Search results for: electric hysteresis (P-E)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1513

Search results for: electric hysteresis (P-E)

763 Design of 100 kW Induction Generator for Wind Power Plant at Tamanjaya Village-Sukabumi

Authors: Andri Setiyoso, Agus Purwadi, Nanda Avianto Wicaksono

Abstract:

This paper present about induction generator design for 100kW power output capacity. Induction machine had been chosen because of the capability for energy conversion from electric energy to mechanical energy and vise-versa with operation on variable speed condition. Stator Controlled Induction Generator (SCIG) was applied as wind power plant in Desa Taman Jaya, Sukabumi, Indonesia. Generator was designed to generate power 100 kW with wind speed at 12 m/s and survival condition at speed 21 m/s.

Keywords: wind energy, induction generator, Stator Controlled Induction Generator (SCIG), variable speed generator

Procedia PDF Downloads 488
762 A United Nations Safety Compliant Urban Vehicle Design

Authors: Marcelo R. G. Duarte, Marcilio Alves

Abstract:

Pedestrians are the fourth group among road traffic users that most suffer accidents. Their death rate is even higher than the motorcyclists group. This gives motivation for the development of an urban vehicle capable of complying with the United Nations Economic Commission for Europe pedestrian regulations. The conceptual vehicle is capable of transporting two passengers and small parcels for 100 km at a maximum speed of 90 km/h. This paper presents the design of this vehicle using the finite element method specially in connection with frontal crash test and car to pedestrian collision. The simulation is based in a human body FE.

Keywords: electric urban vehicle, finite element method, global human body model, pedestrian safety, road safety

Procedia PDF Downloads 169
761 The Use of Water Hyacinth for Bioenergy Electric Generation: For the case of Tana Water Hyacinth

Authors: Seada Hussen Adem, Frie Ayalew Yimam

Abstract:

Due to its high biomass output and potential to produce renewable energy, water hyacinth, a rapidly expanding aquatic weed, has gained recognition as a prospective bioenergy feedstock. Through a variety of conversion processes, such as anaerobic digestion, combustion, and gasification, this study suggests using water hyacinth to generate energy. The suggested strategy helps to reduce the annoyance brought on by the excessive growth of water hyacinth in Tana water bodies in addition to offering an alternate source of energy. The study emphasizes the value of environmentally friendly methods for managing Tana water resources as well as the potential of water hyacinth as a source of bioenergy.

Keywords: anaerobic digestion, bioenergy, combustion, gasification, water hyacinth

Procedia PDF Downloads 46
760 Study of Transport in Electronic Devices with Stochastic Monte Carlo Method: Modeling and Simulation along with Submicron Gate (Lg=0.5um)

Authors: N. Massoum, B. Bouazza

Abstract:

In this paper, we have developed a numerical simulation model to describe the electrical properties of GaInP MESFET with submicron gate (Lg = 0.5 µm). This model takes into account the three-dimensional (3D) distribution of the load in the short channel and the law effect of mobility as a function of electric field. Simulation software based on a stochastic method such as Monte Carlo has been established. The results are discussed and compared with those of the experiment. The result suggests experimentally that, in a very small gate length in our devices (smaller than 40 nm), short-channel tunneling explains the degradation of transistor performance, which was previously enhanced by velocity overshoot.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device, simulation software

Procedia PDF Downloads 492
759 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures

Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev

Abstract:

Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.

Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF

Procedia PDF Downloads 385
758 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 110
757 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant

Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih

Abstract:

Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.

Keywords: TRACE, safety analysis, BWR/6, severe accident

Procedia PDF Downloads 689
756 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method

Authors: Liang Zhao, Jili Zhang, Kai Li

Abstract:

A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.

Keywords: fan coil unit, duty ratio, fuzzy controller, experiment

Procedia PDF Downloads 312
755 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method

Authors: A. K. Paul, Vinod Kumar

Abstract:

Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.

Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties

Procedia PDF Downloads 112
754 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wave beam both in elevation and azimuth. In this paper, a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: beamforming, transducer array, BIS-expansion, piezoelectric layer

Procedia PDF Downloads 410
753 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems

Authors: Julio Brégains, Ángel Carro, José-Manuel Andión

Abstract:

Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.

Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching

Procedia PDF Downloads 54
752 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 60
751 Characteristics and Durability Evaluation of Air Spring

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Air spring system is widely accepted for railway vehicle secondary suspension to reduce and absorb the vibration and noise. The low natural frequency ensures a comfortable ride and an invariably good stiffness. In this paper, the characteristic and durability test was conducted in laboratory by using servo-hydraulic fatigue testing system to reliability evaluation of air spring for electric railway vehicle. The experimental results show that the characteristics and durability of domestically developed products are excellent. Moreover, to guarantee the adaption of air spring, the ride comfort and air pressure variation were measured in train test on subway line. Air spring developed by this study for railway vehicles can guarantee the reliability of average usage of 1 million times at 90% confidence level.

Keywords: air spring, reliability, railway, service lifetime

Procedia PDF Downloads 457
750 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process

Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres

Abstract:

Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.

Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products

Procedia PDF Downloads 64
749 Protein Crystallization Induced by Surface Plasmon Resonance

Authors: Tetsuo Okutsu

Abstract:

We have developed a crystallization plate with the function of promoting protein crystallization. A gold thin film is deposited on the crystallization plate. A protein solution is dropped thereon, and crystallization is promoted when the protein is irradiated with light of a wavelength that protein does not absorb. Protein is densely adsorbed on the gold thin film surface. The light excites the surface plasmon resonance of the gold thin film, the protein is excited by the generated enhanced electric field induced by surface plasmon resonance, and the amino acid residues are radicalized to produce protein dimers. The dimers function as templates for protein crystals, crystallization is promoted.

Keywords: lysozyme, plasmon, protein, crystallization, RNaseA

Procedia PDF Downloads 202
748 Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions

Authors: Shengxin Yu

Abstract:

Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges.

Keywords: partially self-centering behavior, energy dissipation, natural rubber bearing, shape memory alloy, U-shaped damper, numerical investigation, near-fault ground motion

Procedia PDF Downloads 33
747 Development of a Force-Sensing Toothbrush for Gum Recession Measurement Using Programmable Automation Controller

Authors: Sorayya Kazemi, Hamed Kharrati, Mehdi Abedinpour Fallah

Abstract:

This paper presents the design and implementation of a novel electric pressure-sensitive toothbrush, capable of measuring the forces applied to the head of the brush. The developed device is used for gum recession measurement. In particular, the percentage of gum recession is measured by a Programmable Automation controller (PAC). Moreover, the brushing forces are measured by a Force Sensing Resistor (FSR) sensor. These forces are analog inputs of PAC. According to the applied forces during patient’s brushing and the patient’s percentage of gum recession, dentist sets the standard force range. The instrument alarms when the patient applies a force over the set range.

Keywords: gum recession, force sensing resistor, controller, toothbrush

Procedia PDF Downloads 472
746 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 115
745 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 115
744 Effect of Relative Humidity on Corrosion Behavior of SN-0.7Cu Solder under Polyvinyl Chloride Fire Smoke Atmosphere

Authors: Qian Li, Shouxiang Lu

Abstract:

With the rapid increase in electric power use, wire and cable fire occur more and more frequent. The fire smoke has a corrosive effect on the solders, which seriously affects the function of electronic equipment. In this research, the effect of environment relative humidity on corrosion behavior of Sn-0.7Cu solder has been researched under 140 g·m⁻³ polyvinyl chloride (PVC) fire smoke atmosphere. The mass loss of Sn-0.7Cu solder increased with the relative humidity. Furthermore, the microstructures and corrosion mechanism were analyzed by using SEM, EDS, XRD, and XPS. The result shows that Sn₂₁Cl₁₆(OH)₁₄O₆ is the main corrosion products and the corrosion process is an electrochemical reaction. The present work could provide guidance to the risk assessment for electronic equipment rescue after a fire.

Keywords: corrosion, fire smoke, relative humidity, Sn-0.7Cu solder

Procedia PDF Downloads 342
743 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy

Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun

Abstract:

This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.

