Search results for: accelerogram synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2169

Search results for: accelerogram synthesis

1419 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 82
1418 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs

Authors: Shasha Lv, Zhengcao Li

Abstract:

Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.

Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis

Procedia PDF Downloads 273
1417 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors

Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub

Abstract:

Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.

Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance

Procedia PDF Downloads 271
1416 Towards Competence-Based Regulatory Sciences Education in Sub-Saharan Africa: Identification of Competencies

Authors: Abigail Ekeigwe, Bethany McGowan, Loran C. Parker, Stephen Byrn, Kari L. Clase

Abstract:

There are growing calls in the literature to develop and implement competency-based regulatory sciences education (CBRSE) in sub-Saharan Africa to expand and create a pipeline of a competent workforce of regulatory scientists. A defined competence framework is an essential component in developing competency-based education. However, such a competence framework is not available for regulatory scientists in sub-Saharan Africa. The purpose of this research is to identify entry-level competencies for inclusion in a competency framework for regulatory scientists in sub-Saharan Africa as a first step in developing CBRSE. The team systematically reviewed the literature following the PRISMA guidelines for systematic reviews and based on a pre-registered protocol on Open Science Framework (OSF). The protocol has the search strategy and the inclusion and exclusion criteria for publications. All included publications were coded to identify entry-level competencies for regulatory scientists. The team deductively coded the publications included in the study using the 'framework synthesis' model for systematic literature review. The World Health Organization’s conceptualization of competence guided the review and thematic synthesis. Topic and thematic codings were done using NVivo 12™ software. Based on the search strategy in the protocol, 2345 publications were retrieved. Twenty-two (n=22) of the retrieved publications met all the inclusion criteria for the research. Topic and thematic coding of the publications yielded three main domains of competence: knowledge, skills, and enabling behaviors. The knowledge domain has three sub-domains: administrative, regulatory governance/framework, and scientific knowledge. The skills domain has two sub-domains: functional and technical skills. Identification of competencies is the primal step that serves as a bedrock for curriculum development and competency-based education. The competencies identified in this research will help policymakers, educators, institutions, and international development partners design and implement competence-based regulatory science education in sub-Saharan Africa, ultimately leading to access to safe, quality, and effective medical products.

Keywords: competence-based regulatory science education, competencies, systematic review, sub-Saharan Africa

Procedia PDF Downloads 195
1415 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties

Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon

Abstract:

At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.

Keywords: inorganic oxides, electrochromic, photochromic, thermochromic

Procedia PDF Downloads 221
1414 Preparation of MgO Nanoparticles by Green Methods

Authors: Maryam Sabbaghan, Pegah Sofalgar

Abstract:

Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm.

Keywords: MgO, ionic liquid, nanoparticles, green chemistry

Procedia PDF Downloads 290
1413 Synthesis of Monocyclic, Bicyclic, and Benzocyclobutene Amino Endoperoxides through Visible Light Catalysis

Authors: Enoch Kudoahor, Nan Zheng

Abstract:

We describe the use of readily available self-doped TiO2 and visible light, under a mild condition to synthesize a class of monocyclic, bicyclic, and benzocyclobutene amino compounds containing the endoperoxide bridges; their derivatives and further test their effective clinical activities against malaria, cancer, and their resistances. Considering their stable under photooxidation conditions and recyclability, we use a self-doped TiO2 under a visible condition to synthesize these classes of amino endoperoxides. These amino endoperoxides are stable over a period compared to classes of endoperoxides.

Keywords: catalysis, endoperoxides, titanium dioxide, visible light

Procedia PDF Downloads 154
1412 Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications

Authors: Nitu Chhikaraa, S. B. Tyagia, Kiran Jainb, Mamta Kharkwala

Abstract:

The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM.

Keywords: PL, UV, XRD, TEM

Procedia PDF Downloads 376
1411 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method

Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad

Abstract:

Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.

Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method

Procedia PDF Downloads 373
1410 Synthesis and Characterization of Non-Aqueous Electrodeposited ZnSe Thin Film

Authors: S. R. Kumar, Shashikant Rajpal

Abstract:

A nanocrystalline thin film of ZnSe was successfully electrodeposited on copper substrate using a non-aqueous solution and subsequently annealed in air at 400°C. XRD analysis indicates the polycrystalline deposit of (111) plane in both the cases. The sharpness of the peak increases due to annealing of the film and average grain size increases to 20 nm to 27nm. SEM photograph indicate that grains are uniform and densely distributed over the surface. Due to annealing the average grain size increased by 20%. The EDS spectroscopy shows the ratio of Zn & Se is 1.1 in case of annealed film. AFM analysis indicates the average roughness of the film reduces from 181nm to 165nm due to annealing of the film. The bandgap also decreases from 2.71eV to 2.62eV.

