Search results for: active quasars
2807 Gamma Irradiated Sodium Alginate and Phosphorus Fertilizer Enhances Seed Trigonelline Content, Biochemical Parameters and Yield Attributes of Fenugreek (Trigonella foenum-graecum L.)
Authors: Tariq Ahmad Dar, Moinuddin, M. Masroor A. Khan
Abstract:
There is considerable need in enhancing the content and yield of active constituents of medicinal plants keeping in view their massive demand worldwide. Different strategies have been employed to enhance the active constituents of medicinal plants and the use of phytohormones has been proved effective in this regard. Gamma-irradiated Sodium alginate (ISA) is known to elicit an array of plant defense responses and biological activities in plants. Considering the medicinal importance, a pot experiment was conducted to explore the effect of ISA and phosphorus on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). ISA spray treatments (0, 40, 80 and 120 mg L-1) were applied alone and in combination with 40 kg P ha-1 (P40). Crop performance was assessed in terms of plant growth characteristics, physiological attributes, seed yield and the content of seed trigonelline. Of the ten-treatments, P40 + 80 mg L−1 of ISA proved the best. The results showed that foliar spray of ISA alone or in combination with P40 augmented the plant vegetative growth, enzymatic activities, trigonelline content, trigonelline yield and economic yield of fenugreek. Application of 80 mg L−1 of ISA applied with P40 gave the best results for almost all the parameters studied compared to control or to 80 mg L−1 of ISA applied alone. This treatment increased the total content of chlorophyll, carotenoids, leaf -N, -P and -K and trigonelline compared to the control by 24.85 and 27.40%, 15 and 23.52%, 18.70 and 16.84%, 15.88 and 18.92%, 12 and 14.44%, at 60 and 90 DAS respectively. The combined application of 80 mg L−1 of ISA along with P40 resulted in the maximum increase in seed yield, trigonelline content and trigonelline yield by146, 34 and 232.41%, respectively, over the control. Gel permeation chromatography revealed the formation of low molecular weight fractions in ISA samples, containing even less than 20,000 molecular weight oligomers, which might be responsible for plant growth promotion in this study. Trigonelline content was determined by reverse phase high performance liquid chromatography (HPLC) with C-18 column.Keywords: gamma-irradiated sodium alginate, phosphorus, gel permeation chromatography, HPLC, trigonelline content, yield
Procedia PDF Downloads 3202806 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 2332805 Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases
Authors: Diana Larisa Vladoiu, Vasile Ostafe, Adriana Isvoran
Abstract:
Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate.Keywords: chitinases, inhibition, molecular docking, pesticides
Procedia PDF Downloads 5462804 De Novo Design of Functional Metalloproteins for Biocatalytic Reactions
Authors: Ketaki D. Belsare, Nicholas F. Polizzi, Lior Shtayer, William F. DeGrado
Abstract:
Nature utilizes metalloproteins to perform chemical transformations with activities and selectivities that have long been the inspiration for design principles in synthetic and biological systems. The chemical reactivities of metalloproteins are directly linked to local environment effects produced by the protein matrix around the metal cofactor. A complete understanding of how the protein matrix provides these interactions would allow for the design of functional metalloproteins. The de novo computational design of proteins have been successfully used in design of active sites that bind metals like di-iron, zinc, copper containing cofactors; however, precisely designing active sites that can bind small molecule ligands (e.g., substrates) along with metal cofactors is still a challenge in the field. The de novo computational design of a functional metalloprotein that contains a purposefully designed substrate binding site would allow for precise control of chemical function and reactivity. Our research strategy seeks to elucidate the design features necessary to bind the cofactor protoporphyrin IX (hemin) in close proximity to a substrate binding pocket in a four helix bundle. First- and second-shell interactions are computationally designed to control orientation, electronic structure, and reaction pathway of the cofactor and substrate. The design began with a parameterized helical backbone that positioned a single histidine residue (as an axial ligand) to receive a second-shell H-bond from a Threonine on the neighboring helix. The metallo-cofactor, hemin was then manually placed in the binding site. A structural feature, pi-bulge was introduced to give substrate access to the protoporphyrin IX. These de novo metalloproteins are currently being tested for their activity towards hydroxylation and epoxidation. The de novo designed protein shows hydroxylation of aniline to 4-aminophenol. This study will help provide structural information of utmost importance in understanding de novo computational design variables impacting the functional activities of a protein.Keywords: metalloproteins, protein design, de novo protein, biocatalysis
Procedia PDF Downloads 1502803 Exploring the Role of Immune-Modulators in Pathogen Recognition Receptor NOD2 Mediated Protection against Visceral Leishmaniasis
Authors: Junaid Jibran Jawed, Prasanta Saini, Subrata Majumdar
Abstract:
Background: Leishmania donovani infection causes severe host immune-suppression through the modulation of pathogen recognition receptors. Apart from TLRs (Toll Like Receptor), recent studies focus on the important contribution of NLR (NOD-Like Receptor) family member NOD1 and NOD2 as these receptors are capable of triggering host innate immunity. The aim of this study was to decipher the role of NOD1/NOD2 receptors during experimental visceral leishmaniasis (VL) and the important link between host failure and parasite evasion strategy. Method: The status of NOD1 and NOD2 receptors were analysed in uninfected and infected cells through western blotting and RT-PCR. The active contributions of these receptors in reducing parasite burden were confirmed by siRNA mediated silencing, and over-expression studies and the parasite numbers were calculated through microscopic examination of the Giemsa-stained slides. In-vivo studies were done by using non-toxic dose of Mw (Mycobacterium indicus pranii), Ara-LAM(Arabinoasylated lipoarabinomannan) along