Search results for: geospatial data science
26069 Awareness for Air Pollution Impacts on Lung Cancer in Southern California: A Pilot Study for Designed Smartphone Application
Authors: M. Mohammed Raoof, A. Enkhtaivan, H. Aljuaid
Abstract:
This study follows the design science research methodology to design and implement a smartphone application artifact. The developed artifact was evaluated through three phases. The System Usability Scale (SUS) metric was used for the evaluation. The designed artifact aims to spread awareness about reducing air pollution, decreasing lung cancer development, and checking the air quality status in Southern California Counties. Participants have been drawn for a pilot study to facilitate awareness of air pollution. The study found that smartphone applications have a beneficial effect on the study’s aims.Keywords: air pollution, design science research, indoor air pollution, lung cancer, outdoor air pollution, smartphone application
Procedia PDF Downloads 11926068 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis
Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone
Abstract:
Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning
Procedia PDF Downloads 1526067 Resource Framework Descriptors for Interestingness in Data
Authors: C. B. Abhilash, Kavi Mahesh
Abstract:
Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.Keywords: RDF, interestingness, knowledge base, semantic data
Procedia PDF Downloads 16226066 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan
Authors: Dina Ahmad Alkhodary
Abstract:
This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.Keywords: data, mining, development, business
Procedia PDF Downloads 49826065 Ripple Effect Analysis of Government Investment for Research and Development by the Artificial Neural Networks
Authors: Hwayeon Song
Abstract:
The long-term purpose of research and development (R&D) programs is to strengthen national competitiveness by developing new knowledge and technologies. Thus, it is important to determine a proper budget for government programs to maintain the vigor of R&D when the total funding is tight due to the national deficit. In this regard, a ripple effect analysis for the budgetary changes in R&D programs is necessary as well as an investigation of the current status. This study proposes a new approach using Artificial Neural Networks (ANN) for both tasks. It particularly focuses on R&D programs related to Construction and Transportation (C&T) technology in Korea. First, key factors in C&T technology are explored to draw impact indicators in three areas: economy, society, and science and technology (S&T). Simultaneously, ANN is employed to evaluate the relationship between data variables. From this process, four major components in R&D including research personnel, expenses, management, and equipment are assessed. Then the ripple effect analysis is performed to see the changes in the hypothetical future by modifying current data. Any research findings can offer an alternative strategy about R&D programs as well as a new analysis tool.Keywords: Artificial Neural Networks, construction and transportation technology, Government Research and Development, Ripple Effect
Procedia PDF Downloads 24726064 Experimental Setup of Corona Discharge on Dye Degradation for Science Education
Authors: Shivam Dubey, Vinit Srivastava, Abhay Singh Thakur, Rahul Vaish
Abstract:
The presence of organic dyes in water is a critical issue that poses a significant threat to the environment and human health. We have investigated the use of corona discharge as a potential method for degrading organic dyes in water. Methylene Blue dye was exposed to corona discharge, and its photo-absorbance was measured over time to determine the extent of degradation. The results depicted a decreased absorbance for the dye and the loss of the characteristic colour of methylene blue. The effects of various parameters, including current, voltage, gas phase, salinity, and electrode spacing, on the reaction rates, were investigated. The highest reaction rates were observed at the highest current and voltage (up to 10kV), lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. These findings have possible applications for science education curriculum. By investigating the use of corona discharge for destroying organic dyes, we can provide students with a practical application of scientific principles that they can apply to real-world problems. This research can demonstrate the importance of understanding the chemical and physical properties of organic dyes and the effects of corona discharge on their degradation and provide a holistic understanding of the applications of scientific research. Moreover, our study also emphasizes the importance of considering the various parameters that can affect reaction rates. By investigating the effects of current, voltage, matter phase, salinity, and electrode spacing, we can provide students with an opportunity to learn about the importance of experimental design and how to evade constraints that can limit meaningful results. In conclusion, this study has the potential to provide valuable insights into the use of corona discharge for destroying organic dyes in water and has significant implications for science education. By highlighting the practical applications of scientific principles, experimental design, and the importance of considering various parameters, this research can help students develop critical thinking skills and prepare them for future careers in science and engineering.Keywords: dye degradation, corona discharge, science education, hands-on learning, chemical education
Procedia PDF Downloads 6926063 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain
Authors: Amal M. Alrayes
Abstract:
Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.Keywords: data quality, performance, system quality, Kingdom of Bahrain
Procedia PDF Downloads 49326062 Educational Practices and Brain Based Language Learning
Authors: Dur-E- Shahwar
Abstract:
Much attention has been given to ‘bridging the gap’ between neuroscience and educational practice. In order to gain a better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on boundary-spanning actors, boundary objects, and boundary work. In 26 semi-structured interviews, neuroscientists and education professionals were asked about their perceptions in regard to the gap between science and practice and the role they play in creating, managing, and disrupting this boundary. Neuroscientists and education professionals often hold conflicting views and expectations of both brain-based learning and of each other. This leads us to argue that there are increased prospects for a neuro-scientifically informed learning practice if science and practice work together as equal stakeholders in developing and implementing neuroscience research.Keywords: language learning, explore, educational practices, mentalist, practice
Procedia PDF Downloads 33726061 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 47926060 Cross-border Data Transfers to and from South Africa
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 12526059 Innovations and Challenges: Multimodal Learning in Cybersecurity
Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley
Abstract:
There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.Keywords: cybersecurity, new york, city college, graduate degree, master of science
Procedia PDF Downloads 14726058 The Study of Security Techniques on Information System for Decision Making
Authors: Tejinder Singh
Abstract:
Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data
Procedia PDF Downloads 30726057 Data Integration with Geographic Information System Tools for Rural Environmental Monitoring
Authors: Tamas Jancso, Andrea Podor, Eva Nagyne Hajnal, Peter Udvardy, Gabor Nagy, Attila Varga, Meng Qingyan
Abstract:
The paper deals with the conditions and circumstances of integration of remotely sensed data for rural environmental monitoring purposes. The main task is to make decisions during the integration process when we have data sources with different resolution, location, spectral channels, and dimension. In order to have exact knowledge about the integration and data fusion possibilities, it is necessary to know the properties (metadata) that characterize the data. The paper explains the joining of these data sources using their attribute data through a sample project. The resulted product will be used for rural environmental analysis.Keywords: remote sensing, GIS, metadata, integration, environmental analysis
Procedia PDF Downloads 12026056 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem
Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez
Abstract:
Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.Keywords: biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering
Procedia PDF Downloads 29126055 Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil
Authors: Marie Madeleine Sarzi Inacio, Ligiane Carolina Leite Dauzacker, Rodrigo Henriques Lopes Da Silva
Abstract:
The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals.Keywords: carbon neutrality, metalworking industry, carbon credits, urban forestry credits
Procedia PDF Downloads 7626054 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 29926053 Forthcoming Big Data on Smart Buildings and Cities: An Experimental Study on Correlations among Urban Data
Authors: Yu-Mi Song, Sung-Ah Kim, Dongyoun Shin
Abstract:
Cities are complex systems of diverse and inter-tangled activities. These activities and their complex interrelationships create diverse urban phenomena. And such urban phenomena have considerable influences on the lives of citizens. This research aimed to develop a method to reveal the causes and effects among diverse urban elements in order to enable better understanding of urban activities and, therefrom, to make better urban planning strategies. Specifically, this study was conducted to solve a data-recommendation problem found on a Korean public data homepage. First, a correlation analysis was conducted to find the correlations among random urban data. Then, based on the results of that correlation analysis, the weighted data network of each urban data was provided to people. It is expected that the weights of urban data thereby obtained will provide us with insights into cities and show us how diverse urban activities influence each other and induce feedback.Keywords: big data, machine learning, ontology model, urban data model
Procedia PDF Downloads 41826052 Podcasting: A Tool for an Enhanced Learning Experience of Introductory Courses to Science and Engineering Students
Authors: Yaser E. Greish, Emad F. Hindawy, Maryam S. Al Nehayan
Abstract:
Introductory courses such as General Chemistry I, General Physics I and General Biology need special attention as students taking these courses are usually at their first year of the university. In addition to the language barrier for most of them, they also face other difficulties if these elementary courses are taught in the traditional way. Changing the routine method of teaching of these courses is therefore mandated. In this regard, podcasting of chemistry lectures was used as an add-on to the traditional and non-traditional methods of teaching chemistry to science and non-science students. Podcasts refer to video files that are distributed in a digital format through the Internet using personal computers or mobile devices. Pedagogical strategy is another way of identifying podcasts. Three distinct teaching approaches are evident in the current literature and include receptive viewing, problem-solving, and created video podcasts. The digital format and dispensing of video podcasts have stabilized over the past eight years, the type of podcasts vary considerably according to their purpose, degree of segmentation, pedagogical strategy, and academic focus. In this regard, the whole syllabus of 'General Chemistry I' course was developed as podcasts and were delivered to students throughout the semester. Students used the podcasted files extensively during their studies, especially as part of their preparations for exams. Feedback of students strongly supported the idea of using podcasting as it reflected its effect on the overall understanding of the subject, and a consequent improvement of their grades.Keywords: podcasting, introductory course, interactivity, flipped classroom
