Search results for: deep brain stimulation (DBS)
2789 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study
Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan
Abstract:
Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study
Procedia PDF Downloads 1722788 Employing Visual Culture to Enhance Initial Adult Maltese Language Acquisition
Authors: Jacqueline Żammit
Abstract:
Recent research indicates that the utilization of right-brain strategies holds significant implications for the acquisition of language skills. Nevertheless, the utilization of visual culture as a means to stimulate these strategies and amplify language retention among adults engaging in second language (L2) learning remains a relatively unexplored area. This investigation delves into the impact of visual culture on activating right-brain processes during the initial stages of language acquisition, particularly in the context of teaching Maltese as a second language (ML2) to adult learners. By employing a qualitative research approach, this study convenes a focus group comprising twenty-seven educators to delve into a range of visual culture techniques integrated within language instruction. The collected data is subjected to thematic analysis using NVivo software. The findings underscore a variety of impactful visual culture techniques, encompassing activities such as drawing, sketching, interactive matching games, orthographic mapping, memory palace strategies, wordless picture books, picture-centered learning methodologies, infographics, Face Memory Game, Spot the Difference, Word Search Puzzles, the Hidden Object Game, educational videos, the Shadow Matching technique, Find the Differences exercises, and color-coded methodologies. These identified techniques hold potential for application within ML2 classes for adult learners. Consequently, this study not only provides insights into optimizing language learning through specific visual culture strategies but also furnishes practical recommendations for enhancing language competencies and skills.Keywords: visual culture, right-brain strategies, second language acquisition, maltese as a second language, visual aids, language-based activities
Procedia PDF Downloads 612787 Forward Conditional Restricted Boltzmann Machines for the Generation of Music
Authors: Johan Loeckx, Joeri Bultheel
Abstract:
Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)
Procedia PDF Downloads 5222786 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles
Authors: Paulo Sérgio Ribeiro de Araújo Bogas
Abstract:
Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing
Procedia PDF Downloads 832785 Bilateral Hemodynamic Responses on Prefrontal Cortex during Voluntary Regulated Breathing (Pranayama) Practices: A Near Infrared Spectroscopy Study
Authors: Singh Deepeshwar, Suhas Vinchurkar
Abstract:
Similar to neuroimaging findings through functional magnetic resonance imaging (fMRI) assessing regional cerebral blood oxygenation, the functional near infrared spectroscopy (fNIRS) has also been used to assess hemodynamic responses in the imaged region of the brain. The present study assessed hemodynamic responses in terms of changes in oxygenation (HbO), deoxygenation (HbR) and total hemoglobin (THb) on the prefrontal cortex (PFC), bilaterally, using fNIRS in 10 participants who performed three voluntary regulated breathing (pranayama) practices viz. (i) Left nostril breathing (LNB), (ii) Right nostril breathing (RNB); and (iii) Alternating nostril breathing (ANB) and compared with normal breathing as baseline (BS). For this, we used 64 channel NIRS system covering left and the right prefrontal cortex. The normal breathing kept as baseline (BS) measures as regressors in the investigation of hemodynamic responses when compared with LNB, RNB and ANB. In the results, we found greater oxygenation in contralateral side i.e., higher activation on the left prefrontal cortex (lPFC) during RNB, and right prefrontal cortex (rPFC) during LNB, whereas ANB showed greater deoxygenation responses on both sides of PFC. Interestingly, LNB showed increased oxygenation on ipsilateral side i.e., lPFC but not during RNB. This suggests that voluntary regulated breathing produced an immediate effect not only on contralateral but ipsilateral sides of the brain as well. In conclusion, breathing practices are tightly coupled to cerebral rhythms of alternating cerebral hemispheric activity during particular nostril breathing. These results of the specific nostril breathing do not support previous findings of contralateral hemispheric improvement while left or right nostril breathing only.Keywords: hemodynamic responses, brain, pranayama, voluntary regulated breathing practices, prefrontal cortex
Procedia PDF Downloads 2272784 Sub-Chronic Exposure to Dexamethasone Impairs Cognitive Function and Insulin in Prefrontal Cortex of Male Wistar Rats
Authors: A. Alli-Oluwafuyi, A. Amin, S. M. Fii, S. O. Amusa, A. Imam, N. T. Asogwa, W. I. Abdulmajeed, F. Olaseinde, B. V. Owoyele
Abstract:
Chronic stress or prolonged glucocorticoid administration impairs higher cognitive functions in rodents and humans. However, the mechanisms are not fully clear. Insulin and receptors are expressed in the brain and are involved in cognition. Insulin resistance accompanies Alzheimer’s disease and associated cognitive decline. The goal of this study was to evaluate the effects of sub-chronic administration of a glucocorticoid, dexamethasone (DEX) on behavior and biochemical changes in prefrontal cortex (PFC). Male Wistar rats were administered DEX (2, 4 & 8 mg/kg, IP) or saline for seven consecutive days and behavior was assessed in the following paradigms: “Y” maze, elevated plus maze, Morris’ water maze and novel object recognition (NOR) tests. Insulin, lactate dehydrogenase (LDH) and Superoxide Dismutase (SOD) activity were evaluated in homogenates of the prefrontal cortex. DEX-treated rats exhibited impaired prefrontal cortex function manifesting as reduced locomotion, impaired novel object exploration and impaired short- and long-term spatial memory compared to normal controls (p < 0.05). These effects were not consistently dose-dependent. These behavioral alterations were accompanied by a decrease in insulin concentration observed in PFC of 4 mg/kg DEX-treated rats compared to control (10μIU/mg vs. 50μIU/mg; p < 0.05) but not 2mg/kg. Furthermore, we report a modification of brain stress markers LDH and SOD (p > 0.05). These results indicate that prolonged activation of GCs disrupt prefrontal cortex function which may be related to insulin impairment. These effects may not be attributable to a non-specific elevation of oxidative stress in the brain. Future studies would evaluate mechanisms of GR-induced insulin loss.Keywords: dexamethasone, insulin, memory, prefrontal cortex
Procedia PDF Downloads 2842783 Quantification and Thermal Behavior of Rice Bran Oil, Sunflower Oil and Their Model Blends
Authors: Harish Kumar Sharma, Garima Sengar
Abstract:
Rice bran oil is considered comparatively nutritionally superior than different fats/oils. Therefore, model blends prepared from pure rice bran oil (RBO) and sunflower oil (SFO) were explored for changes in the different physicochemical parameters. Repeated deep fat frying process was carried out by using dried potato in order to study the thermal behaviour of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil had shown good thermal stability during the repeated deep fat frying cycles. Although, the model blends constituting 60% RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils. The quantification of pure rice bran oil in the blended oils, physically refined rice bran oil (PRBO): SnF (sunflower oil) was carried by different methods. The study revealed that regression equations based on the oryzanol content, palmitic acid composition and iodine value can be used for the quantification. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification.Keywords: rice bran oil, sunflower oil, frying, quantification
Procedia PDF Downloads 3082782 Bionaut™: A Breakthrough Robotic Microdevice to Treat Non-Communicating Hydrocephalus in Both Adult and Pediatric Patients
Authors: Suehyun Cho, Darrell Harrington, Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Alex Kiselyov, Michael Shpigelmacher
Abstract:
Bionaut Labs, LLC is developing a minimally invasive robotic microdevice designed to treat non-communicating hydrocephalus in both adult and pediatric patients. The device utilizes biocompatible microsurgical particles (Bionaut™) that are specifically designed to safely and reliably perform accurate fenestration(s) in the 3rd ventricle, aqueduct of Sylvius, and/or trapped intraventricular cysts of the brain in order to re-establish normal cerebrospinal fluid flow dynamics and thereby balance and/or normalize intra/intercompartmental pressure. The Bionaut™ is navigated to the target via CSF or brain tissue in a minimally invasive fashion with precise control using real-time imaging. Upon reaching the pre-defined anatomical target, the external driver allows for directing the specific microsurgical action defined to achieve the surgical goal. Notable features of the proposed protocol are i) Bionaut™ access to the intraventricular target follows a clinically validated endoscopy trajectory which may not be feasible via ‘traditional’ rigid endoscopy: ii) the treatment is microsurgical, there are no foreign materials left behind post-procedure; iii) Bionaut™ is an untethered device that is navigated through the subarachnoid and intraventricular compartments of the brain, following pre-designated non-linear trajectories as determined by the safest anatomical and physiological path; iv) Overall protocol involves minimally invasive delivery and post-operational retrieval of the surgical Bionaut™. The approach is expected to be suitable to treat pediatric patients 0-12 months old as well as adult patients with obstructive hydrocephalus who fail traditional shunts or are eligible for endoscopy. Current progress, including platform optimization, Bionaut™ control, and real-time imaging and in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of ovine models, will be discussed.Keywords: Bionaut™, cerebrospinal fluid, CSF, fenestration, hydrocephalus, micro-robot, microsurgery
