Search results for: anaerobic bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1762

Search results for: anaerobic bacteria

1012 Wind Direction and Its Linkage with Vibrio cholerae Dissemination

Authors: Shlomit Paz, Meir Broza

Abstract:

Cholera is an acute intestinal infection caused by ingestion of food or water contaminated with the bacterium Vibrio cholerae. It has a short incubation period and produces an enterotoxin that causes copious, painless, watery diarrhoea that can quickly lead to severe dehydration and death if treatment is not promptly given. In an epidemic, the source of the contamination is usually the feces of an infected person. The disease can spread rapidly in areas with poor treatment of sewage and drinking water. Cholera remains a global threat and is one of the key indicators of social development. An estimated 3-5 million cases and over 100,000 deaths occur each year around the world. The relevance of climatic events as causative factors for cholera epidemics is well known. However, the examination of the involvement of winds in intra-continental disease distribution is new. The study explore the hypothesis that the spreading of cholera epidemics may be related to the dominant wind direction over land by presenting the influence of the wind direction on windborn dissemination by flying insects, which may serve as vectors. Chironomids ("non-biting midges“) exist in the majority of freshwater aquatic habitats, especially in estuarine and organic-rich water bodies typical to Vibrio cholerae. Chironomid adults emerge into the air for mating and dispersion. They are highly mobile, huge in number and found frequently in the air at various elevations. The huge number of chironomid egg masses attached to hard substrate on the water surface, serve as a reservoir for the free-living Vibrio bacteria. Both male and female, while emerging from the water, may carry the cholera bacteria. In experimental simulation, it was demonstrated that the cholera-bearing adult midges are carried by the wind, and transmit the bacteria from one body of water to another. In our previous study, the geographic diffusions of three cholera outbreaks were examined through their linkage with the wind direction: a) the progress of Vibrio cholerae O1 biotype El Tor in Africa during 1970–1971 and b) again in 2005–2006; and c) the rapid spread of Vibrio cholerae O139 over India during 1992–1993. Using data and map of cholera dissemination (WHO database) and mean monthly SLP and geopotential data (NOAA NCEP-NCAR database), analysis of air pressure data at sea level and at several altitudes over Africa, India and Bangladesh show a correspondence between the dominant wind direction and the intra-continental spread of cholera. The results support the hypothesis that aeroplankton (the tiny life forms that float in the air and that may be caught and carried upward by the wind, landing far from their origin) carry the cholera bacteria from one body of water to an adjacent one. In addition to these findings, the current follow-up study will present new results regarding the possible involvement of winds in the spreading of cholera in recent outbreaks (2010-2013). The findings may improve the understanding of how climatic factors are involved in the rapid distribution of new strains throughout a vast continental area. Awareness of the aerial transfer of Vibrio cholerae may assist health authorities by improving the prediction of the disease’s geographic dissemination.

Keywords: cholera, Vibrio cholerae, wind direction, Vibrio cholerae dissemination

Procedia PDF Downloads 367
1011 Effect of Phosphorus Solubilizing Bacteria on Yield and Seed Quality of Camelina (Camelina sativa L.) under Drought Stress

Authors: Muhammad Naeem Chaudhry, Fahim Nawaz, Rana Nauman Shabbir

Abstract:

New strategies aimed at increasing the resilience of crop plants to the negative effects of climate change represent important research priorities of plant scientists. The use of soil microorganisms to alleviate abiotic stresses like drought has gained particular importance in recent past. A field experiment was planned to investigate the effect of phosphorous solubilizing bacteria on yield and seed quality of Camelina (Camelina sativa L.) under water deficit conditions. The study was conducted at Agronomic Research Farm, University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur, during 4th week of November, 2013. The available seeds of Camelina sativa were inoculated with two bacterial strains (pseudomonas and Bacillus spp.) and grown under various water stress levels i.e. D0, (four irrigations), D3 (three irrigation), D2 (two irrigations), and D1 (one irrigation). The results revealed that drought stress significantly reduced the plant growth and yield, consequently reducing protein contents and oil concentration in camelina. The exposure to drought stress decreased plant height (16%), plant population (27%), number of fertile branches (41-59%), number of pods per plant (35%) and seed per pod (33%). Drought stress also exerted a negative impact on yield characteristics by reducing the 1000-seed weight (65%), final seed yield (52%), biological yield (22%) and harvest index (39%) of camelina. However, the inoculation of seeds with Pseudomonas and Bacillus spp. promoted the plant growth characterized by increased plant height and enhanced plant population. It was noted that inoculation of seeds with Pseudomonas resulted in the maximum plant population (113.4 cm), primary branches (19 plant-1), and number of pods (664 plant-1), whereas Bacillus inoculation resulted in maximum plant height (113.4 cm), seeds per pod (15.9), 1000-seed weight (1.85 g), and seed yield (3378.8 kg ha-1). Moreover, the inoculation with Bacillus also significantly improved the quality attributes of camelina and gave 3.5% and 2.1% higher oil contents than Pseudomonas and control (no-inoculation), respectively. Similarly, the same strain also resulted in maximum protein contents (33.3%). Our results confirmed the hypothesis that inoculation of seeds with phosphorous solubilizing bacterial strains is an effective, viable and environment-friendly approach to improve yield and quality of camelina under water deficit conditions. However, further studies are suggested to investigate the physiological and molecular processes, stimulated by bacterial strains, for increasing drought tolerance in food crops.

Keywords: Camelina, drought stress, phosphate solubilizing bacteria, seed quality

Procedia PDF Downloads 259
1010 The microbial evaluation of cow raw milk used in private dairy factories in of Zawia city, Libya

Authors: Obied A. Alwan, Elgerbi, M. Ali

Abstract:

This study was conducted on the cow milk which is used in the local milk factories of Zawia. This was completely random sampling the unscheduled samples. The microbiologic result have approved that the count of bacteria and the count of E.Coli are very high and all the manufacturing places which were included in the study have lacked the health conditions.

