Search results for: metal powder compaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3391

Search results for: metal powder compaction

2641 Research on Sensing Performance of Polyimide-Based Composite Materials

Authors: Rui Zhao, Dongxu Zhang, Min Wan

Abstract:

Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.

Keywords: polyimide, composite, sensing, resistance change rate

Procedia PDF Downloads 73
2640 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties

Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko

Abstract:

The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.

Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography

Procedia PDF Downloads 180
2639 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 169
2638 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning

Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara

Abstract:

Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.

Keywords: sheet metal forming, reliability, localized thinning, parametric simulation

Procedia PDF Downloads 415
2637 Method Validation for Heavy Metal Determination in Spring Water and Sediments

Authors: Habtamu Abdisa

Abstract:

Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.

Keywords: method validation, heavy metal, spring water, sediment, method detection limit

Procedia PDF Downloads 62
2636 Phytoremediation of Zn-Contaminated Soils by Malva Sylvestris

Authors: Abdelouahab Diafat, Meribai Abdelmalek, Ahmed Bahloul

Abstract:

phytoremediation is the use of plants to remove or degrade organic or inorganic contaminants from soil and water this work aims to study the potential effect of malva sylvestris for the phytoremediation of soils contaminated by Zn. plants were grown in pots containing soil artificially contaminated with Zn at concentrations of 100, 200, and 300 mg/kg. the results obtained show that the Zn concentrations used have a negative effect on the growth of this plant the search for the metal carried out by the technique of atomic absorption spectrometry shows that this plant accumulates a small quantity of this metal. it can be concluded that the malva sylvestris plant tolerates Zn contaminated soils but it is not considered as a zinc hyperaccumulator plant

Keywords: phytoremidiation, Zn-contaminated soils, Malva Sylvestris, phytoextraction

Procedia PDF Downloads 76
2635 Physicochemical Characterization of Mercerized Cellulose-Supported Nickel-Oxide

Authors: Sherif M. A. S. Keshk, Hisham S. M. Abd-Rabboh, Mohamed S. Hamdy, Ibrahim H. A. Badr

Abstract:

Microwave radiation was applied to synthesize nanoparticles of nickel oxide supported on pretreated cellulose with metal acetate in the presence of NaOH. Optimization, in terms of irradiation time and metal concentration, was investigated. FT-IR spectrum of cellulose/NiO spectrum shows a band at 445 cm^-1 that is related to the Ni–O stretching vibration of NiO6 octahedral in the cubic NiO structure. cellulose/NiO showed similar XRD pattern of cellulose I and exhibited sharpened reflection peak at 2q = 29.8°, corresponding to (111) plane of NiO, with two weak broad peaks at 48.5°, and 49.2°, representing (222) planes of NiO. XPS spectrum of mercerized cellulose/NiO composite showed did not show any peaks corresponding to Na ion.

Keywords: cellulose, mercerized cellulose, cellulose/zinc and nickeloxides composite, FTIR, XRD, XPS, SEM, Raman spectrum

Procedia PDF Downloads 436
2634 Estimating Heavy Metal Leakage and Environmental Damage from Cigarette Butt Disposal in Urban Areas through CBPI Evaluation

Authors: Muhammad Faisal, Zai-Jin You, Muhammad Naeem

Abstract:

Concerns about the environment, public health, and the economy are raised by the fact that the world produces around 6 trillion cigarettes annually. Arguably the most pervasive forms of environmental litter, this dangerous trash must be eliminated. The researchers wanted to get an idea of how much pollution is seeping out of cigarette butts in metropolitan areas by studying their distribution and concentration. In order to accomplish this goal, the cigarette butt pollution indicator was applied in 29 different areas. The locations were monitored monthly for a full calendar year. The conditions for conducting the investigation of the venues were the same on both weekends and during the weekdays. By averaging the metal leakage ratio in various climates and the average weight of cigarette butts, we were able to estimate the total amount of heavy metal leakage. The findings revealed that the annual average value of the index for the areas that were investigated ranged from 1.38 to 10.4. According to these numbers, just 27.5% of the areas had a low pollution rating, while 43.5% had a major pollution status or worse. Weekends witnessed the largest fall (31% on average) in all locations' indices, while spring and summer saw the largest increase (26% on average) compared to autumn and winter. It was calculated that the average amount of heavy metals such as Cr, Cu, Cd, Zn, and Pb that seep into the environment from discarded cigarette butts in commercial, residential, and park areas, respectively, is 0.25 µg/m2, 0.078 µg/m2, and 0.18 µg/m2. Butt from cigarettes is one of the most prevalent forms of litter in the area that was examined. This litter is the origin of a wide variety of contaminants, including heavy metals. This toxic garbage poses a significant risk to the city.