Keywords: electrodeposition, non-aqueous medium, SEM, XRD

Procedia PDF Downloads 486
1409 Synthesis and Biological Activity Evaluation of U Complexes

Authors: Mohammad Kazem Mohammadi

Abstract:

The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.

Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D

Procedia PDF Downloads 470
1408 Synthesis and Characterization of pH-Responsive Nanocarriers Based on POEOMA-b-PDPA Block Copolymers for RNA Delivery

Authors: Bruno Baptista, Andreia S. R. Oliveira, Patricia V. Mendonca, Jorge F. J. Coelho, Fani Sousa

Abstract:

Drug delivery systems are designed to allow adequate protection and controlled delivery of drugs to specific locations. These systems aim to reduce side effects and control the biodistribution profile of drugs, thus improving therapeutic efficacy. This study involved the synthesis of polymeric nanoparticles, based on amphiphilic diblock copolymers, comprising a biocompatible, poly (oligo (ethylene oxide) methyl ether methacrylate (POEOMA) as hydrophilic segment and a pH-sensitive block, the poly (2-diisopropylamino)ethyl methacrylate) (PDPA). The objective of this work was the development of polymeric pH-responsive nanoparticles to encapsulate and carry small RNAs as a model to further develop non-coding RNAs delivery systems with therapeutic value. The responsiveness of PDPA to pH allows the electrostatic interaction of these copolymers with nucleic acids at acidic pH, as a result of the protonation of the tertiary amine groups of this polymer at pH values below its pKa (around 6.2). Initially, the molecular weight parameters and chemical structure of the block copolymers were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) spectroscopy, respectively. Then, the complexation with small RNAs was verified, generating polyplexes with sizes ranging from 300 to 600 nm and with encapsulation efficiencies around 80%, depending on the molecular weight of the polymers, their composition, and concentration used. The effect of pH on the morphology of nanoparticles was evaluated by scanning electron microscopy (SEM) being verified that at higher pH values, particles tend to lose their spherical shape. Since this work aims to develop systems for the delivery of non-coding RNAs, studies on RNA protection (contact with RNase, FBS, and Trypsin) and cell viability were also carried out. It was found that they induce some protection against constituents of the cellular environment and have no cellular toxicity. In summary, this research work contributes to the development of pH-sensitive polymers, capable of protecting and encapsulating RNA, in a relatively simple and efficient manner, to further be applied on drug delivery to specific sites where pH may have a critical role, as it can occur in several cancer environments.

Keywords: drug delivery systems, pH-responsive polymers, POEOMA-b-PDPA, small RNAs

Procedia PDF Downloads 259
1407 The Menu Planning Problem: A Systematic Literature Review

Authors: Dorra Kallel, Ines Kanoun, Diala Dhouib

Abstract:

This paper elaborates a Systematic Literature Review SLR) to select the most outstanding studies that address the Menu Planning Problem (MPP) and to classify them according to the to the three following criteria: the used methods, types of patients and the required constraints. At first, a set of 4165 studies was selected. After applying the SLR’s guidelines, this collection was filtered to 13 studies using specific inclusion and exclusion criteria as well as an accurate analysis of each study. Second, the selected papers were invested to answer the proposed research questions. Finally, data synthesis and new perspectives for future works are incorporated in the closing section.

Keywords: Menu Planning Problem (MPP), Systematic Literature Review (SLR), classification, exact and approaches methods

Procedia PDF Downloads 280
1406 Synthesis and Antimicrobial Activity of Tolyloxy Derived Oxadiazoles

Authors: Shivkanya Fuloria, Neeraj Kumar Fuloria, Sokinder Kumar

Abstract:

m-Cresol and oxadiazoles are the potent antimicrobial moieties. 2-(m-Tolyloxy)acetohydrazide (1) on cyclization with aromatic acids yielded 2-(aryl)-5-(m-tolyloxymethyl)-1,3,4-oxadiazole (1A-E). The structures of newer oxadiazoles were confirmed by elemental and spectral analysis. The newer compounds were evaluated for their antimicrobial potential. The compound 1E containing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the tolyloxy derived oxadiazoles enhanced their antimicrobial potential.