Keywords: raw milk, dairy factories, Libya, microbiologic

Procedia PDF Downloads 439
1009 Endemic Asteraceae from Mauritius Islands as Potential Phytomedicines

Authors: S.Kauroo, J. Govinden Soulange, D. Marie

Abstract:

Psiadia species from the Asteraceae are traditionally used in the folk medicine of Mauritius to treat cutaneous and bronchial infections. The present study aimed at validating the phytomedicinal properties of the selected species from the Asteraceae family, namely Psiadia arguta, Psiadia viscosa, Psiadia lithospermifolia, and Distephanus populifolius. Dried hexane, ethyl acetate, and methanol leaf extracts were studied for their antioxidant properties using the DPPH (1, 1-diphenyl-2-picryl-hydrazyl), FRAP (Ferric Reducing Ability of Plasma), and Deoxyribose assays. Antibacterial activity against human pathogenic bacteria namely Escherichia coli (ATCC 27853), Staphylococcus aureus (ATCC 29213), Enterococcus faecalis (ATCC 29212), Klebsiella pneumonia (ATCC27853), Pseudomonas aeruginosa (ATCC 27853), and Bacillus cereus (ATCC 11778) was measured using the broth microdilution assay. Qualitative phytochemical screening using standard methods revealed the presence of coumarins, tannins, leucoanthocyanins, and steroids in all the tested extracts. The measured phenolics level of the selected plant extracts varied from 24.0 to 231.6 mg GAE/g with the maximum level in methanol extracts in all four species. The highest flavonoids and proanthocyanidins content was noted in Psiadia arguta methanolic extracts with 65.7±1.8 mg QE/g and 5.1±0.0 mg CAT/g dry weight (DW) extract, respectively. The maximum free radical scavenging activity was measured in Psiadia arguta methanol and ethyl acetate extracts with IC50 11.3±0.2 and 11.6± 0.2 µg/mL, respectively and followed by Distephanus populifolius methanol extracts with an IC50 of 11.3± 0.8 µg/mL. The maximum ferric reducing antioxidant potential was noted in Psiadia lithospermifolia methanol extracts with a FRAP value of 18.8 ± 0.4 µmol Fe2+/L/g DW. The antioxidant capacity based on DPPH and Deoxyribose values were negatively related to total phenolics, flavonoid and proanthocyanidins content while the ferric reducing antioxidant potential were strongly correlated to total phenolics, flavonoid and proanthocyanidins content. All four species exhibited antimicrobial activity against the tested bacteria (both Gram-negative and Gram-positive). Interestingly, the hexane and ethyl acetate extracts of Psiadia viscosa and Psiadia lithospermifolia were more active than the control antibiotic Chloramphenicol. The Minimum inhibitory concentration (MIC) values for hexane and ethyl acetate extracts of Psiadia viscosa and Psiadia lithospermifolia against the tested bacteria ranged from (62.5 to 500 µg/ml). These findings validate the use of these tested Asteraceae in the traditional medicine of Mauritius and also highlight their pharmaceutical potential as prospective phytomedicines.

Keywords: antibacterial, antioxidant, DPPH, flavonoids, FRAP, Psiadia spp

Procedia PDF Downloads 531
1008 Comparative Analysis of Biodegradation on Polythene and Plastics Buried in Fadama Soil Amended With Organic and Inorganic Fertilizer

Authors: Baba John, Abdullahi Mohammed

Abstract:

The aim of this research is to compare the analysis of biodegradation on polythene and plastics buried in fadama soil amended with Organic and Inorganic fertilizer. Physico- chemical properties of the samples were determined. Bacteria and Fungi implicated in the biodegradation were identified and enumerated. Physico- chemical properties before the analysis indicated pH range of the samples from 4.28 – 5.80 , While the percentage Organic carbon and Organic matter was highest in cow dung samples with 3.89% and 6.69% respectively. The total Nitrogen percentage was recorded to be highest in Chicken dropping (0.68), while the availability of Phosphorus (P), Sodium (Na), Pottasium (K), and Magnessium (mg) was recorded to be highest in F – soil (Control), with values to be 37ppm, 1.63 Cmolkg-1, 0.35 Cmolkg-1 and 1.18 Cmolkg-1 respectively, except for calcium which was recorded to be highest in Cow dung (5.80 Cmolkg-1). However, physico – chemical properties of the samples after analysis indicated pH range of 4.6 – 5.80, Percentage Organic carbon and Organic matter was highest in Fadama soil mixed with fertilizer, having 0.7% and 1.2% respectively. Total Percentage Nitrogen content was found to be highest (0.56) in Fadama soil mixed with poultry dropping. Availability of Sodium (Na), Pottasium (K), and Calcium (Ca) was recorded to be highest in Fadama Soil mixed with Cow dung with values to be 0.64 Cmolkg-1, 2.07 Cmolkg-1 and 3.36 Cmolkg-1 respectively. The percentage weight loss of polythene and plastic bags after nine months in fadama soil mixed with poultry dropping was 11.9% for polythene and 6.0% for plastics. Weight loss in fadama soil mixed with cow dung was 18.1% for polythene and 4.7% for plastics. Weight loss of polythene and plastic in fadama soil mixed with fertilizer (NPK) was 7.4% for polythene and 3.3% for plastics. While, the percentage weight loss of polythene and plastics after nine months of burial in fadama soil (control) was 3.5% and 0.0% respectively. The bacteria species isolated from Fadama soil, organic and inorganic fertilizers before amendments include: S. aureus, Micrococcus sp, Streptococcus. pyogenes, Psuedomonas aeruginosa Bacillus subtilis and Bacillus cereus. The fungi species include: Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium sp, Mucor sp Penicillium sp and Candida sp. The bacteria species isolated and characterized after nine months of seeding include: S. aureus, Micrococcus sp, S. pyogenes, P. aeruginosa and B. subtilis. The fungi species are: A. niger A. flavus, A. fumigatus, Mucor sp, Penicillium sp and Fusarium sp. The result of this study indicated that plastic materials can be degraded in the fadama soil irrespective of whether the soil is amended or not. The Period of composting also has a significant impact on the rate at which polythene and plastics are degraded.

Keywords: Fadama, fertilizer, plastic and polythene, biodegradation

Procedia PDF Downloads 543
1007 Effect of Addition Cinnamon Extract (Cinnamomum burmannii) to Water Content, pH Value, Total Lactid Acid Bacteria Colonies, Antioxidant Activity and Cholesterol Levels of Goat Milk Yoghurt Isolates Dadih (Pediococcus pentosaceus)

Authors: Endang Purwati, Ely Vebriyanti, R. Puji Hartini, Hendri Purwanto

Abstract:

This study aimed to determine the effect of addition cinnamon extract (Cinnamomum burmannii) in making goat milk yogurt product isolates dadih (Pediococcus pentosaceus) to antioxidant activity and cholesterol levels. The method of research was the experimental method by using a Randomized Block Design (RBD), which consists of 5 treatments with 4 groups as replication. Treatment in this study was used of cinnamon extract as A (0%), B (1%), C (2%), D (3%), E (4%) in a goat’s milk yoghurt. This study was used 4200 ml of Peranakan Etawa goat’s milk and 80 ml of cinnamon extract. The variable analyzed were water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. The average water content ranged from 81.2-85.56%. Mean pH values rang between 4.74–4.30. Mean total lactic acid bacteria colonies ranged from 3.87 x 10⁸ - 7.95 x 10⁸ CFU/ml. The average of the antioxidant activity ranged between 10.98%-27.88%. Average of cholesterol levels ranged from 14.0 mg/ml–17.5 mg/ml. The results showed that the addition of cinnamon extract in making goat milk yoghurt product isolates dadih (Pediococcus pentosaceus) significantly different (P < 0.05) to water content, pH value, total lactic acid bacterial colonies, antioxidant activity and cholesterol levels. In conclusion, the study shows that using of cinnamon extract 4% is the best in making goat milk yoghurt.

