Search results for: bounded solution method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22821

Search results for: bounded solution method

22071 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification

Procedia PDF Downloads 467
22070 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution

Authors: Apolinar Picado, Ronald Solís, Rafael Gamero

Abstract:

The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.

Keywords: activation energy, diffusivity, instant coffee, thin-layer models

Procedia PDF Downloads 255
22069 On Energy Condition Violation for Shifting Negative Mass Black Holes

Authors: Manuel Urueña Palomo

Abstract:

In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.

Keywords: black holes, CPT symmetry, negative mass, time transformation

Procedia PDF Downloads 146
22068 Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study

Authors: Rachmat Mauludin, Nurmazidah

Abstract:

Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes.

Keywords: famotodine, SLN, high speed homogenization, particle size, release study

Procedia PDF Downloads 855
22067 Investment Projects Selection Problem under Hesitant Fuzzy Environment

Authors: Irina Khutsishvili

Abstract:

In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.

Procedia PDF Downloads 115
22066 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 561
22065 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods

Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad

Abstract:

we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design

Keywords: hydrogen gas, lightning energy, power plant, resistive element

Procedia PDF Downloads 138
22064 Graded Orientation of the Linear Polymers

Authors: Levan Nadareishvili, Roland Bakuradze, Barbara Kilosanidze, Nona Topuridze, Liana Sharashidze, Ineza Pavlenishvili

Abstract:

Some regularities of formation of a new structural state of the thermoplastic polymers-gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching-by action of inhomogeneous mechanical field on the isotropic linear polymers or by zonal stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zonal stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.

Keywords: controlled graded stretching, gradually oriented state, linear polymers, zone stretching device

Procedia PDF Downloads 430
22063 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 272
22062 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

Authors: Theddeus T. Akano, Omotayo A. Fakinlede

Abstract:

The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements.

Keywords: Sturm-Liouville problem, Robin boundary condition, finite element method, eigenvalue problems

Procedia PDF Downloads 357
22061 Evaluation of Spatial Correlation Length and Karhunen-Loeve Expansion Terms for Predicting Reliability Level of Long-Term Settlement in Soft Soils

Authors: Mehrnaz Alibeikloo, Hadi Khabbaz, Behzad Fatahi

Abstract:

The spectral random field method is one of the widely used methods to obtain more reliable and accurate results in geotechnical problems involving material variability. Karhunen-Loeve (K-L) expansion method was applied to perform random field discretization of cross-correlated creep parameters. Karhunen-Loeve expansion method is based on eigenfunctions and eigenvalues of covariance function adopting Kernel integral solution. In this paper, the accuracy of Karhunen-Loeve expansion was investigated to predict long-term settlement of soft soils adopting elastic visco-plastic creep model. For this purpose, a parametric study was carried to evaluate the effect of K-L expansion terms and spatial correlation length on the reliability of results. The results indicate that small values of spatial correlation length require more K-L expansion terms. Moreover, by increasing spatial correlation length, the coefficient of variation (COV) of creep settlement increases, confirming more conservative and safer prediction.

Keywords: Karhunen-Loeve expansion, long-term settlement, reliability analysis, spatial correlation length

Procedia PDF Downloads 155
22060 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 363
22059 Application to Molecular Electronics of Thin Layers of Organic Materials

Authors: M. I. Benamrani, H. Benamrani

Abstract:

In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.

Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution

Procedia PDF Downloads 81
22058 Free Radical Dosimetry for Ultrasound in Terephthalic Acid Solutions Containing Gold Nanoparticles

Authors: Ahmad Shanei, Mohammad Mahdi Shanei

Abstract:

When a liquid is irradiated with high intensities (> 1 W) and low frequencies (≤ 1 MHz) ultrasound, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. The existence of particles in liquid provide nucleation sites for cavitation bubbles and lead to decrease the ultrasonic intensity threshold needed for cavitation onset. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing 30 nm gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a range of condition in medical ultrasound fields.

Keywords: acoustic cavitation, gold nanoparticle, chemical dosimetry, terephthalic acid

Procedia PDF Downloads 469
22057 Game “EZZRA” as an Innovative Solution

Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan

Abstract:

There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.

Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation

Procedia PDF Downloads 72
22056 Luminescent Dye-Doped Polymer Nanofibers Produced by Electrospinning Technique

Authors: Monica Enculescu, A. Evanghelidis, I. Enculescu

Abstract:

Among the numerous methods for obtaining polymer nanofibers, the electrospinning technique distinguishes itself due to the more growing interest induced by its proved utility leading to developing and improving of the method and the appearance of novel materials. In particular, production of polymeric nanofibers in which different dopants are introduced was intensively studied in the last years because of the increased interest for the obtaining of functional electrospun nanofibers. Electrospinning is a facile method of obtaining polymer nanofibers with diameters from tens of nanometers to micrometrical sizes that are cheap, flexible, scalable, functional and biocompatible. Besides the multiple applications in medicine, polymeric nanofibers obtained by electrospinning permit manipulation of light at nanometric dimensions when doped with organic dyes or different nanoparticles. It is a simple technique that uses an electrical field to draw fine polymer nanofibers from solutions and does not require complicated devices or high temperatures. Different morphologies of the electrospun nanofibers can be obtained for the same polymeric host when different parameters of the electrospinning process are used. Consequently, we can obtain tuneable optical properties of the electrospun nanofibers (e.g. changing the wavelength of the emission peak) by varying the parameters of the fabrication method. We focus on obtaining doped polymer nanofibers with enhanced optical properties using the electrospinning technique. The aim of the paper is to produce dye-doped polymer nanofibers’ mats incorporating uniformly dispersed dyes. Transmission and fluorescence of the fibers will be evaluated by spectroscopy methods. The morphological properties of the electrospun dye-doped polymer fibers will be evaluated using scanning electron microscopy (SEM). We will tailor the luminescent properties of the material by doping the polymer (polyvinylpyrrolidone or polymethylmetacrilate) with different dyes (coumarins, rhodamines and sulforhodamines). The tailoring will be made taking into consideration the possibility of changing the luminescent properties of electrospun polymeric nanofibers that are doped with different dyes by using different parameters for the electrospinning technique (electric voltage, distance between electrodes, flow rate of the solution, etc.). Furthermore, we can evaluated the influence of the concentration of the dyes on the emissive properties of dye-doped polymer nanofibers using different concentrations. The advantages offered by the electrospinning technique when producing polymeric fibers are given by the simplicity of the method, the tunability of the morphology allowed by the possibility of controlling all the process parameters (temperature, viscosity of polymeric solution, applied voltage, distance between electrodes, etc.), and by the absence of necessity of using harsh and supplementary chemicals such as the ones used in the traditional nanofabrication techniques. Acknowledgments: The authors acknowledge the financial support received through IFA CEA Project No. C5-08/2016.

Keywords: electrospinning, luminescence, polymer nanofibers, scanning electron microscopy

Procedia PDF Downloads 209
22055 Degradation of Chlorpyrifos Pesticide in Aqueous Solution and Chemical Oxygen Demand from Real Effluent with Hydrodynamic Cavitation Approach

Authors: Shrikant Randhavane, Anjali Khambete

Abstract:

Use of Pesticides is vital in attaining food security and protection from harmful pests and insects in living environment. Chlorpyrifos, an organophosphate pesticide is widely used worldwide for various purposes. Due to its wide use and applications, its residues are found in environmental matrices and persist in nature for long duration of time. This has an adverse effect on human, aquatic and living bodies. Use of different methodologies is need of an hour to treat such type of recalcitrant compound. The paper focuses on Hydrodynamic Cavitation (HC), a hybrid Advanced Oxidation Potential (AOP) method to degrade Chlorpyrifos in aqueous water. Obtained results show that optimum inlet pressure of 5 bars gave maximum degradation of 99.25% for lower concentration and 87.14% for higher concentration Chlorpyrifos solution in 1 hour treatment time. Also, with known initial concentrations, comparing treatment time with optimum pressure of 5 bars, degradation efficiency increases with Hydrodynamic Cavitation. The potential application of HC in removal of Chemical Oxygen Demand (COD) from real effluent with venturi as cavitating device reveals around 40% COD removal with 1 hour of treatment time.

Keywords: advanced oxidation potential, cavitation, chlorpyrifos, COD

Procedia PDF Downloads 214
22054 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System

Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh

Abstract:

Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.

Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato

Procedia PDF Downloads 440
22053 Numerical Solution of Portfolio Selecting Semi-Infinite Problem

Authors: Alina Fedossova, Jose Jorge Sierra Molina

Abstract:

SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank.

