Search results for: incomplete data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25335

Search results for: incomplete data

24585 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
24584 Improving Preconception Health and Lifestyle Behaviours through Digital Health Intervention: The OptimalMe Program

Authors: Bonnie R. Brammall, Rhonda M. Garad, Helena J. Teede, Cheryce L. Harrison

Abstract:

Introduction: Reproductive aged women are at high-risk for accelerated weight gain and obesity development, with pregnancy recognised as a critical contributory life phase. Healthy lifestyle interventions during the preconception and antenatal period improve maternal and infant health outcomes. Yet, interventions from preconception through to postpartum and translation and implementation into real-world healthcare settings remain limited. OptimalMe is a randomised, hybrid implementation effectiveness study of evidence-based healthy lifestyle intervention. Here, we report engagement, acceptability of the intervention during preconception, and self-reported behaviour change outcomes as a result of the preconception phase of the intervention. Methods: Reproductive aged women who upgraded their private health insurance to include pregnancy and birth cover, signalling a pregnancy intention, were invited to participate. Women received access to an online portal with preconception health and lifestyle modules, goal-setting and behaviour change tools, monthly SMS messages, and two coaching sessions (randomised to video or phone) prior to pregnancy. Results: Overall n=527 expressed interest in participating. Of these, n=33 did not meet inclusion criteria, n=8 were not contactable for eligibility screening, and n=177 failed to engage after the screening, leaving n=309 who were enrolled in OptimalMe and randomised to intervention delivery method. Engagement with coaching sessions dropped by 25% for session two, with no difference between intervention groups. Women had a mean (SD) age of 31.7 (4.3) years and, at baseline, a self-reported mean BMI of 25.7 (6.1) kg/m², with 55.8% (n=172) of a healthy BMI. Behaviour was sub-optimal with infrequent self-weighing (38.1%), alcohol consumption prevalent (57.1%), sub-optimal pre-pregnancy supplementation (61.5%), and incomplete medical screening. Post-intervention 73.2% of women reported engagement with a GP for preconception care and improved lifestyle behaviour (85.5%), since starting OptimalMe. Direct pre-and-post comparison of individual participant data showed that of 322 points of potential change (up-to-date cervical screening, elimination of high-risk behaviours [alcohol, drugs, smoking], uptake of preconception supplements and improved weighing habits) 158 (49.1%) points of change were achieved. Health coaching sessions were found to improve accountability and confidence, yet further personalisation and support were desired. Engagement with video and phone sessions was comparable, having similar impacts on behaviour change, and both methods were well accepted and increased women's accountability. Conclusion: A low-intensity digital health and lifestyle program with embedded health coaching can improve the uptake of preconception care and lead to self-reported behaviour change. This is the first program of its kind to reach an otherwise healthy population of women planning a pregnancy. Women who were otherwise healthy showed divergence from preconception health and lifestyle objectives and benefited from the intervention. OptimalMe shows promising results for population-based behaviour change interventions that can improve preconception lifestyle habits and increase engagement with clinical health care for pregnancy preparation.

Keywords: preconception, pregnancy, preventative health, weight gain prevention, self-management, behaviour change, digital health, telehealth, intervention, women's health

Procedia PDF Downloads 91
24583 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 87
24582 A Named Data Networking Stack for Contiki-NG-OS

Authors: Sedat Bilgili, Alper K. Demir

Abstract:

The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.

Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system

Procedia PDF Downloads 171
24581 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 217
24580 Digital and Technological Transformation of Trekking Routes of Cappadocia Valleys

Authors: Şenay Güngör, Emre Elbaşi, Beyda Sadikoğlu, Utku Eren Bağci, Ömer Uzunel

Abstract:

One of the first places that comes to mind when it comes to tourism in Turkey is the Cappadocia Region. Due to its rich geological and geomorphological heritage, Cappadocia is one of the most visited destinations in the world. In fact, in the first half of 2023, the number of international tourists visiting Cappadocia exceeded 2 million. Considering that the economy of the Cappadocia region is largely based on tourism, it is understood that the quality and technology integration levels of the touristic services offered in the region are of great importance. In this context; as a result of the observations made in Kızılçukur, Meskendir, Güllüdere 1 and Güllüdere 2 valleys, where the important hiking routes of the Cappadocia Region are located, it has been observed that the digital level of the routes is insufficient. It has been observed that the telephone networks in the area are very low or have completely lost their signal strength. In addition, it was determined that the materials such as maps and brochures used by tourism agencies to introduce the valleys are simple and incomplete. It is thought that this situation negatively affects the tourists' orientation and touristic experience in the field. Eliminating these deficiencies identified in the field, improving the digital level of the above-mentioned hiking routes and increasing the added value in destinations are among the main objectives of our study. Within the scope of the study, a mobile application that can work both online and offline on hiking routes has been prepared. 3D modeling of Kızılçukur, Meskendir, Güllüdere 1 and Güllüdere 2 valleys were made using Geographical Information Systems (GIS). In addition, a website has been created to enable tourists to easily access all the above-mentioned information, visuals and technological applications related to the routes. As it is known, the effective use of information and communication technologies in touristic regions not only increases the satisfaction levels of tourists, but also positively affects the attraction of qualified tourists to the region. When the tangible and intangible outputs of this study are evaluated, it is thought that it will serve the social and economic development of the region and set an example for the digital transformation of other routes in the region.

Keywords: nevşehir, cappadocia, cappadocia valleys, trekking route

Procedia PDF Downloads 62
24579 Location Privacy Preservation of Vehicle Data In Internet of Vehicles

Authors: Ying Ying Liu, Austin Cooke, Parimala Thulasiraman

Abstract:

Internet of Things (IoT) has attracted a recent spark in research on Internet of Vehicles (IoV). In this paper, we focus on one research area in IoV: preserving location privacy of vehicle data. We discuss existing location privacy preserving techniques and provide a scheme for evaluating these techniques under IoV traffic condition. We propose a different strategy in applying Differential Privacy using k-d tree data structure to preserve location privacy and experiment on real world Gowalla data set. We show that our strategy produces differentially private data, good preservation of utility by achieving similar regression accuracy to the original dataset on an LSTM (Long Term Short Term Memory) neural network traffic predictor.

Keywords: differential privacy, internet of things, internet of vehicles, location privacy, privacy preservation scheme

Procedia PDF Downloads 180
24578 Phantom Phenomena in Subjects after Limb Amutation Who Regularly Practice High Intensity Sports

Authors: Jolanta Uszko, Tomasz Wloch, Aneta Pirowska, Roman Nowobilski

Abstract:

Introduction: Phantom phenomena are often reported by subjects who have undergone limb amputation. Mostly, patients feel the amputated part of the limb as if it was still attached to the body. Two types of phantom phenomena: painless (phantom sensation) and painful (phantom pain) were described. Triggers of phantom sensations and phantom pain, as well as fully effective treatment, have not been clearly described yet. Purpose: To assess the influence of psychosocial factors and some clinical conditions on the occurrence of phantom phenomena in amputee athletes. Subjects: 21 men (age: 31 years, SD = 7.5 years) after lower or upper extremity amputation, who regularly performed high-intensity sports (Amp Football Team Players) were included to the study. Method and equipment: In the research, the following method and tools were used: Questionnaire [Pirowska] adapted for athletes with disabilities, Numerical Rating Scale (NRS) - for phantom pain assessment, McGill Pain Assessment Questionnaire (short version), Beck's Depression Inventory (BDI), State Trait Anxiety Inventory (STAI): X-1 and X-2, shortened version of The World Health Organization Quality of Life (WHOQOLBREFF). Results: In the study group, the lower leg amputations with traumatic etiology were predominant. Phantom sensations were present in all subjects. Half of the respondents claimed to experience phantom sensations at least once a day, paroxysmally. There was a prevalence of phantom sensations characterized as incomplete, immobile limb. Phantom pain was reported by over 85% of respondents. The nature of phantom pain was frequently described as stabbing, squeezing, shooting, pulsing, tiring. There was a significant correlation between phantom pain intensity and anxiety, quality of life, depressive tendencies, perception of phantom pain as the obstacle in daily functioning and intensity of the limb pain before amputation. Conclusions: The etiology of phantom phenomena is complex. Psychological factors seem to have a significant influence on the intensity of the phantom pain. Particular attention should be paid to patients who complain about persistent limb pain before the amputation. These are patients with an increased risk of the phantom pain of relatively high intensity.

Keywords: amputation, phantom pain, phantom sensations, adaptive sports

Procedia PDF Downloads 156
24577 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price

Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin

Abstract:

Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.

Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer

Procedia PDF Downloads 476
24576 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop

Authors: Anuta Mukherjee, Saswati Mukherjee

Abstract:

Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.