Keywords: heavy metal, hazardous waste, waste management, litter

Procedia PDF Downloads 71
2633 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 157
2632 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance

Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien

Abstract:

Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.

Keywords: waveguide, surface plasmons, electromagnetic theory

Procedia PDF Downloads 469
2631 Production of Biodiesel from Avocado Waste in Hossana City, Ethiopia

Authors: Tarikayehu Amanuel, Abraham Mohammed

Abstract:

The production of biodiesel from waste materials is becoming an increasingly important research area in the field of renewable energy. One potential waste material source is avocado, a fruit with a large seed and peel that are typically discarded after consumption. This research aims to investigate the feasibility of using avocado waste as a feedstock for the production of biodiesel. The study focuses on extracting oil from the waste material using the transesterification technique and then characterizing the properties of oil to determine its suitability for conversion to biodiesel. The study was conducted experimentally, and a maximum oil yield of 11.583% (150g of oil produced from 1.295kg of avocado waste powder) was obtained from avocado waste powder at an extraction time of 4hr. An 87% fatty acid methyl ester (biodiesel) conversion was also obtained using a methanol/oil ratio of 6:1, 1.3g NaOH, reaction time 60min, and 65°C reaction temperature. Furthermore, from 145 ml of avocado waste oil, 126.15 ml of biodiesel was produced, indicating a high percentage of conversion (87%). Conclusively, the produced biodiesel showed comparable physical and chemical characteristics to that of standard biodiesel samples considered for the study. The results of this research could help to identify a new source of biofuel production while also addressing the issue of waste disposal in the food industry.

Keywords: biodiesel, avocado, transesterification, soxhlet extraction

Procedia PDF Downloads 61
2630 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater

Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif

Abstract:

Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.

Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.

Procedia PDF Downloads 83
2629 Alterations of Gut Microbiota and Its Metabolomics in Child with 6PPDQ, PBDE, PCB, and Metal (Loid) Exposure

Authors: Xia Huo

Abstract:

The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu and 34 children from Haojiang. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and both the alpha diversity index and specific metabolites in single-element models. The study found that the Bayesian kernel machine regression (BKMR) model showed a negative correlation between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the Chao 1 index, particularly beyond the 55th percentile. Furthermore, the EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our research suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the gut microbiota and its metabolites. These alterations may be associated with neurodevelopmental abnormalities in children.

Keywords: gut microbiota, 6PPDQ, PBDEs, PCBs, metal(loid)s, BKMR

Procedia PDF Downloads 49
2628 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites

Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar

Abstract:

In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.

Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption

Procedia PDF Downloads 174
2627 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 216
2626 Prediction of Metals Available to Maize Seedlings in Crude Oil Contaminated Soil

Authors: Stella O. Olubodun, George E. Eriyamremu

Abstract:

The study assessed the effect of crude oil applied at rates, 0, 2, 5, and 10% on the fractional chemical forms and availability of some metals in soils from Usen, Edo State, with no known crude oil contamination and soil from a crude oil spill site in Ubeji, Delta State, Nigeria. Three methods were used to determine the bioavailability of metals in the soils: maize (Zea mays) plant, EDTA and BCR sequential extraction. The sequential extract acid soluble fraction of the BCR extraction (most labile fraction of the soils, normally associated with bioavailability) were compared with total metal concentration in maize seedlings as a means to compare the chemical and biological measures of bioavailability. Total Fe was higher in comparison to other metals for the crude oil contaminated soils. The metal concentrations were below the limits of 4.7% Fe, 190mg/kg Cu and 720mg/kg Zn intervention values and 36mg/kg Cu and 140mg/kg Zn target values for soils provided by the Department of Petroleum Resources (DPR) guidelines. The concentration of the metals in maize seedlings increased with increasing rates of crude oil contamination. Comparison of the metal concentrations in maize seedlings with EDTA extractable concentrations showed that EDTA extracted more metals than maize plant.