Keywords: antibacterial, cresol, hydrazide, oxadiazoles

Procedia PDF Downloads 458
1405 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant

Authors: Uma Shanker, Vidhisha Jassal

Abstract:

A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.

Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles

Procedia PDF Downloads 526
1404 Synthesis and Pharmacological Activity of Some Oxyindole Derivatives

Authors: Vivek Singh Bhadauria, Abhishek Pandey

Abstract:

Indole-2,3-diones are known for their various biological activities. By suitable control of a substituent, different novel indole-2,3-diones were synthesized. In this present study, various Schiff and Mannich bases were synthesized and characterized, and evaluated their for different pharmacological activities. The compounds were prepared by reacting indole-2,3-dione with benzyl chloride and 4-substituted thiosemicarbazides. All the synthesized compounds were characterized by the TLC, MP, Elemental analysis, FTIR, 1H-NMR and Mass spectroscopy. The compounds have been evaluated for their anticancer, antituberculosis, anticonvulsant, antiinflammatory as well as anti-SARS activity and the results are presented. Some of compounds possessed different pharmacological activity at a concentration of 200 mg/kg body weight and even at lower concentration.

Keywords: indoles, isatin, NMR, biological activities

Procedia PDF Downloads 355
1403 Structural and Luminescent Properties of EU Doped SrY₂O₄ Phosphors

Authors: Ruby Priya, O. P. Pandey

Abstract:

Herein, we report the structural and luminescent properties of undoped and Eu doped SrY₂O₄ phosphors. The phosphors are synthesized via the combustion synthesis route using glycine as a fuel. The structural, morphological, and optical characterizations are done via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescent (PL) techniques. The pure phase SrY₂O₄ is obtained at 1100℃, below which impure phases such as Y₂O₃ and SrO were dominant. All the phosphors are excited under UV excitation and exhibited intense emission around 611 nm, which is the typical transition of Eu ions. The phase formation of the synthesized phosphors is studied via analyzing XRD patterns. The as-synthesized phosphors find tremendous applications in optoelectronic devices, light-emitting diodes, and sensors.

Keywords: combustion, europium, glycine, luminescence

Procedia PDF Downloads 157
1402 Diabetes and Medical Plant's Treatment: Ethnobotanical Studies Carried out in Morocco

Authors: Jamila Fakchich, Mostafa Jamila Lazaar Elachouri, Lakhder Fakchich, Fatna Ouali, Abd Errazzak Belkacem

Abstract:

Diabetes is a chronic metabolic disease that has a significant impact on the health, quality of life, and life expectancy of patients as well as the health care system. By its nature diabetes, is a multisystem disease with wide-ranging complication that span nearly all region of the body. This epidemic problem, however, is not unique to the industrialized society, but has also hardly struck the developing countries. In Morocco, as developing country, there is an epidemic rise in diabetes, with ensuing concern about the management and control of this disease; it began a chronic burdensome disease of largely middle-aged and elderly people, with a long course and serious complications often resulting in high death-rate, the treatment of diabetes spent vast amount of resources including medicines, diets, physical training. Treatment of this disease is considered problematic due to the lack of effective and safe drugs capable of inducing sustained clinical, biochemical, and histological cure. In Moroccan society, the phytoremedies are some times the only affordable sources of healthcare, particularly for the people in remote areas. In this paper, we present a synthesis work obtained from the ethnobotanical data reported in different specialized journals. A Synthesis of four published ethnobotanical studies that have been carried out in different region of Morocco by different team seekers during the period from 1997 to 2015. Medicinal plants inventoried by different seekers in four Moroccan’s areas have been regrouped and codified, then, Factorial Analysis (FA) and Principal Components Analysis (PCA) are used to analyse the aggregated data from the four studies and plants are classified according to their frequency of use by population. Our work deals with an attempt to gather information on some traditional uses of medicinal plants from different regions of Morocco, also, it was designed to give a set of medicinal plants commonly used by Moroccan people in the treatment of diabetes; In this paper, we intended to provide a basic knowledge about plant species used by Moroccan society for treatment of diabetes. One of the most interesting aspects of this type of works is to assess the relative cultural importance of medicinal plants for specific illnesses and exploring its usefulness in the context of diabetes.

Keywords: Morocco, medicinal plants, ethnobotanical, diabetes, phytoremedies

Procedia PDF Downloads 332
1401 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine

Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin

Abstract:

TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).

Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties

Procedia PDF Downloads 500
1400 Synthesis and Characterization of PVDF, FG, PTFE, and PES Membrane Distillation Modified with Silver Nanoparticles

Authors: Lopez J., Mehrvar M., Quinones E., Suarez A., RomeroC.