Keywords: magnesium alloy, titanium, SEM, wear

Procedia PDF Downloads 318
742 Transient Current Investigations in Liquid Crystalline Polyurethane

Authors: Jitendra Kumar Quamara, Sohan Lal, Pushkar Raj

Abstract:

Electrical conduction behavior of liquid crystalline polyurethane (LCPU) has been investigated under transient conditions in the operating temperature range 50-220°C at various electric fields of 4.35-43.45 kV/cm. The transient currents show the hyperbolic decay character and the decay exponent ∆t (one tenth decay time) dependent on field as well as on temperature. The increase in I0/Is values (where I0 represents the current observed immediately after applying the voltage and Is represents the steady state current) and the variation of mobility at high operating temperatures shows the appearance of mesophase. The origin of transient currents has been attributed to the dipolar nature of carbonyl (C=O) groups in the main chain of LCPU and the trapping charge carriers.

Keywords: electrical conduction, transient current, liquid crystalline polymers, mesophase

Procedia PDF Downloads 258
741 Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy

Authors: Pardeep, Yugandhar Bitla, A. K. Patra, G. A. Basheed

Abstract:

The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy.

Keywords: skyrmions, magnetic susceptibility, metastable phases, topological phases

Procedia PDF Downloads 92
740 Experimental Assessment of Alkaline Leaching of Lepidolite

Authors: António Fiúza, Aurora Futuro, Joana Monteiro, Joaquim Góis

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, which is necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques minimize the laboratory effort required by conventional approaches and allow phenomenological comprehension.

Keywords: alkaline leaching, lithium, research design, statistical interpretation

Procedia PDF Downloads 68
739 Oscillating Water Column Wave Energy Converter with Deep Water Reactance

Authors: William C. Alexander

Abstract:

The oscillating water column (OSC) wave energy converter (WEC) with deep water reactance (DWR) consists of a large hollow sphere filled with seawater at the base, referred to as the ‘stabilizer’, a hollow cylinder at the top of the device, with a said cylinder having a bottom open to the sea and a sealed top save for an orifice which leads to an air turbine, and a long, narrow rod connecting said stabilizer with said cylinder. A small amount of ballast at the bottom of the stabilizer and a small amount of floatation in the cylinder keeps the device upright in the sea. The floatation is set such that the mean water level is nominally halfway up the cylinder. The entire device is loosely moored to the seabed to keep it from drifting away. In the presence of ocean waves, seawater will move up and down within the cylinder, producing the ‘oscillating water column’. This gives rise to air pressure within the cylinder alternating between positive and negative gauge pressure, which in turn causes air to alternately leave and enter the cylinder through said top-cover situated orifice. An air turbine situated within or immediately adjacent to said orifice converts the oscillating airflow into electric power for transport to shore or elsewhere by electric power cable. Said oscillating air pressure produces large up and down forces on the cylinder. Said large forces are opposed through the rod to the large mass of water retained within the stabilizer, which is located deep enough to be mostly free of any wave influence and which provides the deepwater reactance. The cylinder and stabilizer form a spring-mass system which has a vertical (heave) resonant frequency. The diameter of the cylinder largely determines the power rating of the device, while the size (and water mass within) of the stabilizer determines said resonant frequency. Said frequency is chosen to be on the lower end of the wave frequency spectrum to maximize the average power output of the device over a large span of time (such as a year). The upper portion of the device (the cylinder) moves laterally (surge) with the waves. This motion is accommodated with minimal loading on the said rod by having the stabilizer shaped like a sphere, allowing the entire device to rotate about the center of the stabilizer without rotating the seawater within the stabilizer. A full-scale device of this type may have the following dimensions. The cylinder may be 16 meters in diameter and 30 meters high, the stabilizer 25 meters in diameter, and the rod 55 meters long. Simulations predict that this will produce 1,400 kW in waves of 3.5-meter height and 12 second period, with a relatively flat power curve between 5 and 16 second wave periods, as will be suitable for an open-ocean location. This is nominally 10 times higher power than similar-sized WEC spar buoys as reported in the literature, and the device is projected to have only 5% of the mass per unit power of other OWC converters.

Keywords: oscillating water column, wave energy converter, spar bouy, stabilizer

Procedia PDF Downloads 93
738 Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices

Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata

Abstract:

The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect).

Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact Airy function and transfer matrix formalism, bioinformatics

Procedia PDF Downloads 270
737 Formation of Miniband Structure in Dimer Fibonacci GaAs/Ga1-XAlXAs Superlattices

Authors: Aziz Zoubir, Sefir Yamina, Djelti Redouan, Bentata Samir

Abstract:

The effect of a uniform electric field across multibarrier systems (GaAs/AlxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased Dimer Fibonacci Height Barrier superlattices (DFHBSL) structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark effect).

Keywords: Dimer Fibonacci Height Barrier superlattices, singular extended states, exact Airy function, transfer matrix formalism

Procedia PDF Downloads 494
736 Design Analysis of Solar Energy Panels for Tropical Nigeria

Authors: Cyril Agochi Okorowo

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man have greatly influenced climate change over the years as a result of a consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discusses solar energy as the abundant renewable energy in the tropical Nigeria, processes of harvesting the energy and recommends solar energy as an alternative means of electric power generation in a time the demand for power in Nigeria supersedes supply.

Keywords: analysis, energy, design, solar

Procedia PDF Downloads 275
735 Observation of Laminar to Turbulent Transition in Micro-Propellers

Authors: Dake Wang, Ellis Edinkrah, Brian Wang

Abstract:

Micro-propellers can operate in regimes of small Reynolds numbers where the effect of viscous friction becomes important. In this work, the transition from laminar to turbulent regime in micro-propellers driven by electric motors was observed. The analysis revealed that the lift force was linearly proportional to propeller output power when systems operate in the laminar/viscous regime, while a sublinear relation between the force and the output power was observed in the turbulent/inertial regime. These behaviors appeared to be independent of motor-propeller specifications. The Reynolds number that marks the regime transition was found to be at around 10000.

Keywords: UAV, micro-propeller, laminar-turbulent, Reynolds number

Procedia PDF Downloads 81
734 Marine Environmental Monitoring Using an Open Source Autonomous Marine Surface Vehicle

Authors: U. Pruthviraj, Praveen Kumar R. A. K. Athul, K. V. Gangadharan, S. Rao Shrikantha

Abstract:

An open source based autonomous unmanned marine surface vehicle (UMSV) is developed for some of the marine applications such as pollution control, environmental monitoring and thermal imaging. A double rotomoulded hull boat is deployed which is rugged, tough, quick to deploy and moves faster. It is suitable for environmental monitoring, and it is designed for easy maintenance. A 2HP electric outboard marine motor is used which is powered by a lithium-ion battery and can also be charged from a solar charger. All connections are completely waterproof to IP67 ratings. In full throttle speed, the marine motor is capable of up to 7 kmph. The motor is integrated with an open source based controller using cortex M4F for adjusting the direction of the motor. This UMSV can be operated by three modes: semi-autonomous, manual and fully automated. One of the channels of a 2.4GHz radio link 8 channel transmitter is used for toggling between different modes of the USMV. In this electric outboard marine motor an on board GPS system has been fitted to find the range and GPS positioning. The entire system can be assembled in the field in less than 10 minutes. A Flir Lepton thermal camera core, is integrated with a 64-bit quad-core Linux based open source processor, facilitating real-time capturing of thermal images and the results are stored in a micro SD card which is a data storage device for the system. The thermal camera is interfaced to an open source processor through SPI protocol. These thermal images are used for finding oil spills and to look for people who are drowning at low visibility during the night time. A Real Time clock (RTC) module is attached with the battery to provide the date and time of thermal images captured. For the live video feed, a 900MHz long range video transmitter and receiver is setup by which from a higher power output a longer range of 40miles has been achieved. A Multi-parameter probe is used to measure the following parameters: conductivity, salinity, resistivity, density, dissolved oxygen content, ORP (Oxidation-Reduction Potential), pH level, temperature, water level and pressure (absolute).The maximum pressure it can withstand 160 psi, up to 100m. This work represents a field demonstration of an open source based autonomous navigation system for a marine surface vehicle.

Keywords: open source, autonomous navigation, environmental monitoring, UMSV, outboard motor, multi-parameter probe

Procedia PDF Downloads 219