with MDP (Muramyl dipeptide) administration. Result: Leishmania donovani infection of the macrophages reduced the expression of NOD2 receptors whereas NOD1 remain unaffected. MDP, a NOD2-ligand, treatment during over-expression of NOD2, reduced the parasite burden effectively which was associated with increased pro-inflammatory cytokine generation and NO production. In experimental mouse model, Ara-LAM treatment increased the expression of NOD2 and in combination with MDP it showed active therapeutic potential against VL and found to be more effective than Mw which was already reported to be involved in NOD2 modulation. Conclusion: This work explores the essential contribution of NOD2 during experimental VL and mechanistic understanding of Ara-LAM + MDP combination therapy to work against this disease and highlighted NOD2 as an essential therapeutic target.Keywords: Ara-LAM (Arabinoacylated Lipoarabinomannan), NOD2 (nucleotide binding oligomerization receptor 2), MDP (muramyl di peptide), visceral Leishmaniasis
Procedia PDF Downloads 1742802 Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran
Authors: Zhila Hemati, Seyed Sajjad Hosseni, Sohrab Zamzami
Abstract:
In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas.Keywords: wildfire, vegetation, plant species, forest
Procedia PDF Downloads 422801 Pattern of Anisometropia, Management and Outcome of Anisometropic Amblyopia
Authors: Husain Rajib, T. H. Sheikh, D. G. Jewel
Abstract:
Background: Amblyopia is a frequent cause of monocular blindness in children. It can be unilateral or bilateral reduction of best corrected visual acuity associated with decrement in visual processing, accomodation, motility, spatial perception or spatial projection. Anisometropia is an important risk factor for amblyopia that develops when unequal refractive error causes the image to be blurred in the critical developmental period and central inhibition of the visual signal originating from the affected eye associated with significant visual problems including anisokonia, strabismus, and reduced stereopsis. Methods: It is a prospective hospital based study of newly diagnosed of amblyopia seen at the pediatric clinic of Chittagong Eye Infirmary & Training Complex. There were 50 anisometropic amblyopia subjects were examined & questionnaire was piloted. Included were all patients diagnosed with refractive amblyopia between 3 to 13 years, without previous amblyopia treatment, and whose parents were interested to participate in the study. Patients diagnosed with strabismic amblyopia were excluded. Patients were first corrected with the best correction for a month. When the VA in the amblyopic eye did not improve over month, then occlusion treatment was started. Occlusion was done daily for 6-8 hours (full time) together with vision therapy. The occlusion was carried out for 3 months. Results: In this study about 8% subjects had anisometropia from myopia, 18% from hyperopia, 74% from astigmatism. The initial mean visual acuity was 0.74 ± 0.39 Log MAR and after intervention of amblyopia therapy with active vision therapy mean visual acuity was 0.34 ± 0.26 Log MAR. About 94% of subjects were improving at least two lines. The depth of amblyopia associated with type of anisometropic refractive error and magnitude of Anisometropia (p<0.005). By doing this study 10% mild amblyopia, 64% moderate and 26% severe amblyopia were found. Binocular function also decreases with magnitude of Anisometropia. Conclusion: Anisometropic amblyopia is a most important factor in pediatric age group because it can lead to visual impairment. Occlusion therapy with at least one instructed hour of active visual activity practiced out of school hours was effective in anisometropic amblyopes who were diagnosed at the age of 8 years and older, and the patients complied well with the treatment.Keywords: refractive error, anisometropia, amblyopia, strabismic amblyopia
Procedia PDF Downloads 2752800 Integrated Safety Net Program for High-Risk Families in New Taipei City
Authors: Peifang Hsieh
Abstract:
New Taipei city faces increasing number of migrant families, in which the needs of children are sometimes neglected due to insufficient support from communities. Moreover, the traditional mindset of disengagement discourages citizens from preemptively identifying families in need in their communities, resulting in delay of prompt intervention from authorities concerned. To safeguard these vulnerable families, New Taipei city develops the 'Integrated Safety-Net Program for High-Risk Families' from 2011 by implementing the following measures: (A) New attitude and action: Instead of passively receiving reported case of high-risk families, the program takes proactive and preemptive approach to detect and respond at early stage, so the cases are prevented from worsening. In addition, cross-departmental integration mechanism is established to meet multiple needs of high-risk families. The children number added to the government care network is greatly increased to over 10,000, which is around 4.4 times the original number before the program. (B) New service points: 2000 city-wide convenience stores are added as service stations so that children in less privileged families can go to any of 24-hour convenience stores across the city to pick up free meals. This greatly increases the approachability to high-risk families. Moreover, the social welfare institutes will be notified with information left in convenience stores by children and follow up with further assistance, greatly enhancing chances of less privileged families being identified. (C) New Key Figures: Mobilize community officers and volunteers to detect and offer on-site assistance. Volunteer organizations within communities are connected to report and offer follow-up services in a more active manner. In total, from 2011 to 2015, 54,789 cases are identified through active care, benefiting 82,124 children. In addition, 87.49% family-cases in the program receiving comprehensive social assistance are no longer at high risk.Keywords: cross department, high-risk families, public-private partnership, integrated safety net
Procedia PDF Downloads 2962799 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy
Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour
Abstract:
Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle
Procedia PDF Downloads 722798 Development and Evaluation of Economical Self-cleaning Cement
Authors: Anil Saini, Jatinder Kumar Ratan
Abstract:
Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination
Procedia PDF Downloads 1672797 Gender Differences in Objectively Assessed Physical Activity among Urban 15-Year-Olds
Authors: Marjeta Misigoj Durakovic, Maroje Soric, Lovro Stefan
Abstract:
Background and aim: Physical inactivity has been linked with increased morbidity and premature mortality and adolescence has been recognised as the critical period for a decline in physical activity (PA) level. In order to properly direct interventions aimed at increasing PA, high-risk groups of individuals should be identified. Therefore, the aim of this study is to describe gender differences in: a) PA level; b) weekly PA patterns. Methods: This investigation is a part of the CRO-PALS study which is an on-going longitudinal study conducted in a representative sample of urban youth in Zagreb (Croatia). CRO-PALS involves 903 adolescents and for the purpose of this study data from a subgroup of 190 participants with information on objective PA level were analysed (116 girls; mean age [SD]=15.6[0.3] years). Duration of moderate and vigorous PA was measured during 5 consecutive by a multiple-sensor physical activity monitor (SenseWear Armband, BodyMedia inc., Pittsburgh, USA). Gender differences in PA level were evaluated using independent samples t-test. Differences in school week and weekend levels of activity were assessed using mixed ANOVA with gender as between-subjects factor. The amount of vigorous PA had to be log-transformed to achieve normality in the distribution. Results: Boys were more active than girls. Duration of moderate-to-vigorous PA averaged 111±44 min/day in boys and 80±38 min/day in girls (mean difference=31 min/day, 95%CI=20-43 min/day). Vigorous PA was 2.5 times higher in boys compared to girls (95%CI=1.9-3.5). Participants were more active during school days than on weekends. The magnitude of the difference in moderate-to-vigorous PA was similar in both gender (p value for time*gender interaction = 0.79) and averaged 19 min/day (95%CI=11-27 min/day). Similarly, vigorous PA was 36% lower on weekends compared with school days (95%CI=22-46%) with no gender difference (p value for time*gender interaction = 0.52). Conclusion: PA level was higher in boys than in girls throughout the week. Still, in both boys and girls, the amount of PA reduced markedly on weekends compared with school days.Keywords: adolescence, multiple-sensor physical activity monitor, physical activity level, weekly physical activity pattern
Procedia PDF Downloads 2532796 Polymer Composites Containing Gold Nanoparticles for Biomedical Use
Authors: Bozena Tyliszczak, Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Agnieszka Sobczak-Kupiec
Abstract:
Introduction: Nanomaterials become one of the leading materials in the synthesis of various compounds. This is a reason for the fact that nano-size materials exhibit other properties compared to their macroscopic equivalents. Such a change in size is reflected in a change in optical, electric or mechanical properties. Among nanomaterials, particular attention is currently directed into gold nanoparticles. They find application in a wide range of areas including cosmetology or pharmacy. Additionally, nanogold may be a component of modern wound dressings, which antibacterial activity is beneficial in the viewpoint of the wound healing process. Specific properties of this type of nanomaterials result in the fact that they may also be applied in cancer treatment. Studies on the development of new techniques of the delivery of drugs are currently an important research subject of many scientists. This is due to the fact that along with the development of such fields of science as medicine or pharmacy, the need for better and more effective methods of administering drugs is constantly growing. The solution may be the use of drug carriers. These are materials that combine with the active substance and lead it directly to the desired place. A role of such a carrier may be played by gold nanoparticles that are able to covalently bond with many organic substances. This allows the combination of nanoparticles with active substances. Therefore gold nanoparticles are widely used in the preparation of nanocomposites that may be used for medical purposes with special emphasis on drug delivery. Methodology: As part of the presented research, synthesis of composites was carried out. The mentioned composites consisted of the polymer matrix and gold nanoparticles that were introduced into the polymer network. The synthesis was conducted with the use of a crosslinking agent, and photoinitiator and the materials were obtained by means of the photopolymerization process. Next, incubation studies were conducted using selected liquids that simulated fluids are occurring in the human body. The study allows determining the biocompatibility of the tested composites in relation to selected environments. Next, the chemical structure of the composites was characterized as well as their sorption properties. Conclusions: Conducted research allowed for the preliminary characterization of prepared polymer composites containing gold nanoparticles in the viewpoint of their application for biomedical use. Tested materials were characterized by biocompatibility in tested environments. What is more, synthesized composites exhibited relatively high swelling capacity that is essential in the viewpoint of their potential application as drug carriers. During such an application, composite swells and at the same time releases from its interior introduced active substance; therefore, it is important to check the swelling ability of such material. Acknowledgements: The authors would like to thank The National Science Centre (Grant no: UMO - 2016/21/D/ST8/01697) for providing financial support to this project. This paper is based upon work from COST Action (CA18113), supported by COST (European Cooperation in Science and Technology).Keywords: nanocomposites, gold nanoparticles, drug carriers, swelling properties
Procedia PDF Downloads 1152795 Physical Activity and Academic Achievement: How Physical Activity Should Be Implemented to Enhance Mathematical Achievement and Mathematical Self-Concept
Authors: Laura C. Dapp, Claudia M. Roebers
Abstract:
Being physically active has many benefits for children and adolescents. It is crucial for various aspects of physical and mental health, the development of a healthy self-concept, and also positively influences academic performance and school achievement. In addressing the still incomplete understanding of the link between physical activity (PA) and academic achievement, the current study scrutinized the open issue of how PA has to be implemented to positively affect mathematical outcomes in N = 138 fourth graders. Therefore, the current study distinguished between structured PA (formal, organized, adult-led exercise and deliberate sports practice) and unstructured PA (non-formal, playful, peer-led physically active play and sports activities). Results indicated that especially structured PA has the potential to contribute to mathematical outcomes. Although children spent almost twice as much time engaging in unstructured PA as compared to structured PA, only structured PA was significantly related to mathematical achievement as well as to mathematical self-concept. Furthermore, the pending issue concerning the quantity of PA needed to enhance children’s mathematical achievement was addressed. As to that, results indicated that the amount of time spent in structured PA constitutes a critical factor in accounting for mathematical outcomes, since children engaging in PA for two hours or more a week were shown to be both the ones with the highest mathematical self-concept as well as those attaining the highest mathematical achievement scores. Finally, the present study investigated the indirect effect of PA on mathematical achievement by controlling for the mathematical self-concept as a mediating variable. The results of a maximum likelihood mediation analysis with a 2’000 resampling bootstrapping procedure for the 95% confidence intervals revealed a full mediation, indicating that PA improves mathematical self-concept, which, in turn, positively affects mathematical achievement. Thus, engaging in high amounts of structured PA constitutes an advantageous leisure activity for children and adolescents, not only to enhance their physical health but also to foster their self-concept in a way that is favorable and encouraging for promoting their academic achievement. Note: The content of this abstract is partially based on a paper published elswhere by the authors.Keywords: Academic Achievement, Mathematical Performance, Physical Activity, Self-Concept
Procedia PDF Downloads 1112794 Cytotoxicity of 13 South African Macrofungal Species and Mechanism/s of Action against Cancer Cell Lines
Authors: Gerhardt Boukes, Maryna Van De Venter, Sharlene Govender
Abstract:
Macrofungi have been used for the past two thousand years in Asian countries, and more recently in Western countries, for their medicinal properties. Biological activities include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and immunomodulatory to name a few. Several biologically active compounds have been identified and isolated. Macrofungal research in Africa is poorly documented and to the best of our knowledge non-existent. South Africa has a rich macrofungal biodiversity, which includes endemic and exotic macrofungal species. Ethanolic extracts of 13 macrofungal species, including mushrooms, bracket fungi and puffballs, were prepared and screened for cytotoxicity against a panel of seven cell lines, including A549 (human lung adenocarcinoma), HeLa (human cervical adenocarcinoma), HT-29 (human colorectal adenocarcinoma), MCF7 (human breast adenocarcinoma), MIA PaCa-2 (human pancreatic ductal adenocarcinoma), PC-3 (human prostate adenocarcinoma) and Vero (African green monkey kidney epithelial) cells using MTT. Cell lines were chosen according to the most prevalent cancer types affecting males and females in South Africa and globally, and the mutations they contain. Preliminary results have shown that three of the macrofungal genera, i.e. Fomitopsis, Gymnopilus and Pycnoporus, have shown cytotoxic activity, ranging between IC50 ~20 and 200 µg/mL. The molecular mechanism of action contributing to cell death investigated and being investigated include apoptosis (i.e. DNA cell cycle arrest, caspase-3 activation and mitochondrial membrane potential), autophagy (i.e. acridine orange and LC3B staining) and ER stress (i.e. thioflavin T staining and caspase-12) in the presence of melphalan, chloroquine and thapsigargin/tuncamycin as positive controls, respectively. The genus, Pycnoporus, has shown the best cytotoxicity of the three macrofungal genera. Future work will focus on the identification and isolation of novel active compounds and elucidating the mechanism/s of action.Keywords: cancer, cytotoxicity, macrofungi, mechanism/s of action
Procedia PDF Downloads 2462793 Carbon Nanotubes (CNTs) as Multiplex Surface Enhanced Raman Scattering Sensing Platforms
Authors: Pola Goldberg Oppenheimer, Stephan Hofmann, Sumeet Mahajan
Abstract:
Owing to its fingerprint molecular specificity and high sensitivity, surface-enhanced Raman scattering (SERS) is an established analytical tool for chemical and biological sensing capable of single-molecule detection. A strong Raman signal can be generated from SERS-active platforms given the analyte is within the enhanced plasmon field generated near a noble-metal nanostructured substrate. The key requirement for generating strong plasmon resonances to provide this electromagnetic enhancement is an appropriate metal surface roughness. Controlling nanoscale features for generating these regions of high electromagnetic enhancement, the so-called SERS ‘hot-spots’, is still a challenge. Significant advances have been made in SERS research, with wide-ranging techniques to generate substrates with tunable size and shape of the nanoscale roughness features. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for miniaturised sensing devices. Carbon nanotubes (CNTs) have been concurrently, a topic of extensive research however, their applications for plasmonics has been only recently beginning to gain interest. CNTs can provide low-cost, large-active-area patternable substrates which, coupled with appropriate functionalization capable to provide advanced SERS-platforms. Herein, advanced methods to generate CNT-based SERS active detection platforms will be discussed. First, a novel electrohydrodynamic (EHD) lithographic technique will be introduced for patterning CNT-polymer composites, providing a straightforward, single-step approach for generating high-fidelity sub-micron-sized nanocomposite structures within which anisotropic CNTs are vertically aligned. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements with each of the EHD-CNTs individual structural units functioning as an isolated sensor. Further, gold-functionalized VACNTFs are fabricated as SERS micro-platforms. The dependence on the VACNTs’ diameters and density play an important role in the Raman signal strength, thus highlighting the importance of structural parameters, previously overlooked in designing and fabricating optimized CNTs-based SERS nanoprobes. VACNTs forests patterned into predesigned pillar structures are further utilized for multiplex detection of bio-analytes. Since CNTs exhibit electrical conductivity and unique adsorption properties, these are further harnessed in the development of novel chemical and bio-sensing platforms.Keywords: carbon nanotubes (CNTs), EHD patterning, SERS, vertically aligned carbon nanotube forests (VACNTF)
