Search results for: Bal Deep Sharma
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2653

Search results for: Bal Deep Sharma

1903 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects

Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh

Abstract:

The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.

Keywords: deep learning, opinion mining, natural language processing, sentiment analysis

Procedia PDF Downloads 172
1902 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 134
1901 Participatory Testing of Precision Fertilizer Management Technologies in Mid-Hills of Nepal

Authors: Kedar Nath Nepal, Dyutiman Choudhary, Naba Raj Pandit, Yam Gahire

Abstract:

Crop fertilizer recommendations are outdated as these are based on the response trails conducted over half a century ago. Further, these recommendations were based on the response trials conducted over large geographical area ignoring the large spatial variability in indigenous nutrient supplying capacity of soils typical of most smallholder systems. Application of fertilizer following such blanket recommendation in fields with varying native nutrient supply capacity leads to under application in some places and over application in others leading to reduced nutrient-use-efficiency (NUE), loss of profitability, and increased environmental risks associated with loss of unutilized nutrient through emissions or leaching. Opportunities exist to further increase yield and profitability through a significant gain in fertilizer use efficiency with commercialization of affordable and precise application technologies. We conducted participatory trails in Maize (Zea Mays), Cauliflower (Brassica oleracea var. botrytis) and Tomato (Solanum lycopersicum) in Mid Hills of Nepal to evaluate the efficacy of Urea Deep Placement (UDP and Polymer Coated Urea (PCU);. UDP contains 46% of N having individual briquette size 2.7 gm each and PCU contains 44% of N . Both PCU and urea briquette applied at reduced amount (100 kg N/ha) during planting produced similar yields (p>0.05) compared with regular urea (200 Kg N/ha). . These fertilizers also reduced N fertilizer by 35 - 50% over government blanket recommendations. Further, PCU and urea briquette increased farmer’s net income by USD 60 to 80.

Keywords: high efficiency fertilizers, urea deep placement, briquette polymer coated urea, zea mays, brassica, lycopersicum, Nepal

Procedia PDF Downloads 174
1900 Subthalamic Nucleus in Adult Human Cadaveric Brain: A Morphometric Study

Authors: Mangala Kohli, P. A. Athira, Reeha Mahajan

Abstract:

The subthalamic nucleus (STN) is a biconvex nucleus situated in the diencephalon. The knowledge of the morphometry of the subthalamic nucleus is essential for accurate targeting of the nucleus during Deep Brain Stimulation. The present study aims to note the morphometry of the subthalamic nucleus in both the cerebral hemispheres which will prove to be of great value to radiologists and neurosurgeons. A cross‐sectional observational study was conducted in the Departments of Anatomy and Forensic Medicine, Lady Hardinge Medical College & Associated Hospitals, New Delhi on thirty adult cadaveric brain specimens of unclaimed and donated corpses. The specimens were categorized into 3 age groups: 20-35, 35-50 and above 50 years. All samples were collected after following the standard protocol for ethical clearance. The morphometric study of 60 subthalamic nucleus was thus conducted. Transverse section of the brain was made at a plane 4mm ventral to the plane containing mid commissural point. The dimensions of the subthalamic nucleus were measured bilaterally with the aid of digital Vernier caliper and magnifying glass. In the present study, the mean length and width and AC-PC length of the subthalamic nucleus was recorded on the right and left side in Group A, B and C. On comparison of mean of subthalamic nucleus dimensions between the right and left side in Group C, no statistically significant difference was observed. The length and width of subthalamic nucleus measured in the 3 age groups were compared with each other and the p value calculated. There was no statistically significant difference between the dimensions of Group A and B, Group B and C as well as Group A and C. The present study reveals that there is no significant reduction in the size of the nucleus was noted with increasing age. Thus, the values obtained in the present study can be used as a reference for various invasive and non-invasive procedures on subthalamic nucleus.