Keywords: antioxidant, cholesterol, cinnamon, Pediococcus pentosaceus, yoghurt

Procedia PDF Downloads 255
1006 Molecular Characterization of Listeria monocytogenes from Fresh Fish and Fish Products

Authors: Beata Lachtara, Renata Szewczyk, Katarzyna Bielinska, Kinga Wieczorek, Jacek Osek

Abstract:

Listeria monocytogenes is an important human and animal pathogen that causes foodborne outbreaks. The bacteria may be present in different types of food: cheese, raw vegetables, sliced meat products and vacuum-packed sausages, poultry, meat, fish. The most common method, which has been used for the investigation of genetic diversity of L. monocytogenes, is PFGE. This technique is reliable and reproducible and established as gold standard for typing of L. monocytogenes. The aim of the study was characterization by molecular serotyping and PFGE analysis of L. monocytogenes strains isolated from fresh fish and fish products in Poland. A total of 301 samples, including fresh fish (n = 129) and fish products (n = 172) were, collected between January 2014 and March 2016. The bacteria were detected using the ISO 11290-1 standard method. Molecular serotyping was performed with PCR. The isolates were tested with the PFGE method according to the protocol developed by the European Union Reference Laboratory for L. monocytogenes with some modifications. Based on the PFGE profiles, two dendrograms were generated for strains digested separately with two restriction enzymes: AscI and ApaI. Analysis of the fingerprint profiles was performed using Bionumerics software version 6.6 (Applied Maths, Belgium). The 95% of similarity was applied to differentiate the PFGE pulsotypes. The study revealed that 57 of 301 (18.9%) samples were positive for L. monocytogenes. The bacteria were identified in 29 (50.9%) ready-to-eat fish products and in 28 (49.1%) fresh fish. It was found that 40 (70.2%) strains were of serotype 1/2a, 14 (24.6%) 1/2b, two (4.3%) 4b and one (1.8%) 1/2c. Serotypes 1/2a, 1/2b, and 4b were presented with the same frequency in both categories of food, whereas serotype 1/2c was detected only in fresh fish. The PFGE analysis with AscI demonstrated 43 different pulsotypes; among them 33 (76.7%) were represented by only one strain. The remaining 10 profiles contained more than one isolate. Among them 8 pulsotypes comprised of two L. monocytogenes isolates, one profile of three isolates and one restriction type of 5 strains. In case of ApaI typing, the PFGE analysis showed 27 different pulsotypes including 17 (63.0%) types represented by only one strain. Ten (37.0%) clusters contained more than one strain among which four profiles covered two strains; three had three isolates, one with five strains, one with eight strains and one with ten isolates. It was observed that the isolates assigned to the same PFGE type were usually of the same serotype (1/2a or 1/2b). The majority of the clusters had strains of both sources (fresh fish and fish products) isolated at different time. Most of the strains grouped in one cluster of the AscI restriction was assigned to the same groups in ApaI investigation. In conclusion, PFGE used in the study showed a high genetic diversity among L. monocytogenes. The strains were grouped into varied clonal clusters, which may suggest different sources of contamination. The results demonstrated that 1/2a serotype was the most common among isolates from fresh fish and fish products in Poland.

Keywords: Listeria monocytogenes, molecular characteristic, PFGE, serotyping

Procedia PDF Downloads 289
1005 Application of Bacteriophages as Natural Antibiotics in Aquaculture

Authors: Chamilani Nikapitiya, Mahanama De Zoysa, Jehee Lee

Abstract:

Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture.

Keywords: Aeromonas infections, antibiotic resistance, bacteriophage, bio-control, lytic phage

Procedia PDF Downloads 193
1004 Antimicrobial Activity of Eucalyptus globulus Essential Oil: Disc Diffusion versus Vapour Diffusion Methods

Authors: Boukhatem Mohamed Nadjib, Ferhat Mohamed Amine

Abstract:

Essential Oils (EO) produced by medicinal plants have been traditionally used for respiratory tract infections and are used nowadays as ethical medicines for colds. The aim of this study was to test the efficacy of the Algerian EGEO against some respiratory tract pathogens by disc diffusion and vapour diffusion methods at different concentrations. The chemical composition of the EGEO was analysed by Gas Chromatography-Mass Spectrometry. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%) and β-myrcene (1.5%) being the main components. By disc diffusion method, EGEO showed potent antimicrobial activity against Gram-positive more than Gram-negative bacteria. The Diameter of Inhibition Zone (DIZ) varied from 69 mm to 75 mm for Staphylococcus aureus and Bacillus subtilis (Gram +) and from 13 to 42 mm for Enterobacter sp and Escherichia coli (Gram-), respectively. However, the results obtained by both agar diffusion and vapour diffusion methods were different. Significantly higher antibacterial activity was observed in the vapour phase at lower concentrations. A. baumanii and Klebsiella pneumoniae were the most susceptible strains to the oil vapour with DIZ varied from 38 to 42 mm. Therefore, smaller doses of EO in the vapour phase can be inhibitory to pathogenic bacteria. Else, the DIZ increased with increase in the concentration of the oil. There is growing evidence that EGEO in the vapour phase are effective antibacterial systems and appears worthy to be considered for practical uses in the treatment or prevention of patients with respiratory tract infections or as air decontaminants in the hospital. The present study indicates that EGEO has considerable antimicrobial activity, deserving further investigation for clinical applications.

Keywords: eucalyptus globulus, essential oils, respiratory tract pathogens, antimicrobial activity, vapour phase

Procedia PDF Downloads 367
1003 Cytotoxic, Antimicrobial and Antiviral Activities of Acovenoside A: A Cardenolide Isolated from an Egyptian Cultivar of Acokanthera spectabilis Leaves

Authors: Howaida I. Abd-Alla, Amal Z. Hassan, Maha Soltan, Atef G. Hanna, Mounir M. El-Safty

Abstract:

Acokanthera oblongifolia (Apocynaceae) is used for treatment of several infection diseases and is a well-known cardiac glycoside-containing plant. The infusion of their leaves is gargled to treat tonsillitis and is used medicinally to treat snakebites. The total cardiac glycosides content in the leaves was determined by referring to gitoxigenin as a reference compound. Two triterpenes, lup-20(29)-en-3β-ol (1) and oleanolic acid (2); two cardenolides, acovenoside A (3) and acobioside A (4) were isolated from the ethyl acetate extract. Their structures were determined on the basis of spectral analysis. Major constituents isolated from this species were evaluated for cytotoxicity against normal lung cell line (Wi38) and antimicrobial activities against Gram-positive (two strains) and Gram-negative bacteria (four strains), yeast-like fungi (two strains) and fungi (five strains). The minimum inhibitory concentration (MIC) of the compounds was determined using broth microdilution method. Their viral inhibitory effects against avian influenza virus type A (AI-H5N1) and Newcastle disease virus (NDV) in specific pathogen free (SPF) embryonated chicken eggs (ECE), chicken embryo fibroblasts (CEF) and Vero cells were evaluated. The cardenolide (3) showed viral inhibitory effects against AI-H5N1 and NDV in SPF ECE. The two cardenolides isolated have shown potent cytotoxicity against Vero cells. Compound (3) showed potent anti-Gram-negative bacteria activity. These results suggested that acovenoside A might be promising for future antiviral and antimicrobial drug design.