Procedia PDF Downloads 3302792 Photovoltaic Solar Energy in Public Buildings: A Showcase for Society
Authors: Eliane Ferreira da Silva
Abstract:
This paper aims to mobilize and sensitize public administration leaders to good practices and encourage investment in the PV system in Brazil. It presents a case study methodology for dimensioning the PV system in the roofs of the public buildings of the Esplanade of the Ministries, Brasilia, capital of the country, with predefined resources, starting with the Sustainable Esplanade Project (SEP), of the exponential growth of photovoltaic solar energy in the world and making a comparison with the solar power plant of the Ministry of Mines and Energy (MME), active since: 6/10/2016. In order to do so, it was necessary to evaluate the energy efficiency of the buildings in the period from January 2016 to April 2017, (16 months) identifying the opportunities to reduce electric energy expenses, through the adjustment of contracted demand, the tariff framework and correction of existing active energy. The instrument used to collect data on electric bills was the e-SIC citizen information system. The study considered in addition to the technical and operational aspects, the historical, cultural, architectural and climatic aspects, involved by several actors. Identifying the reductions of expenses, the study directed to the following aspects: Case 1) economic feasibility for exchanges of common lamps, for LED lamps, and, Case 2) economic feasibility for the implementation of photovoltaic solar system connected to the grid. For the case 2, PV*SOL Premium Software was used to simulate several possibilities of photovoltaic panels, analyzing the best performance, according to local characteristics, such as solar orientation, latitude, annual average solar radiation. A simulation of an ideal photovoltaic solar system was made, with due calculations of its yield, to provide a compensation of the energy expenditure of the building - or part of it - through the use of the alternative source in question. The study develops a methodology for public administration, as a major consumer of electricity, to act in a responsible, fiscalizing and incentive way in reducing energy waste, and consequently reducing greenhouse gases.Keywords: energy efficiency, esplanade of ministries, photovoltaic solar energy, public buildings, sustainable building
Procedia PDF Downloads 1312791 Transforming Mindsets and Driving Action through Environmental Sustainability Education: A Course in Case Studies and Project-Based Learning in Public Education
Authors: Sofia Horjales, Florencia Palma
Abstract:
Our society is currently experiencing a profound transformation, demanding a proactive response from governmental bodies and higher education institutions to empower the next generation as catalysts for change. Environmental sustainability is rooted in the critical need to maintain the equilibrium and integrity of natural ecosystems, ensuring the preservation of precious natural resources and biodiversity for the benefit of both present and future generations. It is an essential cornerstone of sustainable development, complementing social and economic sustainability. In this evolving landscape, active methodologies take a central role, aligning perfectly with the principles of the 2030 Agenda for Sustainable Development and emerging as a pivotal element of teacher education. The emphasis on active learning methods has been driven by the urgent need to nurture sustainability and instill social responsibility in our future leaders. The Universidad Tecnológica of Uruguay (UTEC) is a public, technologically-oriented institution established in 2012. UTEC is dedicated to decentralization, expanding access to higher education throughout Uruguay, and promoting inclusive social development. Operating through Regional Technological Institutes (ITRs) and associated centers spread across the country, UTEC faces the challenge of remote student populations. To address this, UTEC utilizes e-learning for equal opportunities, self-regulated learning, and digital skills development, enhancing communication among students, teachers, and peers through virtual classrooms. The Interdisciplinary Continuing Education Program is part of the Innovation and Entrepreneurship Department of UTEC. The main goal is to strengthen innovation skills through a transversal and multidisciplinary approach. Within this Program, we have developed a Case of Study and Project-Based Learning Virtual Course designed for university students and open to the broader UTEC community. The primary aim of this course is to establish a strong foundation for comprehending and addressing environmental sustainability issues from an interdisciplinary perspective. Upon completing the course, we expect students not only to understand the intricate interactions between social and ecosystem environments but also to utilize their knowledge and innovation skills to develop projects that offer enhancements or solutions to real-world challenges. Our course design centers on innovative learning experiences, rooted in active methodologies. We explore the intersection of these methods with sustainability and social responsibility in the education of university students. A paramount focus lies in gathering student feedback, empowering them to autonomously generate ideas with guidance from instructors, and even defining their own project topics. This approach underscores that when students are genuinely engaged in subjects of their choice, they not only acquire the necessary knowledge and skills but also develop essential attributes like effective communication, critical thinking, and problem-solving abilities. These qualities will benefit them throughout their lifelong learning journey. We are convinced that education serves as the conduit to merge knowledge and cultivate interdisciplinary collaboration, igniting awareness and instigating action for environmental sustainability. While systemic changes are undoubtedly essential for society and the economy, we are making significant progress by shaping perspectives and sparking small, everyday actions within the UTEC community. This approach empowers our students to become engaged global citizens, actively contributing to the creation of a more sustainable future.Keywords: active learning, environmental education, project-based learning, soft skills development