Abstract:

The Silver Nanoparticles (AgNP) are used as deliver of heat on surface of Membrane Distillation in order to fight against Thermal Polarization and improving the Desalination Process. In this study AgNPwere deposited by dip coating process over PVDF, FG hydrophilic, and PTFE hydrophobic commercial membranes as substrate. Membranes were characterized by SEM, EDS, contact angle, Pore size distributionand using a UV lamp and a thermal camera were measured the performance of heat deliver. The presence of AgNP 50 – 150 nm and the increase in absorption of energy over membrane were verified.

Keywords: silver nanoparticles, membrane distillation, plasmon effect, heat deliver

Procedia PDF Downloads 125
1399 International Tourism Development in Georgia: Problems and Challenges

Authors: Merabi Khokhobaia

Abstract:

The aim of the investigation is definition of economic importance of tourism, evaluation of tourism’s influence on the economy of Georgia. Tourism in the world, as well, as in Georgia became one of the most significant activities. The outlook for the international arrivals in Georgia is highly optimistic. Increase of international travelers is an additional opportunity for Georgia in case of creating more jobs and generate incomes. The country has unique cultural heritage and traditions, there are many cultural monuments in Georgia which are significant precondition for the development of tourism. Despite the factors mentioned above, there are challenges and problems, development of infrastructure, quality of services, development of tourist products and etc. In the work has been used induction, deduction, analysis, synthesis, quantitative-based research technique.

Keywords: culture, development, economy, industry, tourism

Procedia PDF Downloads 284
1398 Pyrazolylpyrazolines: Design, Synthesis and Biological Evaluation as Dual Acting Antimalarial-Antileishmanial Agents

Authors: Adnan Bekhit, Eskedar Lodebo, Ariaya Hymete, Hanan Ragab, Alaa El-Din Bekhit

Abstract:

Malaria and leishmaniasis have emerged as serious universal health problems throughout history of mankind. According to the WHO 2008 malarial report, half of the world population is at risk of malarial infection with an estimate of 1 million deaths occurring annually mainly in the African region. Furthermore, 12-15 million people are infected with Leishmaniasis worldwide. Despite the continuous introduction of a large number of agents for the treatment of malaria, there is still unmet medical needs due to the emergence of resistance. Resistance has occurred for almost all therapeutic agents approved for the treatment of malaria. Accordingly, it was the aim of this work to design and synthesis a group of antimalarial-antileshmanial agents that would show inhibitory activity against chloroquine-resistant strain of Plasmodium falciparum. The synthesized compounds were designed to contain a pyrazolylpyrazoline moiety having an aromatic group (p-tolyl or p-chlorophenyl) at N1-position of one pyrazoline ring due to the reports of promising activities of such compounds. A formyl or acyl substituent was introduced at the N1-position of the other pyrazoline ring, to investigate the effect of bulkiness of acyl substituents at this position. The synthesized compounds were evaluated for their in-vivo antimalarial activity against Plasmodium berghei infected mice at dose levels of 20 and 30 mg/Kg. the two most active compounds were evaluated for their antimalarial activity against chloroquin-resistant strain (RKL9) of Plasmodium falciparum. In addition, the synthesized compounds were tested for their in-vitro antileshmanial activity against Leishmania aethiopica promastigotes and amastigotes. For both antimalarial and antileishmanial activities, compounds having an N1-p-tolyl group at the first pyrazoline ring did not require bulkiness at the second pyrazoline ring nitrogen where the compound bearing an acetyl group proved to be the most active of the whole series. On the other hand, bulkiness at the N1-position of the second pyazoline ring was necessary in case of compounds carrying the p-chlorophenyl group, where the two derivatives having an N1-butanoyl and an N1-benzoyl moieties at the second pyrazoline showed the best activity. Furthermore, the toxicity of the active compounds were tested and were proved to be non-toxic at 125, 250 and 500 mg/Kg. In addition, docking of the most active compound (having a p-tolyl group at the first pyrazoline-N and an acetyl moiety on the other pyrazoline-N) was performed against dihydrofolate reductase enzyme.