Keywords: availability, crude oil contamination, EDTA, maize, metals

Procedia PDF Downloads 215
2625 Phytochemical and Biological Evaluation of Derris scandens

Authors: Devarakonda Ramadevi, Dasari Rambabu, K. Suresh Babu, Battu Ganga Rao, Lakshmi Sirisha Kotikalapudi

Abstract:

The phytochemical and biological evaluation of the whole plant of Derris scandens is belonging to the family fabaceae. The dried plant of D.scandens was procured from the tirumala. The completely dried powder of the whole plant was taken and ground to a coarse powder which was then subjected to Soxhlet extraction with hexane and chloroform successively for 36 hrs. Chloroform extract was filtered and concentrated by using rotary evaporator an about 100g extract was obtained. The chloroform extract was subjected to column chromatographed over silicagel. From the column chromatography seven compounds were isolated named as osajin, scandinone, scandenone, 4,5,7-tri hydroxy biprenyl isoflavone, derris isoflavone-A, scandenin and isoscandinone. D.scandens resulting in the isolation of seven compounds in the plant was confirmed by spectral data (1H NMR, 13C NMR, ESI-MS and FTIR). The isolated compounds were screened for antioxidant activity, antidiabetic activity, α-glucosidase (inhibitory activity) and anti-bacterial activity. The isolated seven compounds were tested for α-glucosidase inhibitory activity and antioxidant activity. All the seven compounds showed good α-glucosidase inhibitory activity and moderate antioxidant activity.

Keywords: Derris scandens, phytochemical, antioxident, antidiabetic, antibacterial activity

Procedia PDF Downloads 309
2624 Development of Green Cement, Based on Partial Replacement of Clinker with Limestone Powder

Authors: Yaniv Knop, Alva Peled

Abstract:

Over the past few years there has been a growing interest in the development of Portland Composite Cement, by partial replacement of the clinker with mineral additives. The motivations to reduce the clinker content are threefold: (1) Ecological - due to lower emission of CO2 to the atmosphere; (2) Economical - due to cost reduction; and (3) Scientific\Technology – improvement of performances. Among the mineral additives being used and investigated, limestone is one of the most attractive, as it is considered natural, available, and with low cost. The goal of the research is to develop green cement, by partial replacement of the clinker with limestone powder while improving the performances of the cement paste. This work studied blended cements with three limestone powder particle diameters: smaller than, larger than, and similarly sized to the clinker particle. Blended cement with limestone consisting of one particle size distribution and limestone consisting of a combination of several particle sizes were studied and compared in terms of hydration rate, hydration degree, and water demand to achieve normal consistency. The performances of these systems were also compared with that of the original cement (without added limestone). It was found that the ability to replace an active material with an inert additive, while achieving improved performances, can be obtained by increasing the packing density of the cement-based particles. This may be achieved by replacing the clinker with limestone powders having a combination of several different particle size distributions. Mathematical and physical models were developed to simulate the setting history from initial to final setting time and to predict the packing density of blended cement with limestone having different sizes and various contents. Besides the effect of limestone, as inert additive, on the packing density of the blended cement, the influence of the limestone particle size on three different chemical reactions were studied; hydration of the cement, carbonation of the calcium hydroxide and the reactivity of the limestone with the hydration reaction products. The main results and developments will be presented.