Procedia PDF Downloads 682790 Designating and Evaluating a Healthy Eating Model at the Workplace: A Practical Strategy for Preventing Non-Communicable Diseases in Aging
Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama
Abstract:
Introduction: The aging process has been linked to a wide range of non-communicable diseases that cause a loss of health-related quality of life. This process can be worsened if an active and healthy lifestyle is not followed by adults, especially in the workplace. This setting not only may create a sedentary lifestyle but will lead to obesity and overweight in the long term and create unhealthy and inactive aging. In addition, eating habits are always known to be associated with active aging. Therefore, it is very valuable to know the eating patterns of people at work in order to detect and prevent diseases in the coming years. This study aimed to design and test a model to improve eating habits among employees at an industrial complex as a practical strategy. Material and method: The present research was a mixed-method study with a subsequent exploratory design which was carried out in two phases, qualitative and quantitative, in 2018 year. In the first step, participants were selected by purposive sampling (n=34) to ensure representation of different job roles; hours worked, gender, grade, and age groups, and semi-structured interviews were used. All interviews were conducted in the workplace and were audio recorded, transcribed verbatim, and analyzed using the Strauss and Corbin approach. The interview question was, “what were their experiences of eating at work, and how could these nutritional habits affect their health in old age.” Finally, a total of 1500 basic codes were oriented at the open coding step, and they were merged together to create the 17 classes, and six concepts and a conceptual model were designed. The second phase of the study was conducted in the form of a cross-sectional study. After verification of the research tool, the developed questionnaire was examined in a group of employees. In order to test the conceptual model of the study, a total of 500 subjects were included in psychometry. Findings: Six main concepts have been known, including 1. undesirable control of stress, 2. lack of eating knowledge, 3. effect of the social network, 4. lack of motivation for healthy habits, 5. environmental-organizational intensifier, 6. unhealthy eating behaviors. The core concept was “Motivation Loss to do preventive behavior.” The main constructs of the motivational-based model for the promotion of eating habits are “modification and promote of eating habits,” increase of knowledge and competency, convey of healthy nutrition behavior culture and effecting of behavioral model especially in older age, desirable of control stress. Conclusion: A key factor for unhealthy eating behavior at the workplace is a lack of motivation, which can be an obstacle to conduct preventive behaviors at work that can affect the healthy aging process in the long term. The motivational-based model could be considered an effective conceptual framework and instrument for designing interventions for the promotion to create healthy and active aging.Keywords: aging, eating habits, older age, workplace
Procedia PDF Downloads 1012789 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension
Authors: Mujde Turkkan, Nurkan Yagiz
Abstract:
In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modelled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.Keywords: ride comfort, air spring, bus, fuzzy logic controller
Procedia PDF Downloads 4292788 Trans-Activator of Transcription-Tagged Active AKT1 Variants for Delivery to Mammalian Cells
Authors: Tarana Siddika, Ilka U. Heinemann, Patrick O’Donoghue
Abstract:
Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Threonine308, Serine473), yet cell stimulation also activates many other kinases and fails to differentiate the effect of the two main activating sites of AKT1 on downstream substrate phosphorylation and cell growth. While both AKT1 activating sites are associated with disease and used as clinical markers, in some cancers, high levels of Threonine308 phosphorylation are associated with poor prognosis while in others poor survival correlates with high Serine473 levels. To produce cells with specific AKT1 activity, a system was developed to deliver active AKT1 to human cells. AKT1 phospho-variants were produced from Escherichia coli with programmed phosphorylation by genetic code expansion. Tagging of AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) helped to enter AKT1 proteins in mammalian cells. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308, TAT-pAKT1S473 and TAT-pAKT1T308S473 proteins induced selective phosphorylation of the known AKT1 substrate GSK-3αβ, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Serine240/244 in transfected cells. Increase in cell growth and proliferation was observed due to the transfection of different phosphorylated AKT1 protein variants compared to cells with TAT-AKT1 protein. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on specific AKT1 activity and phosphorylation.Keywords: cell penetrating peptide, cell signaling, protein kinase b (AKT1), phosphorylation
Procedia PDF Downloads 1162787 The Product Innovation Using Nutraceutical Delivery System on Improving Growth Performance of Broiler
Authors: Kitti Supchukun, Kris Angkanaporn, Teerapong Yata
Abstract:
The product innovation using a nutraceutical delivery system on improving the growth performance of broilers is the product planning and development to solve the antibiotics banning policy incurred in the local and global livestock production system. Restricting the use of antibiotics can reduce the quality of chicken meat and increase pathogenic bacterial contamination. Although other alternatives were used to replace antibiotics, the efficacy was inconsistent, reflecting on low chicken growth performance and contaminated products. The product innovation aims to effectively deliver the selected active ingredients into the body. This product is tested on the pharmaceutical lab scale and on the farm-scale for market feasibility in order to create product innovation using the nutraceutical delivery system model. The model establishes the product standardization and traceable quality control process for farmers. The study is performed using mixed methods. Starting with a qualitative method to find the farmers' (consumers) demands and the product standard, then the researcher used the quantitative research method to develop and conclude the findings regarding the acceptance of the technology and product performance. The survey has been sent to different organizations by random sampling among the entrepreneur’s population including integrated broiler farm, broiler farm, and other related organizations. The mixed-method results, both qualitative and quantitative, verify the user and lead users' demands since they provide information about the industry standard, technology preference, developing the right product according to the market, and solutions for the industry problems. The product innovation selected nutraceutical ingredients that can solve the following problems in livestock; bactericidal, anti-inflammation, gut health, antioxidant. The combinations of the selected nutraceutical and nanostructured lipid carriers (NLC) technology aim to improve chemical and pharmaceutical components by changing the structure of active ingredients into nanoparticle, which will be released in the targeted location with accurate concentration. The active ingredients in nanoparticle form are more stable, elicit antibacterial activity against pathogenic Salmonella spp and E.coli, balance gut health, have antioxidant and anti-inflammation activity. The experiment results have proven that the nutraceuticals have an antioxidant and antibacterial activity which also increases the average daily gain (ADG), reduces feed conversion ratio (FCR). The results also show a significant impact on the higher European Performance Index that can increase the farmers' profit when exporting. The product innovation will be tested in technology acceptance management methods from farmers and industry. The production of broiler and commercialization analyses are useful to reduce the importation of animal supplements. Most importantly, product innovation is protected by intellectual property.Keywords: nutraceutical, nano structure lipid carrier, anti-microbial drug resistance, broiler, Salmonella
Procedia PDF Downloads 1762786 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study
Authors: Shalini Arora, Sri Sivakumar
Abstract:
The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction
Procedia PDF Downloads 2652785 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction
Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack
Abstract:
We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization
Procedia PDF Downloads 1052784 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source
Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won
Abstract:
This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)
Procedia PDF Downloads 2472783 Power Control of a Doubly-Fed Induction Generator Used in Wind Turbine by RST Controller
Authors: A. Boualouch, A. Frigui, T. Nasser, A. Essadki, A.Boukhriss
Abstract:
This work deals with the vector control of the active and reactive powers of a Double-Fed Induction generator DFIG used as a wind generator by the polynomial RST controller. The control of the statoric power transfer between the machine and the grid is achieved by acting on the rotor parameters and control is provided by the polynomial controller RST. The performance and robustness of the controller are compared with PI controller and evaluated by simulation results in MATLAB/simulink.Keywords: DFIG, RST, vector control, wind turbine
Procedia PDF Downloads 6572782 Mechanical Behavior of 16NC6 Steel Hardened by Burnishing
Authors: Litim Tarek, Taamallah Ouahiba
Abstract:
This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing.Keywords: 16NC6 steel, burnishing, hardening, roughness
Procedia PDF Downloads 1622781 A Case Study on Utility of 18FDG-PET/CT Scan in Identifying Active Extra Lymph Nodes and Staging of Breast Cancer
Authors: Farid Risheq, M. Zaid Alrisheq, Shuaa Al-Sadoon, Karim Al-Faqih, Mays Abdulazeez
Abstract:
Breast cancer is the most frequently diagnosed cancer worldwide, and a common cause of death among women. Various conventional anatomical imaging tools are utilized for diagnosis, histological assessment and TNM (Tumor, Node, Metastases) staging of breast cancer. Biopsy of sentinel lymph node is becoming an alternative to the axillary lymph node dissection. Advances in 18-Fluoro-Deoxi-Glucose Positron Emission Tomography/Computed Tomography (18FDG-PET/CT) imaging have facilitated breast cancer diagnosis utilizing biological trapping of 18FDG inside lesion cells, expressed as Standardized Uptake Value (SUVmax). Objective: To present the utility of 18FDG uptake PET/CT scans in detecting active extra lymph nodes and distant occult metastases for breast cancer staging. Subjects and Methods: Four female patients were presented with initially classified TNM stages of breast cancer based on conventional anatomical diagnostic techniques. 