Keywords: sentiment analysis, twitter, collision theory, discourse analysis

Procedia PDF Downloads 535
24575 Digital And Technological Transformation of Cappadocia Valleys: Kizilçukur, Meskendi̇r, Güllüdere 1, Güllüdere 2

Authors: Şenay Güngör, Emre Elbaşi, Beyda Sadikğlu, Utku Eren Bağci, Ömer Uzunel

Abstract:

One of the first places that comes to mind when it comes to tourism in Turkey is the Cappadocia Region. Due to its rich geological and geomorphological heritage, Cappadocia is one of the most visited destinations in the world. In fact, in the first half of 2023, the number of international tourists visiting Cappadocia exceeded 2 million. Considering that the economy of the Cappadocia region is largely based on tourism, it is understood that the quality and technology integration levels of the touristic services offered in the region are of great importance. In this context; as a result of the observations made in Kızılçukur, Meskendir, Güllüdere 1 and Güllüdere 2 valleys, where the important hiking routes of the Cappadocia Region are located, it has been observed that the digital level of the routes is insufficient. It has been observed that the telephone networks in the area are very low or have completely lost their signal strength. In addition, it was determined that the materials such as maps and brochures used by tourism agencies to introduce the valleys are simple and incomplete. It is thought that this situation negatively affects the tourists' orientation and touristic experience in the field. Eliminating these deficiencies identified in the field, improving the digital level of the above-mentioned hiking routes and increasing the added value in destinations are among the main objectives of our study. Within the scope of the study, a mobile application that can work both online and offline on hiking routes has been prepared. 3D modeling of Kızılçukur, Meskendir, Güllüdere 1 and Güllüdere 2 valleys were made using Geographical Information Systems (GIS). In addition, a website has been created to enable tourists to easily access all the above-mentioned information, visuals and technological applications related to the routes. As it is known, the effective use of information and communication technologies in touristic regions not only increases the satisfaction levels of tourists, but also positively affects the attraction of qualified tourists to the region. When the tangible and intangible outputs of this study are evaluated, it is thought that it will serve the social and economic development of the region and set an example for the digital transformation of other routes in the region.

Keywords: nevşehir, cappadocia, cappadocia valleys, tourism route

Procedia PDF Downloads 56
24574 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 94
24573 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: educational data visualization, high-level petri nets, instructional design, learning analytics

Procedia PDF Downloads 243
24572 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 404
24571 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 234
24570 The Importance of Knowledge Innovation for External Audit on Anti-Corruption

Authors: Adel M. Qatawneh

Abstract:

This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.

Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange

Procedia PDF Downloads 465
24569 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
24568 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization

Procedia PDF Downloads 399
24567 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 147
24566 The Face Sync-Smart Attendance

Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.

Abstract:

Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.

Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.

Procedia PDF Downloads 58
24565 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 179
24564 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 246
24563 Nonparametric Sieve Estimation with Dependent Data: Application to Deep Neural Networks

Authors: Chad Brown

Abstract:

This paper establishes general conditions for the convergence rates of nonparametric sieve estimators with dependent data. We present two key results: one for nonstationary data and another for stationary mixing data. Previous theoretical results often lack practical applicability to deep neural networks (DNNs). Using these conditions, we derive convergence rates for DNN sieve estimators in nonparametric regression settings with both nonstationary and stationary mixing data. The DNN architectures considered adhere to current industry standards, featuring fully connected feedforward networks with rectified linear unit activation functions, unbounded weights, and a width and depth that grows with sample size.

Keywords: sieve extremum estimates, nonparametric estimation, deep learning, neural networks, rectified linear unit, nonstationary processes

Procedia PDF Downloads 42
24562 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.

Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease

Procedia PDF Downloads 276
24561 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground

Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee

Abstract:

To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.

Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk

Procedia PDF Downloads 336
24560 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 260
24559 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 477
24558 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
24557 Challenges in Multi-Cloud Storage Systems for Mobile Devices

Authors: Rajeev Kumar Bedi, Jaswinder Singh, Sunil Kumar Gupta

Abstract:

The demand for cloud storage is increasing because users want continuous access their data. Cloud Storage revolutionized the way how users access their data. A lot of cloud storage service providers are available as DropBox, G Drive, and providing limited free storage and for extra storage; users have to pay money, which will act as a burden on users. To avoid the issue of limited free storage, the concept of Multi Cloud Storage introduced. In this paper, we will discuss the limitations of existing Multi Cloud Storage systems for mobile devices.

Keywords: cloud storage, data privacy, data security, multi cloud storage, mobile devices

Procedia PDF Downloads 699
24556 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 187