Keywords: packing density, hydration degree, limestone, blended cement

Procedia PDF Downloads 279
2623 Response Evaluation of Electronic Nose with Polymer-Composite and Metal Oxide Semiconductor Sensor towards Microbiological Quality of Rapeseed

Authors: Marcin Tadla, Robert Rusinek, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Agnieszka Nawrocka, Marek Gancarz

Abstract:

Rapeseeds were evaluated and classified by the static-headspace sampling method using electronic noses during the 25 days spoilage period. The Cyranose 320 comprising 32 polymer-composite sensors and VCA (Volatile Compound Analyzer - made in Institute of Agrophysics) built of 8 metal-oxide semiconductor (MOS) sensors were used to obtain sensor response (∆R/R). Each sample of spoiled material was divided into three parts and the degree of spoilage was measured four ways: determination of ergosterol content (ERG), colony forming units (CFU) and measurement with both e-noses. The study showed that both devices responsive to changes in the fungal microflora. Cyranose and VCA registered the change of domination microflora of fungi. After 7 days of storage, typical fungi for soil disappeared and appeared typical for storeroom was observed. In both cases, response ∆R/R decreased to the end of experiment, while ERG and JTK increased. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.

Keywords: electronic nose, fungal microflora, metal-oxide sensor, polymer-composite sensors

Procedia PDF Downloads 293
2622 A Study of Soil Heavy Metal Pollution in the Manganese Mining in Drama, Greece

Authors: A. Argiri, A. Molla, Tzouvalekas, E. Skoufogianni, N. Danalatos

Abstract:

The release of heavy metals into the environment has increased over the last years. In this study, 25 soil samples (0-15 cm) from the fields near the mining area in Drama region were selected. The samples were analyzed in the laboratory for their physicochemical properties and for seven “pseudo-total’’ heavy metals content, namely Pb, Zn, Cd, Cr, Cu, Ni, and Mn. The total metal concentrations (Pb, Zn, Cd, Cr, Cu, Ni and Mn) in digests were determined by using the atomic absorption spectrophotometer. According to the results, the mean concentration of the listed heavy metals in 25 soil samples are Cd 1.1 mg/kg, Cr 15 mg/kg, Cu 21.7 mg/kg, Ni 30.1 mg/kg, Pd 50.8 mg/kg, Zn 99.5 mg/kg and Mn 815.3 mg/kg. The results show that the heavy metals remain in the soil even if the mining closed many years ago.

Keywords: Greece, heavy metals, mining, pollution

Procedia PDF Downloads 120
2621 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: bio-electrochemical, nanowires, novel, wastewater

Procedia PDF Downloads 377
2620 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site.

Keywords: air pollution, air quality, polution, monitoring

Procedia PDF Downloads 319
2619 Can Zirconia Wings of Resin Retained Cantilever Bridges Be Effectively Bonded To Tooth Tissue When Compared With Metal Wings In The Anterior Dentition in vivo? - A Systematic Review.

Authors: Ariyan S. Araghi, Guy C. Jackson, Stephen J. Bonsor

Abstract:

Materials & Methods: A systematic literature search was undertaken using pre-determined inclusion and exclusion criteria. This review followed the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) statement. Several databases were used to search for randomised control trials and longitudinal cohort studies, which were published less than thirty years ago. A total of 54 studies met the predefined inclusion criteria. Four studies reviewed the success, survival, and failure characteristics of zirconia framework resin retained bridges, whilst two reviewed non-precious metal resin retained bridges. Results: The analysis of the studies revealed an overall survival rate of 95.9% for zirconia-based restorations compared to 90.7% for non-precious metal frameworks. Non-precious metal resin retained bridges displayed a higher overall failure rate of 11.9% compared to 4.6% for zirconia-based restorations in the analysed papers. The most frequent complications were wing debonding for the non-precious metal wing group, whereas substructure fracture and veneering ceramic fracture were more prevalent for the zirconia arm of the study. Conclusion: Both types of resin retained bridges provide effective medium to long-term survival. Zirconia-based frameworks will provide marginally increased success and survival and greatly improved aesthetics. However, catastrophic failure is more likely with zirconia-based restorations. Non-precious metal is time tested but performs worse than its zirconia counterpart with regards to longevity; it does not exhibit the same framework fractures as zirconia. Cement choice and attention to the adhesive bonding systems used appear to be paramount to restoration longevity with both restoration subtypes. Furthermore, improved longevity can be seen when air particle abrasion is incorporated into the adhesive protocol. Within the limitations of this study, it has been determined that zirconia-based resin retained bridges can be effectively used in anterior cantilever bridges. Clinical Significance: Zirconia-based resin retained bridges have been demonstrating promising results in terms of improved success and survival characteristics, together with improved aesthetics when compared to non-precious metal winged resin retained bridges. Their popularity is increasing in the age of digital dentistry as many restorations are manufactured using such technology. It is essential that clinicians understand the limitations of each material type and principles of adhesion to ensure restoration longevity.