Procedia PDF Downloads 1702781 Gaming Mouse Redesign Based on Evaluation of Pragmatic and Hedonic Aspects of User Experience
Authors: Thedy Yogasara, Fredy Agus
Abstract:
In designing a product, it is currently crucial to focus not only on the product’s usability based on performance measures, but also on user experience (UX) that includes pragmatic and hedonic aspects of product use. These aspects play a significant role in fulfillment of user needs, both functionally and psychologically. Pragmatic quality refers to as product’s perceived ability to support the fulfillment of behavioral goals. It is closely linked to functionality and usability of the product. In contrast, hedonic quality is product’s perceived ability to support the fulfillment of psychological needs. Hedonic quality relates to the pleasure of ownership and use of the product, including stimulation for personal development and communication of user’s identity to others through the product. This study evaluates the pragmatic and hedonic aspects of gaming mice G600 and Razer Krait using AttrakDiff tool to create an improved design that is able to generate positive UX. AttrakDiff is a method that measures pragmatic and hedonic scores of a product with a scale between -3 to +3 through four attributes (i.e. Pragmatic Quality, Hedonic Quality-Identification, Hedonic Quality-Stimulation, and Attractiveness), represented by 28 pairs of opposite words. Based on data gathered from 15 participants, it is identified that gaming mouse G600 needs to be redesigned because of its low grades (pragmatic score: -0.838, hedonic score: 1, attractiveness score: 0.771). The redesign process focuses on the attributes with poor scores and takes into account improvement suggestions collected from interview with the participants. The redesigned mouse G600 is evaluated using the previous method. The result shows higher scores in pragmatic quality (1.929), hedonic quality (1.703), and attractiveness (1.667), indicating that the redesigned mouse is more capable of creating pleasurable experience of product use.Keywords: AttrakDiff, hedonic aspect, pragmatic aspect, product design, user experience
Procedia PDF Downloads 1572780 The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats
Authors: Azza A. Ali, Abeer I. Abd El-Fattah, Shaimaa S. Hussein, Hanan A. Abd El-Samea, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects.Keywords: aluminum, neurotoxicity, vinpocetine, cocoa, wheat grass, coenzyme Q10, Zinc, rats
Procedia PDF Downloads 2492779 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration
Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger
Abstract:
Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration
Procedia PDF Downloads 482778 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4532777 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 932776 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yue Yang, Rongjie Yan
Abstract:
It is difficult to realize deep profile control because of the small pore-throats and easy water channeling in low-permeability heterogeneous reservoir, and the traditional polymer microspheres have the contradiction between injection and plugging. In order to solve this contradiction, the controllable self-aggregating colloidal particles (CSA) containing amide groups on the surface of microspheres was prepared based on emulsion polymerization of styrene and acrylamide. The dispersed solution of CSA colloidal particles, whose particle size is much smaller than the diameter of pore-throats, was injected into the reservoir. When the microspheres migrated to the deep part of reservoir, , these CSA colloidal particles could automatically self-aggregate into large particle clusters under the action of the shielding agent and the control agent, so as to realize the plugging of the water channels. In this paper, the morphology, temperature resistance and self-aggregation properties of CSA microspheres were studied by transmission electron microscopy (TEM) and bottle test. The results showed that CSA microspheres exhibited heterogeneous core-shell structure, good dispersion, and outstanding thermal stability. The microspheres remain regular and uniform spheres at 100℃ after aging for 35 days. With the increase of the concentration of the cations, the self-aggregation time of CSA was gradually shortened, and the influence of bivalent cations was greater than that of monovalent cations. Core flooding experiments showed that CSA polymer microspheres have good injection properties, CSA particle clusters can effective plug the water channels and migrate to the deep part of the reservoir for profile control.Keywords: heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic
Procedia PDF Downloads 2412775 Melatonin Rescue Fungicide Induced Behavioral and Reproductive Abnormalities through Changes of Dopaminergic Activity in the Brain of Catfish, Mystus cavasisu
