
5137 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 392
5136 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 83
5135 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables

Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro

Abstract:

Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.

Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations

Procedia PDF Downloads 259
5134 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity

Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki

Abstract:

The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.

Keywords: indium tin oxide, particles, surface-modification, volume resistivity

Procedia PDF Downloads 253
5133 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 440
5132 Multiloop Fractional Order PID Controller Tuned Using Cuckoo Algorithm for Two Interacting Conical Tank Process

Authors: U. Sabura Banu, S. K. Lakshmanaprabu

Abstract:

The improvement of meta-heuristic algorithm encourages control engineer to design an optimal controller for industrial process. Most real-world industrial processes are non-linear multivariable process with high interaction. Even in sub-process unit, thousands of loops are available mostly interacting in nature. Optimal controller design for such process are still challenging task. Closed loop controller design by multiloop PID involves a tedious procedure by performing interaction study and then PID auto-tuning the loop with higher interaction. Finally, detuning the controller to accommodate the effects of the other process variables. Fractional order PID controllers are replacing integer order PID controllers recently. Design of Multiloop Fractional Order (MFO) PID controller is still more complicated. Cuckoo algorithm, a swarm intelligence technique is used to optimally tune the MFO PID controller with easiness minimizing Integral Time Absolute Error. The closed loop performance is tested under servo, regulatory and servo-regulatory conditions.

Keywords: Cuckoo algorithm, mutliloop fractional order PID controller, two Interacting conical tank process

Procedia PDF Downloads 500
5131 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses

Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn

Abstract:

The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.

Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis

Procedia PDF Downloads 392
5130 The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends

Authors: A. Gürses, T. B. Barın, Ç. Doğar

Abstract:

Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions.

Keywords: hot mix asphalt, stone matrix asphalt, organo clay, Marshall test, calcareous aggregate, modified bitumen

Procedia PDF Downloads 239
5129 Renewable Integration Algorithm to Compensate Photovoltaic Power Using Battery Energy Storage System

Authors: Hyung Joo Lee, Jin Young Choi, Gun Soo Park, Kyo Sun Oh, Dong Jun Won

Abstract:

The fluctuation of the output of the renewable generator caused by weather conditions must be mitigated because it imposes strain on the system and adversely affects power quality. In this paper, we focus on mitigating the output fluctuation of the photovoltaic (PV) using battery energy storage system (BESS). To satisfy tight conditions of system, proposed algorithm is developed. This algorithm focuses on adjusting the integrated output curve considering state of capacity (SOC) of the battery. In this paper, the simulation model is PSCAD / EMTDC software. SOC of the battery and the overall output curve are shown using the simulation results. We also considered losses and battery efficiency.

Keywords: photovoltaic generation, battery energy storage system, renewable integration, power smoothing

Procedia PDF Downloads 282
5128 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 571
5127 An Introductory Study on Optimization Algorithm for Movable Sensor Network-Based Odor Source Localization

Authors: Yossiri Ariyakul, Piyakiat Insom, Poonyawat Sangiamkulthavorn, Takamichi Nakamoto

Abstract:

In this paper, the method of optimization algorithm for sensor network comprised of movable sensor nodes which can be used for odor source localization was proposed. A sensor node is composed of an odor sensor, an anemometer, and a wireless communication module. The odor intensity measured from the sensor nodes are sent to the processor to perform the localization based on optimization algorithm by which the odor source localization map is obtained as a result. The map can represent the exact position of the odor source or show the direction toward it remotely. The proposed method was experimentally validated by creating the odor source localization map using three, four, and five sensor nodes in which the accuracy to predict the position of the odor source can be observed.

Keywords: odor sensor, odor source localization, optimization, sensor network

Procedia PDF Downloads 300
5126 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm

Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava

Abstract:

Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.

Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)

Procedia PDF Downloads 313
5125 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 456
5124 Dimension Free Rigid Point Set Registration in Linear Time

Authors: Jianqin Qu

Abstract:

This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.

Keywords: covariant point, point matching, dimension free, rigid registration

Procedia PDF Downloads 168
5123 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 462
5122 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm

Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu

Abstract:

Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.

Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model

Procedia PDF Downloads 203
5121 Assessment of Healthy Lifestyle Behavior Needs for Older Adults Living with Hypertension

Authors: P. Sutipan, U. Intarakamhang

Abstract:

The purpose of this study was to assess and prioritize the order of needs with regard to the healthy lifestyle behaviors for older adults living with hypertension. The participants involved 400 hypertensive elderly individuals in Chiang Mai, Thailand. The research instrument was a 26-item needs-assessment questionnaire in a dual response format on a four-level rating scale. The data was analyzed with the use of descriptive statistics and the needs were ranked using the Modified Priority Needs Index (PNIModified). The results indicated that the three priorities of healthy lifestyle behavior were healthy eating (PNImodified = 0.36), exercise (PNImodified = 0.35), and social contribution (PNImodified = 0.34), respectively. The implications of the findings for planning the intervention phase of the project are of particular interest.

Keywords: needs assessment, the modified priority needs index (PNIModified), healthy lifestyle behavior, older adults

Procedia PDF Downloads 299
5120 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample

Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri

Abstract:

A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.

Keywords: solid phase extraction, yeast cells, Nickl, isotherm study

Procedia PDF Downloads 264
5119 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 164
5118 Image Rotation Using an Augmented 2-Step Shear Transform

Authors: Hee-Choul Kwon, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition

Procedia PDF Downloads 278
5117 A New Design Methodology for Partially Reconfigurable Systems-on-Chip

Authors: Roukaya Dalbouchi, Abdelkrin Zitouni

Abstract:

In this paper, we propose a novel design methodology for Dynamic Partial Reconfigurable (DPR) system. This type of system has the property of being able to be modified after its design and during its execution. The suggested design methodology is generic in terms of granularity, number of modules, and reconfigurable region and suitable for any type of modern application. It is based on the interconnection between several design stages. The recommended methodology represents a guide for the design of DPR architectures that meet compromise reconfiguration/performance. To validate the proposed methodology, we use as an application a video watermarking. The comparison result shows that the proposed methodology supports all stages of DPR architecture design and characterized by a high abstraction level. It provides a dynamic/partial reconfigurable architecture; it guarantees material efficiency, the flexibility of reconfiguration, and superior performance in terms of frequency and power consumption.

Keywords: dynamically reconfigurable system, block matching algorithm, partial reconfiguration, motion vectors, video watermarking

Procedia PDF Downloads 95
5116 Proximal Method of Solving Split System of Minimization Problem

Authors: Anteneh Getachew Gebrie, Rabian Wangkeeree

Abstract:

The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.

Keywords: Hilbert Space, minimization problems, Moreau-Yosida approximate, split feasibility problem

Procedia PDF Downloads 144