Keywords: Acokanthera, AI-H5N1, Cardenolides, NDV, SPF-ECE, VERO, Wi38 , Microbe

Procedia PDF Downloads 178
1002 Ointment of Rosella Flower Petals Extract (Hibiscus sabdariffa): Pharmaceutical Preparations Formulation Development of Herbs for Antibacterial S. aureus

Authors: Muslihatus Syarifah

Abstract:

Introduction: Rosella flower petals can be used as an antibacterial because it contains alkaloids, flavonoids, phenolics, and terpenoids) for the . Bacteria activity is S. aureus can cause skin infections and pengobatanya most appropriate use of topical preparations. Ointment is a topical preparation comprising the active substance and ointment base. Not all the base matches the active substances or any type of disease. In this study using flavonoid active substances contained in rosella flower petals (Hibiscus sabdariffa) to be made ointment by testing a variety of different bases in order to obtain a suitable basis for the formulation of ointment extract rosella flower petals. Methods: Experimental research with research methods Post test control group design using the ointment is hydrocarbon sample, absorption, leached water and dissolved water. Then tested for bacteria S. aureus with different concentrations of 1%, 2%, 4%, 8%, 16, 32%. Data were analyzed using One Way ANOVA followed by Post Hoc test. Results: Ointment with a hydrocarbon base, absorption, leached water and dissolved water having no change in physical properties during storage. Base affect the physical properties of an ointment that adhesion, dispersive power and pH. The physical properties of the ointment with different concentrations produce different physical properties including adhesion, dispersive power and pH. The higher the concentration the higher dispersive power, but the smaller the adhesion and pH. Conclusion: Differences bases, storage time, the concentration of the extract can affect the physical properties of the ointment. Concentration of extract in the ointment extract rosella flower petals is 32%.

Keywords: rosella, physical properties, ointments, antibacterial

Procedia PDF Downloads 371
1001 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat

Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline

Abstract:

The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.

Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere

Procedia PDF Downloads 307
1000 Thermo-Hydro-Mechanical Modeling of Landfill Behavior

Authors: Mahtab Delfan Azari, Ali Noorzad, Ahmadreza Mahboubi Ardakani

Abstract:

Municipal solid waste landfills have relatively high temperature which is caused by anaerobic and aerobic degradation. The temperature that is produced is almost 40-70°C. Since this temperature will remain for many years, considering it for studying landfill behavior and its soil is so important. By considering the temperature of landfill, the obtained results will become more logical and more realistic. Vertical displacement and differential settlement are two important values which are studied here. Differential displacements could expand cracks in liner and cover. If cracks appear in the liner, the leachate and gases will propagate to media and hence should be noticed carefully. The present research is focused on the thermo-hydro-mechanical modeling of landfill with finite element method. First, the heat transfer of the landfill is modeled and the temperature is estimated. Then, the results of thermo-hydro-mechanical results are presented to investigate landfill behavior more accurately.

Keywords: finite element method, heat transfer, landfill behavior, thermo-hydro-mechanical modeling

Procedia PDF Downloads 348
999 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 161
998 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 134
997 Analysis of Non-Coding Genome in Streptococcus pneumoniae for Molecular Epidemiology Typing

Authors: Martynova Alina, Lyubov Buzoleva

Abstract:

Streptococcus pneumoniae is the causative agent of pneumonias and meningitids throught all the world. Having high genetic diversity, this microorganism can cause different clinical forms of pneumococcal infections and microbiologically it is really difficult diagnosed by routine methods. Also, epidemiological surveillance requires more developed methods of molecular typing because the recent method of serotyping doesn't allow to distinguish invasive and non-invasive isolates properly. Non-coding genome of bacteria seems to be the interesting source for seeking of highly distinguishable markers to discriminate the subspecies of such a variable bacteria as Streptococcus pneumoniae. Technically, we proposed scheme of discrimination of S.pneumoniae strains with amplification of non-coding region (SP_1932) with the following restriction with 2 types of enzymes of Alu1 and Mn1. Aim: This research aimed to compare different methods of typing and their application for molecular epidemiology purposes. Methods: we analyzed population of 100 strains of S.pneumoniae isolated from different patients by different molecular epidemiology methods such as pulse-field gel electophoresis (PFGE), restriction polymorphism analysis (RFLP) and multilolocus sequence typing (MLST), and all of them were compared with classic typing method as serotyping. The discriminative power was estimated with Simpson Index (SI). Results: We revealed that the most discriminative typing method is RFLP (SI=0,97, there were distinguished 42 genotypes).PFGE was slightly less discriminative (SI=0,95, we identified 35 genotypes). MLST is still the best reference method (SI=1.0). Classic method of serotyping showed quite weak discriminative power (SI=0,93, 24 genotypes). In addition, sensivity of RFLP was 100%, specificity was 97,09%. Conclusion: the most appropriate method for routine epidemiology surveillance is RFLP with non-coding region of Streptococcsu pneumoniae, then PFGE, though in some cases these results should be obligatory confirmed by MLST.

Keywords: molecular epidemiology typing, non-coding genome, Streptococcus pneumoniae, MLST

Procedia PDF Downloads 399
996 Effect of Treated Grey Water on Bacterial Concrete

Authors: Deepa T., Inchara S. R., Venkatesh S. V., Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is usually made using locally available materials. However, concrete has low tensile strength and may crack in the early days with exothermic hydration, for which water is essential. To address the increased construction water demand, treated greywater may be used. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for biomineralization or Microbially Induced Calcite Precipitation (MICP) technique to heal cracks. Treated grey water which is obtained from STP of PES University, opted in place of Potable water, which had qualities within the standard range as per codal provisions. In this work, M30 grade conventional concrete is designed using OPC 53-grade cement, manufactured sand, natural coarse aggregates, and potable water. Conventional concrete (CC), bacterial concrete with potable water (BS), and treated grey water concrete (TGWBS) are the three different concrete specimens cast. Experimental studies such as the strength test and the surface hardness test are performed on conventional and bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for self-healing -as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD). Noticeable calcium salt deposition is observed on the surface of the BS and TGWBS cracked specimen. Surface hardness and the EDAX test gave promising results on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gained in compression and flexure. Results also indicate that treated grey water can be a substitute for potable water in concrete.