Keywords: outer approximation methods, portfolio problem, semi-infinite programming, numerial solution

Procedia PDF Downloads 306
22052 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 245
22051 Optimal Utilization of Space in a Warehouse: A Case Study

Authors: Arun Kumar R. K. Gothra, Hasan Alhakamy

Abstract:

With increasing expectations and demands for warehousing and distribution, Warehouse Solution Incorporated in Victoria has been looking at ways to improve on its business processes to maintain the competitive edge. To maintain the provision of high quality service standards at competitive and affordable prices, improvements in the logistics management are necessary. One such avenue is to make efficient use of space available in the warehouse. This paper is based on a study of the collaboration of Warehouse Solution Inc with Dandenong Distribution Centre (DDC) to solve congestion problem and enhance efficiency of the whole warehouse activities.

Keywords: space optimization, optimal utilization, warehouse, DDC

Procedia PDF Downloads 608
22050 Synthesis, Structure and Spectroscopic Properties of Oxo-centered Carboxylate-Bridged Triiron Complexes and a Deca Ferric Wheel

Authors: K. V. Ramanaiah, R. Jagan, N. N. Murthy

Abstract:

Trinuclear oxo-centered carboxylate-bridged iron complexes, [Fe3(µ3-O)(µ2-O2CR)L¬3]+/0 (where R = alkyl or aryl; L = H2O, ROH, Py, solvent) have attracted tremendous attention because of their interesting structural and magnetic properties, exhibit mixed-valent trapped and de-trapped states, and have bioinorganic relevance. The presence of a trinuclear iron binding center has been implicated in the formation of both bacterial and human iron storage protein, Ft. They are used as precursors for the synthesis of models for the active-site structures of non-heme proteins, hemerythrin (Hr), methane monooxygenase (MMO) and polyiron storage protein, ferritin (Ft). Used as important building blocks for the design and synthesis of supramolecules this can exhibit single molecular magnetism (SMM). Such studies have often employed simple and compact carboxylate ligands and the use of bulky carboxylates is scarce. In the present study, we employed two different type of sterically hindered carboxylates and synthesized a series of novel oxo-centered, carboxylate-bridged triiron complexes of general formula [Fe3(O)(O2CCPh3)6L3]X (L = H2O, 1; py, 2; 4-NMe2py, 3; X = ClO4; L = CH3CN, 4; X = FeCl4) and [Fe3(O)(O2C-anth)6L3]X (L = H2O, 5; X = ClO4; L = CH3OH, 6; X = Cl). Along with complex [Fe(OMe)2(O2CCPh3)]10, 7 was prepared by the self-assemble of anhydrous FeCl3, sodium triphenylacetate and sodium methoxide at ratio of 1:1:2 in CH3OH. The Electronic absorption spectra of these complexes 1-6, in CH2Cl2 display weak bands at near FTIR region (970-1135 nm, ε > 15M-1cm-1). For complex 7, one broad band centered at ~670nm and also an additional intense charge transfer (L→M or O→M) bands between 300 to 550nm observed for all the complexes. Paramagnetic 1H NMR is introduced as a good probe for the characterization of trinuclear oxo - cantered iron compounds in solution when the L ligand coordinated to iron varies as: H2O, py, 4-NMe2py, and CH3OH. The solution state magnetic moment values calculated by using Evans method for all the complexes and also solid state magnetic moment value of complex, 7 was calculated by VSM method, which is comparable with solution state value. These all magnetic moment values indicate there is a spin exchange process through oxo and carboxylate bridges in between two irons (d5). The ESI-mass data complement the data obtained from single crystal X-ray structure. Further purity of the compounds was confirmed by elemental analysis. Finally, structural determination of complexes 1, 3, 4, 5, 6 and 7 were unambiguously conformed by single crystal x-ray studies.

Keywords: decanuclear, paramagnetic NMR, trinuclear, uv-visible

Procedia PDF Downloads 346
22049 Reference Model for the Implementation of an E-Commerce Solution in Peruvian SMEs in the Retail Sector

Authors: Julio Kauss, Miguel Cadillo, David Mauricio

Abstract:

E-commerce is a business model that allows companies to optimize the processes of buying, selling, transferring goods and exchanging services through computer networks or the Internet. In Peru, the electronic commerce is used infrequently. This situation is due, in part to the fact that there is no model that allows companies to implement an e-commerce solution, which means that most SMEs do not have adequate knowledge to adapt to electronic commerce. In this work, a reference model is proposed for the implementation of an e-commerce solution in Peruvian SMEs in the retail sector. It consists of five phases: Business Analysis, Business Modeling, Implementation, Post Implementation and Results. The present model was validated in a SME of the Peruvian retail sector through the implementation of an electronic commerce platform, through which the company increased its sales through the delivery channel by 10% in the first month of deployment. This result showed that the model is easy to implement, is economical and agile. In addition, it allowed the company to increase its business offer, adapt to e-commerce and improve customer loyalty.