Keywords: resin retained bridge, fixed partial denture, zirconia bridge, adhesive bridge

Procedia PDF Downloads 79
2618 Conformational Switch of hRAGE upon Self-Association

Authors: Ikhlas Ahmed, Jamillah Zamoon

Abstract:

The human receptor for advanced glycation end product is a plasma membrane receptor with an intrinsically disordered region. The protein consists of three extracellular domains, a single membrane spanning transmembrane domain, and a cytosolic domain which is intrinsically disordered and responsible for signaling. The disordered nature of the cytosolic domain allows it to be dynamic in solution. This receptor self-associates to higher forms. The association is triggered by ligand, metal or by the extracellular domain. Fluorescence spectroscopy technique is used to test the self-association of the different concentrations of the cytosolic domain. This work has concluded that the cytosolic domain of this receptor also self-associates. Moreover, the self-association does not require ligand or metal.

Keywords: fluorescence spectroscopy, hRAGE, IDP, Self-association

Procedia PDF Downloads 353
2617 Application of Dastamboo Fruit (Cucumis melo var. dudaim) Extract for Buffalo Meat Tenderization

Authors: A. Javadi, H. Asad Beygi

Abstract:

In line with the increasing demand for high-quality and safe food products, the present study is intended to examine the crude extract and juice of the fruit of Cucumis melo var. dudaim on tenderization of meat. Cubic pieces were selected from the biceps fermoris muscle of a five year-old female water buffalo; then, they were cut two or three hours after the buffalo was slaughtered. The selected samples were superficially exposed to the resolution obtained from the powder of the extract of Cucumis melo var. dudaim. Distilled water as a control sample and the powder of fruit extract of the mentioned plant with 0.5, 1 and 1.5 percent concentrations were experimented in the study. These samples were kept for three time spans of 2 hours, 7 and 14 days. Then, some tests were conducted on the samples both before and after cooking them. In general, with regard to the results obtained from the experiments and the investigations of the impact of time and different concentrations on the tenderization of buffalo meat, it can be argued that the time span of 2 hours and the concentration of 1.5 % can be considered as the best time and concentration for obtaining the most desirable tenderness. Also, tenderness increased in the samples kept for 7 and 14 days; however, due to the extraordinary decomposition, the samples were rather doughy and pasty.

Keywords: meat, Cucumis melo var. dudaim, tenderization, water buffalo

Procedia PDF Downloads 363
2616 Exposure Assessment for Worker Exposed to Heavy Metals during Road Marking Operations

Authors: Yin-Hsuan Wu, Perng-Jy Tsai, Ying-Fang Wang, Shun-Hui Chung

Abstract:

The present study was conducted to characterize exposure concentrations, concentrations deposited on the different respiratory regions, and resultant health risks associated with heavy metal exposures for road marking workers. Road marking workers of three similar exposure groups (SEGs) were selected, including the paint pouring worker, marking worker, and preparing worker. Personal exposure samples were collected using an inhalable dust sampler (IOM), and the involved particle size distribution samples were estimated using an eight-stage Marple personal cascade impactor during five working days. In total, 25 IOM samples and 20 Marple samples were collected. All collected samples were analyzed for their heavy metal contents using the ICP/MS. The resultant heavy metal particle size distributions were also used to estimate the fractions of particle deposited on the head airways (Chead), tracheobronchial (Cthorac) and alveolar regions (Cresp) of the exposed workers. In addition, Pb and Cr were selected to estimate the incremental cancer risk, and Zn, Ti, and Mo were selected to estimate the corresponding non-cancer risk in the present study. Results show that three heavy metals, including Pb, Cr, and Ti, were found with the highest concentrations for the SEG of the paint pouring worker (=0.585±2.98, 0.307±1.71, 0.902±2.99 μg/m³, respectively). For the fraction of heavy metal particle deposited on the respiratory tract, both alveolar and head regions were found with the highest values (=23-43% and 39-61%, respectively). For both SEGs of the paint pouring and marking, 51% of Cr, 59-61% of Zn, and 48-51% of Ti were found to be deposited on the alveolar region, and 41-43% of Pb was deposited on the head region. Finally, the incremental cancer risk for the SEGs of the paint pouring, marking, and preparing were found as 1.08×10⁻⁵, 2.78×10⁻⁶, and 2.20×10⁻⁶, respectively. In addition, the estimated non-cancer risk for the above three SEGs was found to be consistently less than unity. In conclusion, though the estimated non-cancer risk was less than unity, all resultant incremental cancer risk was greater than 10⁻⁶ indicating the abatement of workers’ exposure is necessary. It is suggested that strategies, including placing on the molten kettle, substitution the currently used paints for less heavy metal containing paints, and wearing fume protecting personal protective equipment can be considered in the future from reducing the worker’s exposure aspect.