Procedia PDF Downloads 26526051 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 22926050 Data-driven Decision-Making in Digital Entrepreneurship
Authors: Abeba Nigussie Turi, Xiangming Samuel Li
Abstract:
Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship
Procedia PDF Downloads 32926049 Yoga for Holistic Health Wellbeing
Authors: Pothula Madhusudhan Reddy
Abstract:
Introduction: Yoga is a way of life. of uniting the mind, body and soul. It is also an art of living the right way. The techniques of Yoga are very practical, so they can always be applied. This is the reason why Yoga has been practiced for thousands of years and is still valid today. Importance of Yoga: Yoga that helps to inculcate healthy habits and adopt a healthy lifestyle to achieve good health Research Aim: The aim of this study is to explore the potential benefits of yoga for holistic health and wellbeing, both at an individual and societal level The ultimate goal of human being is to attain the state of perfect freedom from the shackles of ignorance, which is the generator of all the pangs and miseries of life. Methodology: This research follows a thematic and practical experience approach. Yoga includes body postures and movements (stretching), breathing practices, imagery, meditation, and progressive relaxation techniques. Data Collection: The data for this research is collected through a combination of literature review, expert interviews, and practical yoga sessions. The literature review provides a comprehensive understanding of the principles and practices of yoga, while expert interviews offer insights from experienced practitioners. Practical yoga sessions allow for first hand experiences and observations, facilitating a deeper understanding of the subject matter. Analysis Procedures: The collected data is analyzed thematically, where key themes and patterns related to the benefits and effects of yoga on holistic health and wellbeing are identified. The findings are then interpreted and synthesized to draw meaningful conclusions. Questions Addressed: This research addresses the following questions: What are the potential benefits of yoga for holistic health and wellbeing? How does yoga promote rejuvenate the body, mind, and senses? What are the implications of a society embracing yoga for overall societal wellbeing and happiness? Findings: The research highlights that practicing yoga can lead to increased awareness of the body, mind, and senses. It promotes overall physical and mental health, helping individuals achieve a state of happiness and contentment. Moreover, the study emphasizes that a society embracing yoga can contribute to the development of a healthy and happy community. Theoretical Importance: The study of yoga for holistic health and wellbeing holds theoretical importance as it provides insights into the science of yoga and its impact on individuals and society. It contributes to the existing body of knowledge on the subject and further establishes yoga as a potential tool for enhancing overall wellness. Conclusion: The study concludes that yoga is a powerful practice for achieving holistic health and wellbeing. This research provides valuable insights into the science of yoga and its potential as a tool for promoting overall wellness.Keywords: yoga, asana, pranayama, meditation
Procedia PDF Downloads 8226048 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation
Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau
Abstract:
In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa
Procedia PDF Downloads 15626047 Psychological Perspectives on Modern Restaurant Interior Design Based on Traditional Elements (Case Study: Interior Design of the Mesineh Restaurant, Tehran, Iran)
Authors: Raheleh Saifiabolhassan
Abstract:
After the post-industrial era, when a wide variety of foods and drinks are readily available everywhere, the motive has shifted from meeting basic nutritional needs to enjoy the eating experience. Today, behavioral environmental studies are an essential branch of science when it comes to understanding, analyzing, and evaluating how humans react to the environment. Similarly, these studies explore customer-influencing factors and the effectiveness of restaurant designs. To facilitate a pleasant dining experience, the authors focused on acoustics, flexibility, and lighting. In this study, 2700 square feet of surface area was used to plan a restaurant (called Mesineh) based on behavioral science, considering many factors related to the interaction between the building and the users, such as flexibility and privacy, acoustics, and light. Environment psychology considerations in architectural design have been lacking for several decades. To fill this gap, the author evaluated environmental psychology standards and applied them to Mesineh's design. A sense of nostalgia will be felt by customers of the Mesineh restaurant thanks to its interior design, which combines historical elements with contemporary elements. Additionally, vernacular Persian architectural elements were incorporated into a modern context to fulfill the behavioral science component of interior design.Keywords: Mesineh restaurant, interior design, behavioral sciences, environment psychology, traditional persian architecture
Procedia PDF Downloads 20926046 Patient Tracking Challenges During Disasters and Emergencies
Authors: Mohammad H. Yarmohammadian, Reza Safdari, Mahmoud Keyvanara, Nahid Tavakoli
Abstract:
One of the greatest challenges in disaster and emergencies is patient tracking. The concept of tracking has different denotations. One of the meanings refers to tracking patients’ physical locations and the other meaning refers to tracking patients ‘medical needs during emergency services. The main goal of patient tracking is to provide patient safety during disaster and emergencies and manage the flow of patient and information in different locations. In most of cases, there are not sufficient and accurate data regarding the number of injuries, medical conditions and their accommodation and transference. The objective of the present study is to survey on patient tracking issue in natural disaster and emergencies. Methods: This was a narrative study in which the population was E-Journals and the electronic database such as PubMed, Proquest, Science direct, Elsevier, etc. Data was gathered by Extraction Form. All data were analyzed via content analysis. Results: In many countries there is no appropriate and rapid method for tracking patients and transferring victims after the occurrence of incidents. The absence of reliable data of patients’ transference and accommodation, even in the initial hours and days after the occurrence of disasters, and coordination for appropriate resource allocation, have faced challenges for evaluating needs and services challenges. Currently, most of emergency services are based on paper systems, while these systems do not act appropriately in great disasters and incidents and this issue causes information loss. Conclusion: Patient tracking system should update the location of patients or evacuees and information related to their states. Patients’ information should be accessible for authorized users to continue their treatment, accommodation and transference. Also it should include timely information of patients’ location as soon as they arrive somewhere and leave therein such a way that health care professionals can be able to provide patients’ proper medical treatment.Keywords: patient tracking, challenges, disaster, emergency
Procedia PDF Downloads 30426045 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6026044 Investigation of the Field Trip Method’s Effectiveness: As a Way of Improving Pre-Service Teachers’ Views on Environmental Education
Authors: Abuzer Akgün, Ümit Duruk
Abstract:
This study was carried out in a period of four weeks thanks to voluntarily participation of twenty eight pre-service teachers enrolled diverse departments in Faculty of Education. The purpose of the study was to point out how pre-service teachers views on environmental education were affected by field trips. Prior to data collection, four open-ended questions were prepared and administered to all pre-service teachers in the working group. Data gathered at first and final week of the field trip were compared in a qualitative approach using content analysis. In conclusion, it is obvious that most of the participants don’t feel themselves quiet enough about environmental education and state this reason as a providing justification to participate voluntarily in the study. In the secondary school teaching context, they mostly emphasize on the vital importance of the environmental awareness level of the pupils in the schools. They also seem to think that they get a detailed knowledge of environmental education and claim that they will use this knowledge in order to bring up next generations in their professional career as teachers. Lastly, they state that observing the deteriorating materials directly in their own settings, might be more effective as regards improving environmental awareness.Keywords: science education, environmental education, environmental issues, field trip method
Procedia PDF Downloads 35626043 Accessibility Assessment of School Facilities Using Geospatial Technologies: A Case Study of District Sheikhupura
Authors: Hira Jabbar
Abstract:
Education is vital for inclusive growth of an economy and a critical contributor for investment in human capital. Like other developing countries, Pakistan is facing enormous challenges regarding the provision of public facilities, improper infrastructure planning, accelerating rate of population and poor accessibility. The influence of the rapid advancement and innovations in GIS and RS techniques have proved to be a useful tool for better planning and decision making to encounter these challenges. Therefore present study incorporates GIS and RS techniques to investigate the spatial distribution of school facilities, identifies settlements with served and unserved population, finds potential areas for new schools based on population and develops an accessibility index to evaluate the higher accessibility for schools. For this purpose high-resolution worldview imagery was used to develop road network, settlements and school facilities and to generate school accessibility for each level. Landsat 8 imagery was utilized to extract built-up area by applying pre and post-processing models and Landscan 2015 was used to analyze population statistics. Service area analysis was performed using network analyst extension in ArcGIS 10.3v and results were evaluated for served and underserved areas and population. An accessibility tool was used to evaluate a set of potential destinations to determine which is the most accessible with the given population distribution. Findings of the study may contribute to facilitating the town planners and education authorities for understanding the existing patterns of school facilities. It is concluded that GIS and remote sensing can be effectively used in urban transport and facility planning.Keywords: accessibility, geographic information system, landscan, worldview
Procedia PDF Downloads 32526042 Cryptographic Protocol for Secure Cloud Storage
Authors: Luvisa Kusuma, Panji Yudha Prakasa
Abstract:
Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.Keywords: cloud storage, security, cryptographic protocol, artificial intelligence
Procedia PDF Downloads 35726041 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract
Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala
Abstract:
Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.Keywords: blockchain, data, data marketplace, smart contract, reputation system
Procedia PDF Downloads 15826040 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox
Authors: Jessica M. Black
Abstract:
Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary workKeywords: methodology, natural science, social science, transdisciplinary
Procedia PDF Downloads 115