Keywords: e-commerce, retail, SMEs, reference model

Procedia PDF Downloads 318
22048 Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets

Authors: Osamu Igawa, Hiroshi Kouchiwa, Yuji Ito

Abstract:

In recent years, a reconstruction project for sewer pipelines has been progressing in Japan with the aim of renewing old sewer culverts. However, it is difficult to secure a sufficient base area for shafts in an urban area because many streets are narrow with a complex layout. As a result, construction in such urban areas is generally very demanding. In urban areas, there is a strong requirement for a safe, reliable and economical construction method that does not disturb the public’s daily life and urban activities. With this in mind, we developed a new construction method called the 'shield switching type micro-tunneling method' which integrates the micro-tunneling method and shield method. In this method, pipeline is constructed first for sections that are gently curved or straight using the economical micro-tunneling method, and then the method is switched to the shield method for sections with a sharp curve or a series of curves without establishing an intermediate shaft. This paper provides the information, features and construction examples of this newly developed method.

Keywords: micro-tunneling method, secondary lining applied RC segment, sharp curve, shield method, switching type

Procedia PDF Downloads 398
22047 Development of Terrorist Threat Prediction Model in Indonesia by Using Bayesian Network

Authors: Hilya Mudrika Arini, Nur Aini Masruroh, Budi Hartono

Abstract:

There are more than 20 terrorist threats from 2002 to 2012 in Indonesia. Despite of this fact, preventive solution through studies in the field of national security in Indonesia has not been conducted comprehensively. This study aims to provide a preventive solution by developing prediction model of the terrorist threat in Indonesia by using Bayesian network. There are eight stages to build the model, started from literature review, build and verify Bayesian belief network to what-if scenario. In order to build the model, four experts from different perspectives are utilized. This study finds several significant findings. First, news and the readiness of terrorist group are the most influent factor. Second, according to several scenarios of the news portion, it can be concluded that the higher positive news proportion, the higher probability of terrorist threat will occur. Therefore, the preventive solution to reduce the terrorist threat in Indonesia based on the model is by keeping the positive news portion to a maximum of 38%.

Keywords: Bayesian network, decision analysis, national security system, text mining

Procedia PDF Downloads 388
22046 Tunable Graphene Metasurface Modeling Using the Method of Moment Combined with Generalised Equivalent Circuit

Authors: Imen Soltani, Takoua Soltani, Taoufik Aguili

Abstract:

Metamaterials crossover classic physical boundaries and gives rise to new phenomena and applications in the domain of beam steering and shaping. Where electromagnetic near and far field manipulations were achieved in an accurate manner. In this sense, 3D imaging is one of the beneficiaries and in particular Denis Gabor’s invention: holography. But, the major difficulty here is the lack of a suitable recording medium. So some enhancements were essential, where the 2D version of bulk metamaterials have been introduced the so-called metasurface. This new class of interfaces simplifies the problem of recording medium with the capability of tuning the phase, amplitude, and polarization at a given frequency. In order to achieve an intelligible wavefront control, the electromagnetic properties of the metasurface should be optimized by means of solving Maxwell’s equations. In this context, integral methods are emerging as an important method to study electromagnetic from microwave to optical frequencies. The method of moment presents an accurate solution to reduce the problem of dimensions by writing its boundary conditions in the form of integral equations. But solving this kind of equations tends to be more complicated and time-consuming as the structural complexity increases. Here, the use of equivalent circuit’s method exhibits the most scalable experience to develop an integral method formulation. In fact, for allaying the resolution of Maxwell’s equations, the method of Generalised Equivalent Circuit was proposed to convey the resolution from the domain of integral equations to the domain of equivalent circuits. In point of fact, this technique consists in creating an electric image of the studied structure using discontinuity plan paradigm and taken into account its environment. So that, the electromagnetic state of the discontinuity plan is described by generalised test functions which are modelled by virtual sources not storing energy. The environmental effects are included by the use of an impedance or admittance operator. Here, we propose a tunable metasurface composed of graphene-based elements which combine the advantages of reflectarrays concept and graphene as a pillar constituent element at Terahertz frequencies. The metasurface’s building block consists of a thin gold film, a dielectric spacer SiO₂ and graphene patch antenna. Our electromagnetic analysis is based on the method of moment combined with generalised equivalent circuit (MoM-GEC). We begin by restricting our attention to study the effects of varying graphene’s chemical potential on the unit cell input impedance. So, it was found that the variation of complex conductivity of graphene allows controlling the phase and amplitude of the reflection coefficient at each element of the array. From the results obtained here, we were able to determine that the phase modulation is realized by adjusting graphene’s complex conductivity. This modulation is a viable solution compared to tunning the phase by varying the antenna length because it offers a full 2π reflection phase control.