Keywords: health risk assessment, heavy metal, respiratory track deposition, road marking

Procedia PDF Downloads 154
2615 DFT Study of Hoogsteen-Type Base Pairs

Authors: N. Amraoui, D. Hammoutene

Abstract:

We have performed a theoretical study using dispersion-corrected Density Functional Methods to evaluate a variety of artificial nucleobases as candidates for metal-mediated Hoogsteen-type base pairs. We focus on A-M-T Hoogsteen-type base pair with M=Co(II), Ru(I), Ni(I). All calculations are performed using (ADF 09) program. Metal-mediated Hoogsteen-type base pairs are studied as drug candidates, their geometry optimizations are performed at ZORA/TZ2P/BLYP-D level. The molecular geometries and different energies as total energies, coordination energies, Pauli interactions, orbital interactions and electrostatic energies are determined.

Keywords: chemistry, biology, density functional method, orbital interactions

Procedia PDF Downloads 280
2614 Trophic Variations in Uptake and Assimilation of Cadmium, Manganese and Zinc: An Estuarine Food-Chain Radiotracer Experiment

Authors: K. O’Mara, T. Cresswell

Abstract:

Nearly half of the world’s population live near the coast, and as a result, estuaries and coastal bays in populated or industrialized areas often receive metal pollution. Heavy metals have a chemical affinity for sediment particles and can be stored in estuarine sediments and become biologically available under changing conditions. Organisms inhabiting estuaries can be exposed to metals from a variety of sources including metals dissolved in water, bound to sediment or within contaminated prey. Metal uptake and assimilation responses can vary even between species that are biologically similar, making pollution effects difficult to predict. A multi-trophic level experiment representing a common Eastern Australian estuarine food chain was used to study the sources for Cd, Mn and Zn uptake and assimilation in organisms occupying several trophic levels. Sand cockles (Katelysia scalarina), school prawns (Metapenaeus macleayi) and sand whiting (Sillago ciliata) were exposed to radiolabelled seawater, suspended sediment and food. Three pulse-chase trials on filter-feeding sand cockles were performed using radiolabelled phytoplankton (Tetraselmis sp.), benthic microalgae (Entomoneis sp.) and suspended sediment. Benthic microalgae had lower metal uptake than phytoplankton during labelling but higher cockle assimilation efficiencies (Cd = 51%, Mn = 42%, Zn = 63 %) than both phytoplankton (Cd = 21%, Mn = 32%, Zn = 33%) and suspended sediment (except Mn; (Cd = 38%, Mn = 42%, Zn = 53%)). Sand cockles were also sensitive to uptake of Cd, Mn and Zn dissolved in seawater. Uptake of these metals from the dissolved phase was negligible in prawns and fish, with prawns only accumulating metals during moulting, which were then lost with subsequent moulting in the depuration phase. Diet appears to be the main source of metal assimilation in school prawns, with 65%, 54% and 58% assimilation efficiencies from Cd, Mn and Zn respectively. Whiting fed contaminated prawns were able to exclude the majority of the metal activity through egestion, with only 10%, 23% and 11% assimilation efficiencies from Cd, Mn and Zn respectively. The findings of this study support previous studies that find diet to be the dominant accumulation source for higher level trophic organisms. These results show that assimilation efficiencies can vary depending on the source of exposure; sand cockles assimilated more Cd, Mn, and Zn from the benthic diatom than phytoplankton and assimilation was higher in sand whiting fed prawns compared to artificial pellets. The sensitivity of sand cockles to metal uptake and assimilation from a variety of sources poses concerns for metal availability to predators ingesting the clam tissue, including humans. The high tolerance of sand whiting to these metals is reflected in their widespread presence in Eastern Australian estuaries, including contaminated estuaries such as Botany Bay and Port Jackson.