Keywords: pyrazoline derivatives, in-vivo antimalarial activity, docking, dihydrofolate reductase

Procedia PDF Downloads 341
1397 Mixotrophic Growth as a Tool for Increasing Polyhydroxyalkanoates (PHA) Production in Cyanobacteria

Authors: Zuzana Sedrlova, Eva Slaninova, Ines Fritz, Christina Daffert, Stanislav Obruca

Abstract:

Cyanobacteria are ecologically extremely important phototrophic gram-negative bacteria capable of oxygenic photosynthesis. They synthesize many interesting metabolites such as glycogen, carotenoids, but the most interesting metabolites are polyhydroxyalkanoates (PHA). The main advantage of cyanobacteria is the fact they do not require costly organic substrate and, oppositely, cyanobacteria can fix CO₂. PHA serves primarily as a carbon and energy source and occurs in the form of intracellular granules in bacterial cells. It is possible, PHA helps cyanobacteria to survive stress conditions since increased PHA synthesis was observed during cultivation in stress conditions. PHA is microbial biopolymers that are biodegradable with similar properties as petrochemical synthetic plastics. Production of PHA by heterotrophic bacteria is expensive; for price reduction waste materials as input, materials are used. Positively, cyanobacteria principally do not require organic carbon substrate since they are capable of CO₂ fixation. In this work, we demonstrated that stress conditions lead to the highest obtained yields of PHA in cyanobacterial cultures. Two cyanobacterial cultures from genera Synechocystis were used in this work. Cultivations were performed either in Erlenmayer flask or in tube multicultivator. Multiple stressors were applied on cyanobacterial cultures, and stressors include PHA precursors. PHA precursors are chemical substances and some of them do not occur naturally in the environment. Cultivation with the same PHA precursors in the same concentration led to a 1,6x higher amount of PHA when a multicultivator was used. The highest amount of PHA reached 25 % of PHA in dry cyanobacterial biomass. Both strains are capable of co-polymer synthesis in the presence of their structural precursor. The composition of co-polymer differs in Synechocystis sp. PCC 6803 and Synechocystis salina CCALA 192. Synechocystis sp. PCC 6803 cultivated with γ-butyrolakton accumulated co-polymer of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) the composition of the copolymer was 56 % of 4HB and 44 % of 3HB. The total amount of PHA, as well as yield of biomass, was lower than in control due to the toxic properties of γ-butyrolakton. Funding: This study was partly funded by the project GA19- 19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), a project I 4082-B25. This work was supported by Brno, Ph.D. Talent – Funded by the Brno City Municipality.

Keywords: co-polymer, cyanobacteria, PHA, synechocystis

Procedia PDF Downloads 202
1396 Oleic Acid Enhances Hippocampal Synaptic Efficacy

Authors: Rema Vazhappilly, Tapas Das

Abstract:

Oleic acid is a cis unsaturated fatty acid and is known to be a partially essential fatty acid due to its limited endogenous synthesis during pregnancy and lactation. Previous studies have demonstrated the role of oleic acid in neuronal differentiation and brain phospholipid synthesis. These evidences indicate a major role for oleic acid in learning and memory. Interestingly, oleic acid has been shown to enhance hippocampal long term potentiation (LTP), the physiological correlate of long term synaptic plasticity. However the effect of oleic acid on short term synaptic plasticity has not been investigated. Short term potentiation (STP) is the physiological correlate of short term synaptic plasticity which is the key underlying molecular mechanism of short term memory and neuronal information processing. STP in the hippocampal CA1 region has been known to require the activation of N-methyl-D-aspartate receptors (NMDARs). The NMDAR dependent hippocampal STP as a potential mechanism for short term memory has been a subject of intense interest for the past few years. Therefore in the present study the effect of oleic acid on NMDAR dependent hippocampal STP was determined in mouse hippocampal slices (in vitro) using Multi-electrode array system. STP was induced by weak tetanic Stimulation (one train of 100 Hz stimulations for 0.1s) of the Schaffer collaterals of CA1 region of the hippocampus in slices treated with different concentrations of oleic acid in presence or absence of NMDAR antagonist D-AP5 (30 µM) . Oleic acid at 20 (mean increase in fEPSP amplitude = ~135 % Vs. Control = 100%; P<0.001) and 30 µM (mean increase in fEPSP amplitude = ~ 280% Vs. Control = 100%); P<0.001) significantly enhanced the STP following weak tetanic stimulation. Lower oleic acid concentrations at 10 µM did not modify the hippocampal STP induced by weak tetanic stimulation. The hippocampal STP induced by weak tetanic stimulation was completely blocked by the NMDA receptor antagonist D-AP5 (30µM) in both oleic acid and control treated hippocampal slices. This lead to the conclusion that the hippocampal STP elicited by weak tetanic stimulation and enhanced by oleic acid was NMDAR dependent. Together these findings suggest that oleic acid may enhance the short term memory and neuronal information processing through the modulation of NMDAR dependent hippocampal short-term synaptic plasticity. In conclusion this study suggests the possible role of oleic acid to prevent the short term memory loss and impaired neuronal function throughout development.