Keywords: graphene, method of moment combined with generalised equivalent circuit, reconfigurable metasurface, reflectarray, terahertz domain

Procedia PDF Downloads 174
22045 Developing Integrated Model for Building Design and Evacuation Planning

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

In the process of building design, the designers have to complete the spatial design and consider the evacuation performance at the same time. It is usually difficult to combine the two planning processes and it results in the gap between spatial design and evacuation performance. Then the designers cannot complete an integrated optimal design solution. In addition, the evacuation routing models proposed by previous researchers is different from the practical evacuation decisions in the real field. On the other hand, more and more building design projects are executed by Building Information Modeling (BIM) in which the design content is formed by the object-oriented framework. Thus, the integration of BIM and evacuation simulation can make a significant contribution for designers. Therefore, this research plan will establish a model that integrates spatial design and evacuation planning. The proposed model will provide the support for the spatial design modifications and optimize the evacuation planning. The designers can complete the integrated design solution in BIM. Besides, this research plan improves the evacuation routing method to make the simulation results more practical. The proposed model will be applied in a building design project for evaluation and validation when it will provide the near-optimal design suggestion. By applying the proposed model, the integration and efficiency of the design process are improved and the evacuation plan is more useful. The quality of building spatial design will be better.

Keywords: building information modeling, evacuation, design, floor plan

Procedia PDF Downloads 452
22044 From Edible Products to Disinfecting Currency Notes

Authors: Aniruddha Hore, Saptarshi Mitra, Sandip Ghosh, Sujoy Bose, Avijit Ghosh

Abstract:

The Indian rupee is the official currency of India. With time, science and technology got advanced, and our society is slowly making its way to a cashless mode of transaction. But as India is still a developing country, a large part of our society still depends on transaction through cash. During times of pandemics, we came to understand that everything that we touch is not safe from microbial contamination. The Indian currency is also not an exception. The Indian currency is the modern-day medium of harmful bacterial as well as other microbial contaminations resulting in diseases in human bodies. Therefore, the need came to make the currency disinfectant to give our people a healthier lifestyle. The main focus of the study is to develop a solution that, when applied to the currency notes, will kill the persisting bacteria or microbes present in the notes. So various natural edible products were used in order to prepare the solution, which is highly effective against the presence of harmful bacteria such as E. coli and S. aureus. The antibacterial activity of these natural ingredients is not unknown to us, so extracts from those products were mixed together to form a solution which was made the Indian currency notes antibacterial for 20min approx. The solution was creating a layer on the surface of currency notes, therefore, making it antibacterial for a given duration of time, i.e., no bacterial growth was seen during the time period of 20 minutes, therefore, making it safe for the usage of human hands.

Keywords: Indian currency, antibacterial property of Indian currency, surface coating, currency disinfectant

Procedia PDF Downloads 123
22043 Six-Phase Tooth-Coil Winding Starter-Generator Embedded in Aerospace Engine

Authors: Flur R. Ismagilov, Vyacheslav E. Vavilov, Denis V. Gusakov

Abstract:

This paper is devoted to solve the problem of increasing the electrification of aircraft engines by installing a synchronous generator at high pressure shaft. Technical solution of this problem by various research centers is discussed. A design solution of the problem was proposed. To evaluate the effectiveness of the proposed cooling system, thermal analysis was carried out in ANSYS software.

Keywords: starter-generator, more electrical engine, aircraft engines, high pressure shaft, synchronous generator

Procedia PDF Downloads 252
22042 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 579