Authors: Muhammad Badruzzaman, Alif Hasan, Md. Shahjahan
Abstract:
Propiconazole is a triazole fungicide extensively used in agriculture which can harm to non-target organisms in aquatic environment through runoff. Chronic exposure to environmental pesticides turn to behavioral impairment in vertebrates including teleosts. However, the potential effect of this fungicide on neurobehavioral impairment and release from it in vertebrates has not been fully explored. In this work, we examined the role of melatonin to rescue fungicide induced neurobehavioral and reproductive alternation and its connection with changes in dopaminergic activity in the brain of Mystus cavasius. After fish were exposed to water containing propiconazole at 0, 0.1, 5, and 250 µg/L for 3 days, significant increases of DA, 3,4-dihydroxyphenylacetic acid (DOPAC; a DA metabolite), and their ratio (DOPAC/DA) were observed in whole brain at 250 µg/L concentration. When fish were treated with propiconazole at 250 µg/L for 3 days, there was a significant elevation of DA, DOPAC and DOPAC/DA in diencephalon and pituitary, and only DA in the telencephalon, compared with control fish. Besides, it induced a reduction in extracellular serotonin and had an anxiolytic-like effect, supported by a decrease in cortisol production. Increased locomotor activity, anxiety and aggressiveness, decreased gonadosomatic index with few vitellogenic oocytes in ovaries after propiconazole treatment. When fish were treated with melatonin, D1 (SCH-23390) or D2 (Haloperidol) dopamine receptor antagonists and combined of melatonin and D1/D2 receptor antagonist and was observed melatonin + D2 receptor antagonist rescued fungicide induced all behavioral changes in fish. These results indicate that propiconazole increases locomotor activity, anxiety and aggressiveness and decreases reproductive activity, which was rescued by combined treatment of melatonin and dopamine receptor antagonist.Keywords: behavior, catfish, dopamine, fungicide, melatonin
Procedia PDF Downloads 1152774 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 1782773 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 1302772 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 1832771 The Current Ways of Thinking Mild Traumatic Brain Injury and Clinical Practice in a Trauma Hospital: A Pilot Study
Authors: P. Donnelly, G. Mitchell
Abstract:
Traumatic Brain Injury (TBI) is a major contributor to the global burden of disease; despite its ubiquity, there is significant variation in diagnosis, prognosis, and treatment between clinicians. This study aims to examine the spectrum of approaches that currently exist at a Level 1 Trauma Centre in Australasia by surveying Emergency Physicians and Neurosurgeons on those aspects of mTBI. A pilot survey of 17 clinicians (Neurosurgeons, Emergency Physicians, and others who manage patients with mTBI) at a Level 1 Trauma Centre in Brisbane, Australia, was conducted. The objective of this study was to examine the importance these clinicians place on various elements in their approach to the diagnosis, prognostication, and treatment of mTBI. The data were summarised, and the descriptive statistics reported. Loss of consciousness and post-traumatic amnesia were rated as the most important signs or symptoms in diagnosing mTBI (median importance of 8). MRI was the most important imaging modality in diagnosing mTBI (median importance of 7). ‘Number of the Previous TBIs’ and Intracranial Injury on Imaging’ were rated as the most important elements for prognostication (median importance of 9). Education and reassurance were rated as the most important modality for treating mTBI (median importance of 7). There was a statistically insignificant variation between the specialties as to the importance they place on each of these components. In this Australian tertiary trauma center, there appears to be variation in how clinicians approach mTBI. This study is underpowered to state whether this is between clinicians within a specialty or a trend between specialties. This variation is worthwhile in investigating as a step toward a unified approach to diagnosing, prognosticating, and treating this common pathology.Keywords: mild traumatic brain injury, adult, clinician, survey
Procedia PDF Downloads 1302770 Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System
Authors: John Gaber, Youssef Ahmed, Hossam A.Gabbar, Jing Ren
Abstract:
Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion.Keywords: EEG, power plant operator, psychology, task analysis
Procedia PDF Downloads 992769 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models
Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik
Abstract:
The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron
Procedia PDF Downloads 1862768 Hydrothermal Energy Application Technology Using Dam Deep Water
Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong
Abstract:
Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.Keywords: hydrothermal energy, HVAC, internet data center, free-cooling
Procedia PDF Downloads 812767 Acute Neurophysiological Responses to Resistance Training; Evidence of a Shortened Super Compensation Cycle and Early Neural Adaptations
Authors: Christopher Latella, Ashlee M. Hendy, Dan Vander Westhuizen, Wei-Peng Teo
Abstract:
Introduction: Neural adaptations following resistance training interventions have been widely investigated, however the evidence regarding the mechanisms of early adaptation are less clear. Understanding neural responses from an acute resistance training session is pivotal in the prescription of frequency, intensity and volume in applied strength and conditioning practice. Therefore the primary aim of this study was to investigate the time course of neurophysiological mechanisms post training against current super compensation theory, and secondly, to examine whether these responses reflect neural adaptations observed with resistance training interventions. Methods: Participants (N=14) completed a randomised, counterbalanced crossover study comparing; control, strength and hypertrophy conditions. The strength condition involved 3 x 5RM leg extensions with 3min recovery, while the hypertrophy condition involved 3 x 12 RM with 60s recovery. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were used to measure excitability of the central and peripheral neural pathways, and maximal voluntary contraction (MVC) to quantify strength changes. Measures were taken pre, immediately post, 10, 20 and 30 mins and 1, 2, 6, 24, 48, 72 and 96 hrs following training. Results: Significant decreases were observed at post, 10, 20, 30 min, 1 and 2 hrs for both training groups compared to control group for force, (p <.05), maximal compound wave; (p < .005), silent period; (p < .05). A significant increase in corticospinal excitability; (p < .005) was observed for both groups. Corticospinal excitability between strength and hypertrophy groups was near significance, with a large effect (η2= .202). All measures returned to baseline within 6 hrs post training. Discussion: Neurophysiological mechanisms appear to be significantly altered in the period 2 hrs post training, returning to homeostasis by 6 hrs. The evidence suggests that the time course of neural recovery post resistance training occurs 18-40 hours shorter than previous super compensation models. Strength and hypertrophy protocols showed similar response profiles with current findings suggesting greater post training corticospinal drive from hypertrophy training, despite previous evidence that strength training requires greater neural input. The increase in corticospinal drive and decrease inl inhibition appear to be a compensatory mechanism for decreases in peripheral nerve excitability and maximal voluntary force output. The changes in corticospinal excitability and inhibition are akin to adaptive processes observed with training interventions of 4 wks or longer. It appears that the 2 hr recovery period post training is the most influential for priming further neural adaptations with resistance training. Secondly, the frequency of prescribed resistance sessions can be scheduled closer than previous super compensation theory for optimal strength gains.Keywords: neural responses, resistance training, super compensation, transcranial magnetic stimulation
Procedia PDF Downloads 2832766 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis
Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli
Abstract:
Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.Keywords: hippocampal plasticity, learning ability, memory, parental exercise
Procedia PDF Downloads 2092765 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia
Authors: Josua Sihotang
Abstract:
Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.Keywords: aquifer, deep groundwater potential, well devices, well logging analysis
Procedia PDF Downloads 2522764 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning
Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody
Abstract:
The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification
Procedia PDF Downloads 1072763 Circadian Rhythmic Expression of Choroid Plexus Membrane Transport Proteins
Authors: Rafael Mineiro, André Furtado, Isabel Gonçalves, Cecília Santos, Telma Quintela
Abstract:
The choroid plexus (CP) epithelial cells form the blood-cerebrospinal fluid barrier. This barrier is highly important for brain protection by physically separating the blood from the cerebrospinal fluid, controlling the trafficking of molecules, including therapeutic drugs, from blood to the brain. The control is achieved by tight junctions between epithelial cells, membrane receptors and transport proteins from the solute carrier and ATP-binding cassette superfamily on the choroid plexus epithelial cells membrane. Previous research of our group showed a functional molecular clock in the CP. The key findings included a rhythmic expression of Bmal1, Per2, and Cry2 in female rat CP. and a rhythmic expression of Cry2 and Per2 in male rat CP. Furthermore, in cultured rat CP epithelial cells we already showed that 17β-estradiol upregulates the expression of Bmal1 and Per1, where the Per1 and Per2 upregulation was abrogated in the presence of the estrogen receptors antagonist ICI. These findings, together with the fact that the CP produces robust rhythms, prompt us to understand the impact of sex hormones and circadian rhythms in CP drug transporters expression, which is a step towards the development and optimization of therapeutic strategies for efficiently delivering drugs to the brain. For that, we analyzed the circadian rhythmicity of the Abcb1, Abcc2, Abcc4 Abcg2, and Oat3 drug transporters at the CP of male and female rats. This analysis was performed by accessing the gene expression of the mentioned transporters at 4 time points by RT-qPCR and the presence of rhythms was evaluated by the CircWave software. Our findings showed a rhythmic expression of Abcc1 in the CP of male rats, of Abcg2 in female rats, and of Abcc4 and Oat3 in both male and female rats with an almost antiphasic pattern between male and female rats for Abcc4. In conclusion, these findings translated to a functional point of view may account for daily variations in brain permeability for several therapeutic drugs, making our findings important data for the future establishment and development of therapeutic strategies according to daytime.Keywords: choroid plexus, circadian rhythm, membrane transporters, sex hormones
Procedia PDF Downloads 122762 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation
Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu
Abstract:
Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes
Procedia PDF Downloads 3102761 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel
Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon
Abstract:
The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling
Procedia PDF Downloads 852760 Forging A Distinct Understanding of Implicit Bias
Authors: Benjamin D Reese Jr
Abstract:
Implicit bias is understood as unconscious attitudes, stereotypes, or associations that can influence the cognitions, actions, decisions, and interactions of an individual without intentional control. These unconscious attitudes or stereotypes are often targeted toward specific groups of people based on their gender, race, age, perceived sexual orientation or other social categories. Since the late 1980s, there has been a proliferation of research that hypothesizes that the operation of implicit bias is the result of the brain needing to process millions of bits of information every second. Hence, one’s prior individual learning history provides ‘shortcuts’. As soon as one see someone of a certain race, one have immediate associations based on their past learning, and one might make assumptions about their competence, skill, or danger. These assumptions are outside of conscious awareness. In recent years, an alternative conceptualization has been proposed. The ‘bias of crowds’ theory hypothesizes that a given context or situation influences the degree of accessibility of particular biases. For example, in certain geographic communities in the United States, there is a long-standing and deeply ingrained history of structures, policies, and practices that contribute to racial inequities and bias toward African Americans. Hence, negative biases among groups of people towards African Americans are more accessible in such contexts or communities. This theory does not focus on individual brain functioning or cognitive ‘shortcuts.’ Therefore, attempts to modify individual perceptions or learning might have negligible impact on those embedded environmental systems or policies that are within certain contexts or communities. From the ‘bias of crowds’ perspective, high levels of racial bias in a community can be reduced by making fundamental changes in structures, policies, and practices to create a more equitable context or community rather than focusing on training or education aimed at reducing an individual’s biases. The current paper acknowledges and supports the foundational role of long-standing structures, policies, and practices that maintain racial inequities, as well as inequities related to other social categories, and highlights the critical need to continue organizational, community, and national efforts to eliminate those inequities. It also makes a case for providing individual leaders with a deep understanding of the dynamics of how implicit biases impact cognitions, actions, decisions, and interactions so that those leaders might more effectively develop structural changes in the processes and systems under their purview. This approach incorporates both the importance of an individual’s learning history as well as the important variables within the ‘bias of crowds’ theory. The paper also offers a model for leadership education, as well as examples of structural changes leaders might consider.Keywords: implicit bias, unconscious bias, bias, inequities
Procedia PDF Downloads 6