Keywords: cerebral hemisphere, deep brain stimulation, morphometry, subthalamic nucleus

Procedia PDF Downloads 186
1899 Detection of Heroin and Its Metabolites in Urine Samples: A Chemiluminescence Approach

Authors: Sonu Gandhi, Neena Capalash, Prince Sharma, C. Raman Suri

Abstract:

A sensitive chemiluminescence immunoassay (CIA) for heroin and its major metabolites is reported. The method is based on the competitive reaction of horseradish peroxidase (HRP)-labeled anti-MAM antibody and free drug in spiked urine samples. A hapten-protein conjugate was synthesized by using acidic derivative of monoacetyl morphine (MAM) coupled to carrier protein BSA and was used as an immunogen for the generation of anti-MAM (monoacetyl morphine) antibody. A high titer of antibody (1:64,0000) was obtained and the relative affinity constant (Kaff) of antibody was 3.1×107 l/mol. Under the optimal conditions, linear range and reactivity for heroin, mono acetyl morphine (MAM), morphine and codeine were 0.08, 0.09, 0.095 and 0.092 ng/mL respectively. The developed chemiluminescence inhibition assay could detect heroin and its metabolites in standard and urine samples up to 0.01 ng/ml.

Keywords: heroin, metabolites, chemiluminescence immunoassay, horse radish peroxidase

Procedia PDF Downloads 272
1898 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 47
1897 Inverter Based Gain-Boosting Fully Differential CMOS Amplifier

Authors: Alpana Agarwal, Akhil Sharma

Abstract:

This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.

Keywords: CMOS amplifier, gain boosting, inverter-based amplifier, self-biased inverter

Procedia PDF Downloads 304
1896 Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System

Authors: K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai

Abstract:

This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the Distance Optimization Technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.

Keywords: artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision, free trajectories

Procedia PDF Downloads 375
1895 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE

Procedia PDF Downloads 101
1894 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 173
1893 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 172
1892 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Authors: Motahar Reza, Rajni Chahal, Neha Sharma

Abstract:

This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.

Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation

Procedia PDF Downloads 401
1891 Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida

Authors: Kunwar D. Yadav, Dayanand Sharma

Abstract:

Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and Eisenia foetida as earthworm spices. The vermicompost reactor of 0.3 m3 capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg).

Keywords: cow dung, Eisenia foetida, textile sludge, vermicompost

Procedia PDF Downloads 215
1890 Human Beta Defensin 1 as Potential Antimycobacterial Agent against Active and Dormant Tubercle Bacilli

Authors: Richa Sharma, Uma Nahar, Sadhna Sharma, Indu Verma

Abstract:

Counteracting the deadly pathogen Mycobacterium tuberculosis (M. tb) effectively is still a global challenge. Scrutinizing alternative weapons like antimicrobial peptides to strengthen existing tuberculosis artillery is urgently required. Considering the antimycobacterial potential of Human Beta Defensin 1 (HBD-1) along with isoniazid, the present study was designed to explore the ability of HBD-1 to act against active and dormant M. tb. HBD-1 was screened in silico using antimicrobial peptide prediction servers to identify its short antimicrobial motif. The activity of both HBD-1 and its selected motif (Pep B) was determined at different concentrations against actively growing M. tb in vitro and ex vivo in monocyte derived macrophages (MDMs). Log phase M. tb was grown along with HBD-1 and Pep B for 7 days. M. tb infected MDMs were treated with HBD-1 and Pep B for 72 hours. Thereafter, colony forming unit (CFU) enumeration was performed to determine activity of both peptides against actively growing in vitro and intracellular M. tb. The dormant M. tb models were prepared by following two approaches and treated with different concentrations of HBD-1 and Pep B. Firstly, 20-22 days old M. tbH37Rv was grown in potassium deficient Sauton media for 35 days. The presence of dormant bacilli was confirmed by Nile red staining. Dormant bacilli were further treated with rifampicin, isoniazid, HBD-1 and its motif for 7 days. The effect of both peptides on latent bacilli was assessed by colony forming units (CFU) and most probable number (MPN) enumeration. Secondly, human PBMC granuloma model was prepared by infecting PBMCs seeded on collagen matrix with M. tb(MOI 0.1) for 10 days. Histopathology was done to confirm granuloma formation. The granuloma thus formed was incubated for 72 hours with rifampicin, HBD-1 and Pep B individually. Difference in bacillary load was determined by CFU enumeration. The minimum inhibitory concentrations of HBD-1 and Pep B restricting growth of mycobacteria in vitro were 2μg/ml and 20μg/ml respectively. The intracellular mycobacterial load was reduced significantly by HBD-1 and Pep B at 1μg/ml and 5μg/ml respectively. Nile red positive bacterial population, high MPN/ low CFU count and tolerance to isoniazid, confirmed the formation of potassium deficienybaseddormancy model. HBD-1 (8μg/ml) showed 96% and 99% killing and Pep B (40μg/ml) lowered dormant bacillary load by 68.89% and 92.49% based on CFU and MPN enumeration respectively. Further, H&E stained aggregates of macrophages and lymphocytes, acid fast bacilli surrounded by cellular aggregates and rifampicin resistance, indicated the formation of human granuloma dormancy model. HBD-1 (8μg/ml) led to 81.3% reduction in CFU whereas its motif Pep B (40μg/ml) showed only 54.66% decrease in bacterial load inside granuloma. Thus, the present study indicated that HBD-1 and its motif are effective antimicrobial players against both actively growing and dormant M. tb. They should be further explored to tap their potential to design a powerful weapon for combating tuberculosis.