Keywords: cadmium, food chain, metal, manganese, trophic, zinc

Procedia PDF Downloads 194
2613 Spark Plasma Sintering/Synthesis of Alumina-Graphene Composites

Authors: Nikoloz Jalabadze, Roin Chedia, Lili Nadaraia, Levan Khundadze

Abstract:

Nanocrystalline materials in powder condition can be manufactured by a number of different methods, however manufacture of composite materials product in the same nanocrystalline state is still a problem because the processes of compaction and synthesis of nanocrystalline powders go with intensive growth of particles – the process which promotes formation of pieces in an ordinary crystalline state instead of being crystallized in the desirable nanocrystalline state. To date spark plasma sintering (SPS) has been considered as the most promising and energy efficient method for producing dense bodies of composite materials. An advantage of the SPS method in comparison with other methods is mainly low temperature and short time of the sintering procedure. That finally gives an opportunity to obtain dense material with nanocrystalline structure. Graphene has recently garnered significant interest as a reinforcing phase in composite materials because of its excellent electrical, thermal and mechanical properties. Graphene nanoplatelets (GNPs) in particular have attracted much interest as reinforcements for ceramic matrix composites (mostly in Al2O3, Si3N4, TiO2, ZrB2 a. c.). SPS has been shown to fully densify a variety of ceramic systems effectively including Al2O3 and often with improvements in mechanical and functional behavior. Alumina consolidated by SPS has been shown to have superior hardness, fracture toughness, plasticity and optical translucency compared to conventionally processed alumina. Knowledge of how GNPs influence sintering behavior is important to effectively process and manufacture process. In this study, the effects of GNPs on the SPS processing of Al2O3 are investigated by systematically varying sintering temperature, holding time and pressure. Our experiments showed that SPS process is also appropriate for the synthesis of nanocrystalline powders of alumina-graphene composites. Depending on the size of the molds, it is possible to obtain different amount of nanopowders. Investigation of the structure, physical-chemical, mechanical and performance properties of the elaborated composite materials was performed. The results of this study provide a fundamental understanding of the effects of GNP on sintering behavior, thereby providing a foundation for future optimization of the processing of these promising nanocomposite systems.

Keywords: alumina oxide, ceramic matrix composites, graphene nanoplatelets, spark-plasma sintering

Procedia PDF Downloads 370
2612 A Radiographic Survey of Eggshell Powder Effect on Tibial Bone Defect Repair Tested in Dog

Authors: M. Yadegari, M. Nourbakhsh, N. Arbabzadeh

Abstract:

The skeletal system injuries are of major importance. In addition, it is recommended to use materials for hard tissue repair in open or closed fractures. It is important to use complex minerals with a beneficial effect on hard tissue repair, stimulating cell growth in the bone. Materials that could help avoid bone fracture inflammatory reaction and speed up bone fracture repair are of utmost importance in the treatment of bone fractures. Similar to minerals, the inner eggshell membrane consists of carbohydrates, lipids, proteins with the high pH, high calcium absorptive capacity and with faster bone fracture repair ability. In the present radiographic survey, eggshell-derived bone graft substitutes were used for bone defect repair in 8 dog tibia, measuring bone density on the day of implant placement and 30 and 60 days after placement. In fact, the result of this study shows the difference in bone growth and misshapen bones between treatment and control sites. Cell growth was adequate in treatment sites and misshapen bones were less frequent here than in control sites.

Keywords: bone repair, eggshell powder, implant, radiography

Procedia PDF Downloads 313