18FDG-PET/CT scans were performed one hour post 18FDG intra-venous injection of (300-370) MBq, and (7-8) bed/130sec. Transverse, sagittal, and coronal views; fused PET/CT and MIP modality were reconstructed for each patient. Results: A total of twenty four lesions in breast, extended lesions to lung, liver, bone and active extra lymph nodes were detected among patients. The initial TNM stage was significantly changed post 18FDG-PET/CT scan for each patient, as follows: Patient-1: Initial TNM-stage: T1N1M0-(stage I). Finding: Two lesions in right breast (3.2cm2, SUVmax=10.2), (1.8cm2, SUVmax=6.7), associated with metastases to two right axillary lymph nodes. Final TNM-stage: T1N2M0-(stage II). Patient-2: Initial TNM-stage: T2N2M0-(stage III). Finding: Right breast lesion (6.1cm2, SUVmax=15.2), associated with metastases to right internal mammary lymph node, two right axillary lymph nodes, and sclerotic lesions in right scapula. Final TNM-stage: T2N3M1-(stage IV). Patient-3: Initial TNM-stage: T2N0M1-(stage III). Finding: Left breast lesion (11.1cm2, SUVmax=18.8), associated with metastases to two lymph nodes in left hilum, and three lesions in both lungs. Final TNM-stage: T2N2M1-(stage IV). Patient-4: Initial TNM-stage: T4N1M1-(stage III). Finding: Four lesions in upper outer quadrant area of right breast (largest: 12.7cm2, SUVmax=18.6), in addition to one lesion in left breast (4.8cm2, SUVmax=7.1), associated with metastases to multiple lesions in liver (largest: 11.4cm2, SUV=8.0), and two bony-lytic lesions in left scapula and cervicle-1. No evidence of regional or distant lymph node involvement. Final TNM-stage: T4N0M2-(stage IV). Conclusions: Our results demonstrated that 18FDG-PET/CT scans had significantly changed the TNM stages of breast cancer patients. While the T factor was unchanged, N and M factors showed significant variations. A single session of PET/CT scan was effective in detecting active extra lymph nodes and distant occult metastases, which were not identified by conventional diagnostic techniques, and might advantageously replace bone scan, and contrast enhanced CT of chest, abdomen and pelvis. Applying 18FDG-PET/CT scan early in the investigation, might shorten diagnosis time, helps deciding adequate treatment protocol, and could improve patients’ quality of life and survival. Trapping of 18FDG in malignant lesion cells, after a PET/CT scan, increases the retention index (RI%) for a considerable time, which might help localize sentinel lymph node for biopsy using a hand held gamma probe detector. Future work is required to demonstrate its utility.Keywords: axillary lymph nodes, breast cancer staging, fluorodeoxyglucose positron emission tomography/computed tomography, lymph nodes
Procedia PDF Downloads 3112780 Effect of N2-cold Plasma Treatment of Carbon Supports on the Activity of Pt3Pd3Sn2/C Towards the Dimethyl Ether Oxidation
Authors: Medhanie Gebremedhin Gebru, Alex Schechter
Abstract:
Dimethyl ether (DME) possesses several advantages over other small organic molecules such as methanol, ethanol, and ammonia in terms of providing higher energy density, being less toxic, and having lower Nafion membrane crossover. However, the absence of an active and stable catalyst has been the bottleneck that hindered the commercialization of direct DME fuel cells. A Vulcan XC72 carbon-supported ternary metal catalyst, Pt₃Pd₃Sn₂/C is reported to have yielded the highest specific power density (90 mW mg-¹PGM) as compared to other catalysts tested fordirect DME fuel cell (DDMEFC). However, the micropores and sulfur groups present in Vulcan XC72 hinder the fuel utilization by causing Pt agglomeration and sulfur poisoning. Vulcan XC72 having a high carbon sp³ hybridization content, is also prone to corrosion. Therefore, carbon supports such as multi-walled carbon nanotube (MWCNT), black pearl 2000 (BP2000), and their cold N2 plasma-treated counterpartswere tested to further enhance the activity of the catalyst, and the outputs with these carbons were compared with the originally used support. Detailed characterization of the pristine and carbon supports was conducted. Electrochemical measurements in three-electrode cells and laboratory prototype fuel cells were conducted.Pt₃Pd₃Sn₂/BP2000 exhibited excellent performance in terms of electrochemical active surface area (ECSA), peak current density (jp), and DME oxidation charge (Qoxi). The effect of the plasma activation on the activity improvement was observed only in the case of MWCNT while having little or no effect on the other carbons. A Pt₃Pd₃Sn₂ supported on the optimized mixture of carbons containing 75% plasma-activated MWCNT and 25% BP2000 (Pt₃Pd₃Sn₂/75M25B) provided the highest reported power density of 117 mW mg-1PGM using an anode loading of1.55 mgPGMcm⁻².Keywords: DME, DDMEFC, ternary metal catalyst, carbon support, plasma activation
Procedia PDF Downloads 1422779 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance
Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier
Abstract:
Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.Keywords: durability, PEMFC, recovery procedure, reversible degradation
Procedia PDF Downloads 1322778 Slöjd International: Translating and Tracking Nordic Curricula for Holistic Health, 1890s-1920s
Authors: Sasha Mullally
Abstract:
This paper investigates the transnational circulation of European Nordic ideas about and programs for manual education and training over the decades spanning the late 19th and early 20th centuries. Based on the unexamined but voluminous correspondence (English-language) of Otto Salomon, an internationally famous education reformer who popularized a form of manual training called "slöjd" (anglicized as "sloyd"), this paper examines it's circulation and translation across global cultures. Salomon, a multilingual promoter of new standardized program for manual training, based his curricula on traditional handcrqafts, particularly Swedish woodworking. He and his followers claimed that the integration of manual training and craft work provided primary and secondary educators with an opportunity to cultivate the mental, but also the physical, and tangentially, the spiritual, health of children. While historians have examined the networks who came together in person to train at his slöjd school for educators in western Sweden, no one has mapped the international community he cultivated over decades of letter writing. Additionally, while the circulation of his ideas in Britain and Germany, as well as the northeastern United States has been placed in a broader narrative of "western" education reform in the Progressive or late Victorian era, no one has examined the correspondence for evidence of the program's wider international appeal beyond Europe and North America. This paper fills this gap by examining the breadth of his reach through active correspondence with educators in Asia (Japan), South America (Brazil), and Africa (South Africa and Zimbabwe). As such, this research presents an opportunity to map the international communities of education reformers active at the turn of the last century, compare and contrast their understandings of and interpretations of "holistic" education, and reveal the ways manual formation was understood to be foundational to the healthy development of children.Keywords: history of education, history of medicine and psychiatry, child health, child formation, internationalism
Procedia PDF Downloads 105