Keywords: Bacillus subtilis concrete, microstructure, temperature, treated greywater

Procedia PDF Downloads 99
995 Antibacterial Activity of Copper Nanoparticles on Vancomycin Resistant Staphylococcus Aureus in Vitro and Animal Models

Authors: Sina Gharevali

Abstract:

Staphylococcus aureus is one of the most important factors for nosocomial infections and infections acquired in a hospital setting role as is. Drug-resistant bacteria methicillin, which in 1961 was reported in many parts of the world, Made the role as the last drug, vancomycin, in the treatment of infections caused by the Staphylococcus aureus chain be taken into consideration. The aim of this study was to evaluate the antimicrobial effects of copper nanoparticles and compared it with antibiotics on Staphylococcus aureus resistant to vancomycin in vitro and animal model. In this study, this test was performed, and the most effective antibiotic for vancomycin-resistant Staphylococcus aureus was determined by disk diffusion method. After various concentrations of copper nanoparticles and antibiotics were prepared and vancomycin resistant Staphylococcus aureus bacteria with serial dilution method for determining antibiotic ciprofloxacin. Minimum Inhibitory Concentration and Minimum Bactericidal Concentrationcopper nanoparticles was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. The agar dilution method for bacterial growth in different concentrations of copper nanoparticles and antibiotics ciprofloxacin was performed. Then the broth dilution method for the antibiotic ciprofloxacin, nano-particles, and nano-particles of copper and copper-established antibiotic synergy MIC and MBC were obtained. MBC was obtained from the experimental animal model test method, and the results were compared. The results showed that copper nanoparticles compared with the antibiotic ciprofloxacin in vitro and animal model more effective in inhibiting the growth of Staphylococcus aureus resistant to vancomycin and ciprofloxacin and extent of the impact of the Synthetic effect of lower copper nanoparticles. Which can then be used to treat clinical research as a candidate.

Keywords: nanoparticles, copper, staphylococcus, aureus

Procedia PDF Downloads 96
994 Selection of a Potential Starter Culture for Milk Fermentation

Authors: Stephen Olusanmi Akintayo, Ilesanmi Fadahunsi

Abstract:

The ability of Lactic acid bacteria (LAB) to grow and survive in milk is being exploited in industrial and biotechnological applications. Although considerable studies have been reported on the fermentation of milk, however, not so much work has been documented on the selection of LAB strains from milk of the Nigerian local cattle breeds for their starter culture potentials. A total of 110 LAB were isolated from raw milk of Sokoto gudali cattle breed. The isolates were screened for their proteolytic activities on skimmed milk media with isolates A07, F06 and A01 showing the highest zone of clearance of 18.5mm, 18.5mm, and 18.0mm respectively and were selected for the studies of their growth in different constituents of milk. A01, F06, and A07 were identified as Pediococcus acidilactici, Lactococcus raffinolactis, and Leuconostoc mesenteriodes respectively using cultural, biochemical, physiological and molecular characterization techniques. Leuconostoc mesenteriodes showed the highest growth in all the milk components that were used in this study. The three LAB species selected showed a growth range of 6.46 log cfu/ml to 10.91 log cfu/ml in lactose with Leuconostoc mesenteriodes showing the highest growth of 10.91 log cfu/ml while Pediococcus acidilactici recorded the lowest growth of 9.78 log cfu/ml. In medium containing leucine as the only amino acid, the viable counts of Pediococcus acidilactici, Lactococcus raffinolactis and Leuconostoc mesenteriodes in log cfu/ml at zero hour were 6.39, 6.36 and 6.38 respectively which increased to 9.31 log cfu/ml, 9.21 log cfu/ml, 9.92 log cfu/ml respectively after 24 hours. Similarly, in all other substrates (casein, lysine, glutamic acid, aspartic acid, stearic acid and oleic acid ) tested in this study, Leuconostoc mesenteriodes showed the highest growth. It was observed that the highest quantity of lactic acid (15.31mg/ml) was produced by Leuconostoc mesenteriodes. The same trend was also observed in the production of diacetyl and hydrogen peroxide by the three tested microorganisms. Due to its ability to grow maximally in milk components, Leuconostoc mesenteriodes shows potential as starter culture for milk fermentation.

Keywords: Leuconostoc mesenteriodes, lactic acid bacteria, Sokoto gudali, starter culture

Procedia PDF Downloads 235
993 Analysis of Resistance and Virulence Genes of Gram-Positive Bacteria Detected in Calf Colostrums

Authors: C. Miranda, S. Cunha, R. Soares, M. Maia, G. Igrejas, F. Silva, P. Poeta

Abstract:

The worldwide inappropriate use of antibiotics has increased the emergence of antimicrobial-resistant microorganisms isolated from animals, humans, food, and the environment. To combat this complex and multifaceted problem is essential to know the prevalence in livestock animals and possible ways of transmission among animals and between these and humans. Enterococci species, in particular E. faecalis and E. faecium, are the most common nosocomial bacteria, causing infections in animals and humans. Thus, the aim of this study was to characterize resistance and virulence factors genes among two enterococci species isolated from calf colostrums in Portuguese dairy farms. The 55 enterococci isolates (44 E. faecalis and 11 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB, and ermC), tetracycline (tetL, tetM, tetK, and tetO), quinupristin/dalfopristin (vatD and vatE) and vancomycin (vanB). Of which, 25 isolates (15 E. faecalis and 10 E. faecium) were tested until now for 8 virulence factors genes (esp, ace, gelE, agg, cpd, cylA, cylB, and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. All enterococci isolates showed resistance to erythromicyn and tetracycline through the presence of the genes: ermB (n=29, 53%), ermC (n=10, 18%), tetL (n=49, 89%), tetM (n=39, 71%) and tetK (n=33, 60%). Only two (4%) E. faecalis isolates showed the presence of tetO gene. No resistance genes for vancomycin were found. The virulence genes detected in both species were cpd (n=17, 68%), agg (n=16, 64%), ace (n=15, 60%), esp (n=13, 52%), gelE (n=13, 52%) and cylLL (n=8, 32%). In general, each isolate showed at least three virulence genes. In three E. faecalis isolates was not found virulence genes and only E. faecalis isolates showed virulence genes for cylA (n=4, 16%) and cylB (n=6, 24%). In conclusion, these colostrum samples that were consumed by calves demonstrated the presence of antibiotic-resistant enterococci harbored virulence genes. This genotypic characterization is crucial to control the antibiotic-resistant bacteria through the implementation of restricts measures safeguarding public health. Acknowledgements: This work was funded by the R&D Project CAREBIO2 (Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theragnostic biomarkers), with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).