Keywords: antimicrobial peptides, dormant, human beta defensin 1, tuberculosis

Procedia PDF Downloads 263
1889 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
1888 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 73
1887 Seismic Reflection Highlights of New Miocene Deep Aquifers in Eastern Tunisia Basin (North Africa)

Authors: Mourad Bédir, Sami Khomsi, Hakim Gabtni, Hajer Azaiez, Ramzi Gharsalli, Riadh Chebbi

Abstract:

Eastern Tunisia is a semi-arid area; located in the northern Africa plate; southern Mediterranean side. It is facing water scarcity, overexploitation, and decreasing of water quality of phreatic water table. Water supply and storage will not respond to the demographic and economic growth and demand. In addition, only 5 109 m3 of rainwater from 35 109 m3 per year renewable rain water supply can be retained and remobilized. To remediate this water deficiency, researches had been focused to near new subsurface deep aquifers resources. Among them, Upper Miocene sandstone deposits of Béglia, Saouaf, and Somaa Formations. These sandstones are known for their proven Hydrogeologic and hydrocarbon reservoir characteristics in the Tunisian margin. They represent semi-confined to confined aquifers. This work is based on new integrated approaches of seismic stratigraphy, seismic tectonics, and hydrogeology, to highlight and characterize these reservoirs levels for aquifer exploitation in semi-arid area. As a result, five to six third order sequence deposits had been highlighted. They are composed of multi-layered extended sandstones reservoirs; separated by shales packages. These reservoir deposits represent lowstand and highstand system tracts of these sequences, which represent lowstand and highstand system tracts of these sequences. They constitute important strategic water resources volumes for the region.

Keywords: Tunisia, Hydrogeology, sandstones, basin, seismic, aquifers, modeling

Procedia PDF Downloads 178
1886 A Review of Brain Implant Device: Current Developments and Applications

Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A

Abstract:

The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.

Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson

Procedia PDF Downloads 155
1885 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 78
1884 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results

Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj

Abstract:

Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.

Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters

Procedia PDF Downloads 219
1883 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary

Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori

Abstract:

Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.

Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing

Procedia PDF Downloads 57
1882 Blood Flow in Stenosed Arteries: Analytical and Numerical Study

Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar

Abstract:

Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.

Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics

Procedia PDF Downloads 516
1881 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 182
1880 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 75
1879 A Green Approach towards the Production of CaCO₃ Scaffolds for Bone Tissue Engineering

Authors: Sudhir Kumar Sharma, Abiy D. Woldetsadik, Mazin Magzoub, Ramesh Jagannathan

Abstract:

It is well known that bioactive ceramics exhibit specific biological affinities, especially in the area of tissue re-generation. In this context, we report the development of an eminently scalable, novel, supercritical CO₂ based process for the fabrication of hierarchically porous 'soft' CaCO₃ scaffolds. Porosity at the macro, micro, and nanoscales was obtained through process optimization of the so-called 'coffee-ring effect'. Exposure of these CaCO₃ scaffolds to monocytic THP-1 cells yielded negligible levels of tumor necrosis factor-alpha (TNF-α) thereby confirming the lack of immunogenicity of the scaffolds. ECM protein treatment of the scaffolds showed enhanced adsorption comparable to standard control such as glass. In vitro studies using osteoblast precursor cell line, MC3T3, also demonstrated the cytocompatibility of hierarchical porous CaCO₃ scaffolds.

Keywords: supercritical CO2, CaCO3 scaffolds, coffee-ring effect, ECM proteins

Procedia PDF Downloads 304
1878 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 355
1877 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 414
1876 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments

Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz

Abstract:

Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.

Keywords: LSTMs, streamflow, hyperparameters, hydrology

Procedia PDF Downloads 72
1875 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy

Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen

Abstract:

Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.

Keywords: diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy

Procedia PDF Downloads 319
1874 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties

Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar

Abstract:

Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.

Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature

Procedia PDF Downloads 397