Keywords: oleic acid, short-term potentiation, memory, field excitatory post synaptic potentials, NMDA receptor

Procedia PDF Downloads 335
1395 Prosody Generation in Neutral Speech Storytelling Application Using Tilt Model

Authors: Manjare Chandraprabha A., S. D. Shirbahadurkar, Manjare Anil S., Paithne Ajay N.

Abstract:

This paper proposes Intonation Modeling for Prosody generation in Neutral speech for Marathi (language spoken in Maharashtra, India) story telling applications. Nowadays audio story telling devices are very eminent for children. In this paper, we proposed tilt model for stressed words in Marathi for speech modification. Tilt model predicts modification in tone of neutral speech. GMM is used to identify stressed words for modification.

Keywords: tilt model, fundamental frequency, statistical parametric speech synthesis, GMM

Procedia PDF Downloads 392
1394 Preparation of Nano-Sized Samarium-Doped Yttrium Aluminum Garnet

Authors: M. Tabatabaee, N. Binavayan, M. R. Nateghi

Abstract:

In this research nano-size of yttrium aluminum garnet (YAG) containing lanthanide metals was synthesized by the sol-gel method in presente citric acid as a complexing agent. Samarium (III) was used to synthesis of YAG:M3+. The prepared powders were characterized by powder X-ray diffraction (PXRD). The size distribution and morphology of the samples were analyzed by scanning electron microscopy (SEM). XRD results show that Sm, La, and ce doped YAG crystallizes in the cubic system and additional peaks compared to pure YAG can be assigned to the presence of Sm in the synthesize YAG. The SEM images show possess spherical nano-sized particle with average 50 nm in diameter.

Keywords: citric acid, nano particle, samarium, yttrium aluminum garnet

Procedia PDF Downloads 303
1393 Synthesis of Nanoparticle Mordenite Zeolite for Dimethyl Ether Carbonylation

Authors: Zhang Haitao

Abstract:

The different size of nanoparticle mordenite zeolites were prepared by adding different soft template during hydrothermal process for carbonylation of dimethyl ether (DME) to methyl acetate (MA). The catalysts were characterized by X-ray diffraction, Ar adsorption-desorption, high-resolution transmission electron microscopy, NH3-temperature programmed desorption, scanning electron microscopy and Thermogravimetric. The characterization results confirmed that mordenite zeolites with small nanoparticle showed more strong acid sites which was the active site for carbonylation thus promoting conversion of DME and MA selectivity. Furthermore, the nanoparticle mordenite had increased the mass transfer efficiency which could suppress the formation of coke.

Keywords: nanoparticle mordenite, carbonylation, dimethyl ether, methyl acetate

Procedia PDF Downloads 139
1392 Synthesis and Characterization of Zeolite/Fe3O4 Nanocomposite Material and Investigation of Its Catalytic Reaction

Authors: Mojgan Zendehdel, Safura Molla Mohammad Zamani

Abstract:

In this paper, Fe3O4/NaY zeolite nanocomposite with different molar ratio were successfully synthesized and characterized using FT-IR, XRD, TGA, SEM and VSM techniques. The SEM graphs showed that much of Fe3O4 was successfully coated by the NaY zeolite layer. Also, the results show that the magnetism of the products is stable with added zeolite. The catalytic effect of nanocomposite investigated for esterification reaction under solvent-free conditions. Hence, the effect of the catalyst amount, reaction time, reaction temperature and reusability of catalyst were considered and nanocomposite that created from zeolite and 16.6 percent of Fe3O4 showed the highest yield. The catalyst can be easily separated from reaction with the magnet and it can also be used for several times.

Keywords: zeolite, magnetic, nanocompsite, esterification

Procedia PDF Downloads 461
1391 Design and Synthesis of Gradient Nanocomposite Materials

Authors: Pu Ying-Chih, Yang Yin-Ju, Hang Jian-Yi, Jang Guang-Way

Abstract:

Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented.

Keywords: Gradient, Hybrid, Nanocomposite, Organic-Inorganic

Procedia PDF Downloads 506
1390 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application

Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko

Abstract:

During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.

Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity

Procedia PDF Downloads 382