Keywords: antimicrobial resistance, calf, colostrums, enterococci

Procedia PDF Downloads 198
992 The Effect of Colloidal Metals Nanoparticles on Quarantine Bacterium - Clavibacter michiganensis Ssp. sepedonicus

Authors: Włodzimierz Przewodowski, Agnieszka Przewodowska

Abstract:

Colloidal metal nanoparticles have drawn increasing attention in the field of phytopathology because of their unique properties and possibilities of applications. Their antibacterial activity, no induction of the development of pathogen resistance and the ability to penetrate most of biological barriers make them potentially useful in the fighting against dangerous pathogens. These properties are very important in the case of protection of strategic crops in the world, like potato - fourth crop in the world - which is host to numerous pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. One of the most important and difficult to reduce pathogen of potato plant is quarantine bacterium Clavibacter michiganensis ssp. sepedonicus (Cms) responsible for ring rot disease. Control and detection of these pathogens is very complicated. Application of healthy, certified seed material as well as hygiene in potato production and storage are the most efficient ways of preventing of ring rot disease. Currently used disinfectants and pesticides, have many disadvantages, such as toxicity, low efficiency, selectivity, corrosiveness, and the inability to eliminate the pathogens in potato tissue. In this situation, it becomes important to search for new formulations based on components harmful to health, yet efficient, stable during prolonged period of time and a with wide range of biocide activity. Such capabilities are offered by the latest generation of biocidal nanoparticles such as colloidal metals. Therefore the aim of the presented research was to develop newly antibacterial preparation based on colloidal metal nanoparticles and checking their influence on the Cms bacteria. Our preliminary results confirmed high efficacy of the nano-colloids in controlling the this selected pathogen.

Keywords: clavibacter michiganensis ssp. sepedonicus, colloidal metal nanoparticles, phytopathology, bacteria

Procedia PDF Downloads 272
991 Seed Associated Microbial Communities of Holoparasitic Cistanche Species from Armenia and Portugal

Authors: K. Petrosyan, R. Piwowarczyk, K. Ruraż, S. Thijs, J. Vangronsveld, W. Kaca

Abstract:

Holoparasitic plants are flowering heterotrophic angiosperms which with the help of an absorbing organ - haustorium, attach to another plant, the so-called the host. Due to the different hosts, unusual lifestyle, lack of roots, chlorophylls and photosynthesis, these plants are interesting and unique study objects for global biodiversity. The seeds germination of the parasitic plants also is unique: they germinate only in response to germination stimulants, namely strigolactones produced by the root of an appropriate host. Resistance of the seeds on different environmental conditions allow them to stay viable in the soil for more than 20 years. Among the wide range of plant protection mechanisms the endophytic communities have a specific role. In this way, they have the potential to mitigate the impacts of adverse conditions such as soil salinization. The major objective of our study was to compare the bacterial endo-microbiomes from seeds of two holoparasitic plants from Orobanchaceae family, Cistanche – C. armena (Armenia) and C. phelypaea (Portugal) – from saline habitats different in soil water status. The research aimed to perform how environmental conditions influence on the diversity of the bacterial communities of C. armena and C. phelypaea seeds. This was achieved by comparison of the endophytic microbiomes of two species and isolation of culturable bacteria. A combination of culture-dependent and molecular techniques was employed for the identification of the seed endomicrobiome (culturable and unculturable). Using the V3-V4 hypervariable region of the 16S rRNA gene, four main taxa were identified: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, but the relative proportion of the taxa was different in each type of seed. Generally, sixteen phyla, 323 genera and 710 bacterial species were identified, mainly Gram negative, halotolerant bacteria with an environmental origin. However, also some unclassified and unexplored taxonomic groups were found in the seeds of both plants. 16S rRNA gene sequencing analysis from both species identified the gram positive, endospore forming, halotolerant and alkaliphile Bacillus spp. which suggests that the endophytic bacteria of examined seeds possess traits that are correlated with the natural habitat of their hosts. The cultivable seed endophytes from C. armena and C. phelypaea were rather similar, notwithstanding the big distances between their growth habitats - Armenia and Portugal. Although the seed endophytic microbiomes of C. armena and C. phelypaea contain a high number of common bacterial taxa, also remarkable differences exist. We demonstrated that the environmental conditions or abiotic stresses influence on diversity of the bacterial communities of holoparasiotic seeds. To the best of our knowledge the research is the first report of endophytes from seeds of holoparasitic Cistanche armena and C. phelypaea plants.

Keywords: microbiome, parasitic plant, salinity, seeds

Procedia PDF Downloads 72
990 Optimization Of Biogas Production Using Co-digestion Feedstocks Via Anaerobic Technologhy

Authors: E Tolufase

Abstract:

The demand, high costs and health implications of using energy derived from hydrocarbon compound have necessitated the continuous search for alternative source of energy. The World energy market is facing some challenges viz: depletion of fossil fuel reserves, population explosion, lack of energy security, economic and urbanization growth and also, in Nigeria some rural areas still depend largely on wood, charcoal, kerosene, petrol among others, as the sources of their energy. To overcome these short falls in energy supply and demand, as well as taking into consideration the risks from global climate change due to effect of greenhouse gas emissions and other pollutants from fossil fuels’ combustion, brought a lot of attention on efficiently harnessing the renewable energy sources. A very promising among the renewable energy resources for a clean energy technology for power production, vehicle and domestic usage is biogas. Therefore, optimization of biogas yield and quality is imperative. Hence, this study investigated yield and quality of biogas using low cost bio-digester and combination of various feed stocks referred to as co-digestion. Batch/Discontinuous Bio-digester type was used because it was cheap, easy, plausible and appropriate for different substrates used to get the desired results. Three substrates were used; cow dung, chicken droppings and lemon grass digested in five separate 21 litre digesters, A, B, C, D, and E and the gas collection system was designed using locally available materials. For single digestion we had; cow dung, chicken droppings, lemon grass, in Bio-digesters A, B, and C respectively, the co-digested three substrates in different mixed ratio 7:1:2 in digester D and E in ratio 5:3:2. The respective feed-stocks materials were collected locally, digested and analyzed in accordance with standard procedures. They were pre-fermented for a period of 10 days before being introduced into the digesters. They were digested for a retention period of 28 days, the physiochemical parameters namely; pressure, temperature, pH, volume of the gas collector system and volume of biogas produced were all closely monitored and recorded daily. The values of pH and temperature ranged 6.0 - 8.0, and 220C- 350C respectively. For the single substrate, bio-digester A(Cow dung only) produced biogas of total volume 0.1607m3(average volume of 0.0054m3 daily),while B (Chicken droppings ) produced 0.1722m3 (average of 0.0057m3 daily) and C (lemon grass) produced 0.1035m3 (average of 0.0035m3 daily). For the co-digested substrates in bio-digester D the total biogas produced was 0.2007m³ (average volume of 0.0067m³ daily) and bio-digester E produced 0.1991m³ (average volume of 0.0066m³ daily) It’s obvious from the results, that combining different substrates gave higher yields than when a singular feed stock was used and also mixing ratio played some roles in the yield improvement. Bio-digesters D and E contained the same substrates but mixed with different ratios, but higher yield was noticed in D with mixing ratio of 7:1:2 than in E with ratio 5:3:2.Therefore, co-digestion of substrates and mixing proportions are important factors for biogas production optimization.

Keywords: anaerobic, batch, biogas, biodigester, digestion, fermentation, optimization

Procedia PDF Downloads 27
989 Trends in the Incidence of Bloodstream Infections in Patients with Hematological Malignancies in the Period 1991–2012

Authors: V. N. Chebotkevich, E. E. Schetinkina, V. V. Burylev, E. I. Kaytandzhan, N. P. Stizhak

Abstract:

Objective: Blood stream infections (BSI) are severe, life-threatening illness for immuno compromised patients with hematological malignancies. We report the trend in blood-stream infections in this group of patients in the period 1991-2013. Methods: A total of 4742 blood samples investigated. All blood cultures were incubated in a continuous monitoring system for 7 days before discarding negative. On signaled positive, organism was identified by conventional methods. The Real-time polymerase chain reaction (PCR) was used for the indication of human herpes virus 6 (HHV-6), Cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Results: Between 1991 and 2001 the incidence of Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus) being the most common germs isolated (70,9%) were as Gram-negative rods (Escherichia coli, Klebsiella spp., Pseudomonas spp.) – 29,1%. In next decade 2002-2012 the number of Gram-negative bacteria was increased up to 40.2%. It is shown that the incidence of bacteremia was significantly more frequent at the background of detectable Cytomegalovirus and Epstein-Barr virus-specific DNA in blood. Over recent years, an increased frequency of micro mycetes was registered in blood of the patients with hematological malignancies (Candida spp. was predominant). Conclusion: Accurate and timely detection of BSI is important in determining appropriate treatment of infectious complications in patients with hematological malignancies. The isolation of Staphylococcus epidermidis from blood cultures remains a clinical dilemma for physicians and microbiologists. But in many cases this agent is of the clinical significance in immunocompromised patients with hematological malignancies. The role of CMV and EBV in development of bacteremia was demonstrated.

Keywords: infectious complications, blood stream infections, bacteremia, hemoblastosis

Procedia PDF Downloads 352
988 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria

Authors: Rinat Arbel-Goren, Joel Stavans

Abstract:

Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.

Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript

Procedia PDF Downloads 164
987 Bioremediation of Phenol in Wastewater Using Polymer-Supported Bacteria

Authors: Areej K. Al-Jwaid, Dmitiry Berllio, Andrew Cundy, Irina Savina, Jonathan L. Caplin

Abstract:

Phenol is a toxic compound that is widely distributed in the environment including the atmosphere, water and soil, due to the release of effluents from the petrochemical and pharmaceutical industries, coking plants and oil refineries. Moreover, a range of daily products, using phenol as a raw material, may find their way into the environment without prior treatment. The toxicity of phenol effects both human and environment health, and various physio-chemical methods to remediate phenol contamination have been used. While these techniques are effective, their complexity and high cost had led to search for alternative strategies to reduce and eliminate high concentrations of phenolic compounds in the environment. Biological treatments are preferable because they are environmentally friendly and cheaper than physico-chemical approaches. Some microorganisms such as Pseudomonas sp., Rhodococus sp., Acinetobacter sp. and Bacillus sp. have shown a high ability to degrade phenolic compounds to provide a sole source of energy. Immobilisation process utilising various materials have been used to protect and enhance the viability of cells, and to provide structural support for the bacterial cells. The aim of this study is to develop a new approach to the bioremediation of phenol based on an immobilisation strategy that can be used in wastewater. In this study, two bacterial species known to be phenol degrading bacteria (Pseudomonas mendocina and Rhodococus koreensis) were purchased from National Collection of Industrial, Food and Marine Bacteria (NCIMB). The two species and mixture of them were immobilised to produce macro porous crosslinked cell cryogels samples by using four types of cross-linker polymer solutions in a cryogelation process. The samples were used in a batch culture to degrade phenol at an initial concentration of 50mg/L at pH 7.5±0.3 and a temperature of 30°C. The four types of polymer solution - i. glutaraldehyde (GA), ii. Polyvinyl alcohol with glutaraldehyde (PVA+GA), iii. Polyvinyl alcohol–aldehyde (PVA-al) and iv. Polyetheleneimine–aldehyde (PEI-al), were used at different concentrations, ranging from 0.5 to 1.5% to crosslink the cells. The results of SEM and rheology analysis indicated that cell-cryogel samples crosslinked with the four cross-linker polymers formed monolithic macro porous cryogels. The samples were evaluated for their ability to degrade phenol. Macro porous cell–cryogels crosslinked with GA and PVA+GA showed an ability to degrade phenol for only one week, while the other samples crosslinked with a combination of PVA-al + PEI-al at two different concentrations have shown higher stability and viability to reuse to degrade phenol at concentration (50 mg/L) for five weeks. The initial results of using crosslinked cell cryogel samples to degrade phenol indicate that is a promising tool for bioremediation strategies especially to eliminate and remove the high concentration of phenol in wastewater.

Keywords: bioremediation, crosslinked cells, immobilisation, phenol degradation

Procedia PDF Downloads 234
986 A Holistic View of Microbial Community Dynamics during a Toxic Harmful Algal Bloom

Authors: Shi-Bo Feng, Sheng-Jie Zhang, Jin Zhou

Abstract:

The relationship between microbial diversity and algal bloom has received considerable attention for decades. Microbes undoubtedly affect annual bloom events and impact the physiology of both partners, as well as shape ecosystem diversity. However, knowledge about interactions and network correlations among broader-spectrum microbes that lead to the dynamics in a complete bloom cycle are limited. In this study, pyrosequencing and network approaches simultaneously assessed the associate patterns among bacteria, archaea, and microeukaryotes in surface water and sediments in response to a natural dinoflagellate (Alexandrium sp.) bloom. In surface water, among the bacterial community, Gamma-Proteobacteria and Bacteroidetes dominated in the initial bloom stage, while Alpha-Proteobacteria, Cyanobacteria, and Actinobacteria become the most abundant taxa during the post-stage. In the archaea biosphere, it clustered predominantly with Methanogenic members in the early pre-bloom period while the majority of species identified in the later-bloom stage were ammonia-oxidizing archaea and Halobacteriales. In eukaryotes, dinoflagellate (Alexandrium sp.) was dominated in the onset stage, whereas multiply species (such as microzooplankton, diatom, green algae, and rotifera) coexistence in bloom collapse stag. In sediments, the microbial species biomass and richness are much higher than the water body. Only Flavobacteriales and Rhodobacterales showed a slight response to bloom stages. Unlike the bacteria, there are small fluctuations of archaeal and eukaryotic structure in the sediment. The network analyses among the inter-specific associations show that bacteria (Alteromonadaceae, Oceanospirillaceae, Cryomorphaceae, and Piscirickettsiaceae) and some zooplankton (Mediophyceae, Mamiellophyceae, Dictyochophyceae and Trebouxiophyceae) have a stronger impact on the structuring of phytoplankton communities than archaeal effects. The changes in population were also significantly shaped by water temperature and substrate availability (N & P resources). The results suggest that clades are specialized at different time-periods and that the pre-bloom succession was mainly a bottom-up controlled, and late-bloom period was controlled by top-down patterns. Additionally, phytoplankton and prokaryotic communities correlated better with each other, which indicate interactions among microorganisms are critical in controlling plankton dynamics and fates. Our results supplied a wider view (temporal and spatial scales) to understand the microbial ecological responses and their network association during algal blooming. It gives us a potential multidisciplinary explanation for algal-microbe interaction and helps us beyond the traditional view linked to patterns of algal bloom initiation, development, decline, and biogeochemistry.

Keywords: microbial community, harmful algal bloom, ecological process, network

Procedia PDF Downloads 114
985 Preparation, Characterization, and Antimicrobial Activity of Carboxymethyl Chitosan Schiff Bases with Different Benzaldehyde Derivatives

Authors: Nadia A. Mohamed, Magdy W. Sabaa, Ahmed H. H. El-Ghandour, Marwa M. Abdel-Aziz, Omayma F. Abdel-Gawad

Abstract:

Eighteen carboxymethyl chitosan (CMCh) schiff bases and their reduced derivatives have been synthesized. They were characterized by spectral analyses (FT-IR and H1-NMR) and scanning electron microscopy observation. Their antibacterial activities against Streptococcus pneumoniae (RCMB 010010), Bacillis subtilis (RCMB 010067), as Gram positive bacteria and Escherichia coli (RCMB 010052) as Gram negative bacteria and the antifungal activity against Aspergillus fumigatus (RCMB 02568), Geotricum candidum (RCMB 05097), and Candida albicans (RCMB 05031) were examined using agar disk diffusion method. The results demonstrate how the antibacterial and the antifungal activity are clearly affected by both the nature and position of the substituent groups in the aryl ring of the prepared derivatives. CMCh-4-nitroBenz Schiff base and its reduced form show higher antimicrobial activity comparing with other para substituted derivatives. CMCh-4-nitroBenz Schiff base: 18.3, 17, and 15.6 mm against Bacillis subtilis, Streptococcus pneumonia, and Escherichia coli respectively and 16.2, 17.3, and 16.4 mm against Aspergillus fumigates, Geotricum candidum, and Candida albicans respectively. CMCh-4-nitroBenz reduced form: 19.5, 18.7, and 16.2 mm against Bacillis subtilis, Streptococcus pneumonia, and Escherichia coli respectively and 17.5, 19.5, and 17.4 mm against Aspergillus fumigates, Geotricum candidum, and Candida albicans respectively. Also CMCh-3-bromoBenz show good results; CMCh-3-bromoBenz schiff base: 19.2, 16.9, and 14.6 mm Bacillis subtilis, Streptococcus pneumonia, and Escherichia coli respectively and 18.4, 17.6, and 15.9 mm against Aspergillus fumigates, Geotricum candidum, and Candida albicans respectively.

Keywords: chitosan, schiff base, minimum inhibition concentration, antimicrobial activity

Procedia PDF Downloads 461
984 Analyses of Extent of Effects of Siting Boreholes Nearby Open Landfill Dumpsite at Obosi Anambra Southeast of Nigeria

Authors: George Obinna Akuaka

Abstract:

Solid waste disposal techniques in Nigeria pose an environmental threat to the environment and to nearby resident. The presence of microbial physical and chemical concentration in boreholes samples nearby dumpsite implies that groundwater is normally contaminated by leachate infiltration from an open landfill dumpsite. In this study, the physicochemical and microbial analyses of water samples from hand dug well in the site and boreholes were carried out around the active landfill and from different distances (50 m to 200 m). leachate samples collected were used to ascertain the effect or extent of contamination on the groundwater quality. A total of 5 leachate samples and 5 samples of groundwater were collected, and all samples were analyzed for various physical and chemical parameters according to the standard methods. These include pH, Electrical conductivity, Total dissolved solid, BOD, OD, Temperature, major cations such as Mg²+ Ca²+, Fe²+ Cu²+, major anions NO³-, Cl-,SO⁴- PO⁴-, Zn, Ar, Cd, Cr, Hg, Pb, Ni are the heavy metals and metalloids. The mean values of the physical and chemical parameters obtained from both sites were compared with the established of the World Health Organization (WHO). The leachate samples were found to be higher in the concentration of the results obtained than that of the boreholes water, and the recorded mean values of heavy metals were above approved standard minimum limits. The results indicated that mercury and copper were not found in all the borehole water samples. Microbial analyses showed that total heterotrophic bacteria mean count ranged from 10.6 X10⁷ cfu/ml to 2.04x10⁷cfu/ml and 9.5 X 10⁷ cfu/ml to 18.9 X 10⁷ cfu/ml in leachate and borehole samples respectively. It also revealed that almost at the bacteria isolated in the leachate were also found in the water samples. This results indicated that heavy pollution in all the samples with most physicochemical parameters and microbes showed traceable pollution, which occurred as a result of leachate infiltration into the ground water.

Keywords: physicochemical, landfill dumpsite, microbial, leachate, groundwater

Procedia PDF Downloads 204
983 Isolation of Soil Thiobacterii and Determination of Their Bio-Oxidation Activity

Authors: A. Kistaubayeva, I. Savitskaya, D. Ibrayeva, M. Abdulzhanova, N. Voronova

Abstract:

36 strains of sulfur-oxidizing bacteria were isolated in Southern Kazakhstan soda-saline soils and identified. Screening of strains according bio-oxidation (destruction thiosulfate to sulfate) and enzymatic (Thiosulfate dehydrogenises and thiosulfate reductase) activity was conducted. There were selected modes of aeration and culture conditions (pH, temperature), which provide optimum harvest cells. These strains can be used in bio-melioration technology.

Keywords: elemental sulfur, oxidation activity, Тhiobacilli, fertilizers, heterotrophic S-oxidizers

Procedia PDF Downloads 384