Search results for: method detection limit
14508 MXene-Based Self-Sensing of Damage in Fiber Composites
Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi
Abstract:
Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.Keywords: damage sensing, fiber composites, MXene, self-sensing
Procedia PDF Downloads 12414507 A Comparative-Analytic Study of the Treatises of "I'tiqāDāT" Written by Sheikh Saduq and Sheikh Mufid Concerning the Notions of Monotheism and Divine Justice
Authors: Forough Rahimpour
Abstract:
Following the beginning of the major occultation of Imam Zaman, the Shiite great thinkers and theologians started to identify and elaborate on the fundamental beliefs, the ones which were subject to more elaboration and criticism later throughout the history. Sheikh Saduq in his Treatise on fundamental beliefs selected the most basic Shiite beliefs and through his special method which was based on traditions and narrations, explained his specific views. Sheikh Mufid, on the other hand, dealing with the same topics, applied a method consisted of intellectual-narrative approach and expressed his own views and also evaluated the ideas expressed by Sheikh Saduq. The present study aims to compare and analyze the theological similarities and differences between the views expressed by Saduq and Mufid about the notions of monotheism and dive justice. The main focus in this study is on the two treatises called "I'tiqādāt” and "Tashih al I'tiqādāt "-written by Saduq and Mufid respectively. Although Sheikh Mufid was Saduq's disciple, he sometimes disagreed with Saduq's ideas and sometimes criticized his methodology. DespiteIn Saduq's high status in the science of Hadith, Sheikh Mufid sometimes discredited the Hadiths narrated by him and considered them Khabar-e Vahid (isolated tradition).Keywords: Saduq, Mufid, monotheism, divine justice, treatise of "I'tiqādāt"
Procedia PDF Downloads 14014506 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment
Authors: Beena Sethi
Abstract:
This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis
Procedia PDF Downloads 42414505 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 55314504 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 6714503 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 64414502 Effect of Non-Invasive Electrical Stimulation on Partial Hearing Loss: Pilot Study
Authors: Geetanjali Saggar
Abstract:
Background: Partial hearing loss is the inability to hear effectively as a normal hearing individual whose hearing threshold is 20 dB or better in both ears. Individuals with partial hearing loss may benefit from non-invasive electrical stimulation as a method of therapy and possible intervention. Objective: The project aims to assess and relate the efficacy of electrical stimulation on individuals with partial hearing loss. The study's goal was to evaluate the different sorts of non-invasive electrical stimulation in tinnitus and hearing loss in order to build the framework for future research. Method: In this pilot study, a total of five patients of age group above 50 years were selected with partial hearing loss. The electrical modality of Repetitive Transcranial Magnetic Stimulation (RTMS) was used among the patients and was evaluated using gold questionnaires- HHIA and APHAB for hearing at intervals of 0-7-14 days. The statistical data was analyzed by SPSS software-16. Results: There were not much significant changes in the hearing of the patients when non-invasive electrical modality was applied as an intervention in the partial hearing loss condition. However, there was minimal change in the daily functioning of the patient with the application of intervention. Conclusion: This study concluded that non-invasive electrical stimulation had minimal to no effect on the partial hearing of the patients.Keywords: non-invasive, hearing loss, transcranial magnetic stimulation, partial deafness, transcranial direct current stimulation, tinnitus
Procedia PDF Downloads 2014501 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 73214500 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 6514499 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.Keywords: buoyancy force, friction force, finite volume method, transient natural convection
Procedia PDF Downloads 20214498 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion
Authors: Bharti Saini, Sukanta K. Dash
Abstract:
In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.Keywords: membrane, phase inversion method, polysulfone, porous structure
Procedia PDF Downloads 23814497 The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency
Authors: Samaila Bawa Muazu
Abstract:
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, setting time, simulation
Procedia PDF Downloads 21314496 Repellent Activity of Nanoemulsion Essential Oil of Eucalyptus Globulus Labill on Ephestia kuehniella (Lepidoptera: Pyralidae)
Authors: Lena Emamjomeh, Sohrab Imani
Abstract:
Nowadays, the use of encapsulation technology of pesticides causes an increase in the efficiency and controlled release of these substances. Controlled release by nanoencapsulated formulations allows the essential oil to be used more effectively over a given time interval, suitability to the mode of application and minimization of environmental damage. The essential oil from Eucalyptus globulus exhibited an average yield of 1.19% and presented 1,8-cineol (59.08%) as the major component. Nanoemulsion essential oil was carried out by the method of gum - maltodextrin using homogenization and morphology and size were determined by TEM. Several concentrations were prepared, and then third instar larvae of E.kuehniella were introduced into each treatment. Then, repellent activity was determined after 1, 3 and 24 h from commencement. This study reveals that at a concentration of 1.5 ppm, the nanoemulsion of E. globulus essential oil on the flour disc was shown here to possess more repellent activity (85%) than E.kuehniella compared to natural essential oil (5%) before formulation after 24h. The repellent activity varied with application method concentrations and exposure time. The results showed higher repellent rates in nanoemulsion than in essential oil due to controlled-release formulations allowing smaller quantities of essential oil to be used more effectively over a given time interval. Findings led to the conclusion that encapsulated technology of essential oils can enhance their control release and persistence under controlled conditions.Keywords: nanoemulsion, eucalyptus globulus, ephestia kuehniella, TEM
Procedia PDF Downloads 5514495 From a Distance: A Grounded Theory Study of Incarcerated Filipino Elderly's Separation Anxiety
Authors: Allan B. de Guzman, Rochelle Gabrielle R. Gatan, Ira Bianca Mae G. Gesmundo, Astley Justine H. Golosinda
Abstract:
Background: While in prison, the elderly, like the younger prisoners, face specific problems and deprivations arising directly from their imprisonment, one of which is forced separation from family and loved ones. Despite the numerous studies that examined the impact of separation and separation anxiety on the emotions and behavior of young individuals, little is known about separation anxiety in the elderly population. Objective: This grounded theory study purports to describe the process of separation anxiety among incarcerated Filipino elderly men. Method: Individual interviews and participant observations were conducted with 25 incarcerated elderly Filipino men who are first-time prisoners, sentenced to lifetime imprisonment and were analyzed using constant comparative method. Results: Following Strauss and Corbin’s protocol, a four-part process emerged to describe the studied layer of human experience. The Tectonic Model of Separation Anxiety among incarcerated Filipino elderly men comprises of four phases: Winkling, Wilting, Weeding, and Weaving. Conclusion: This study has inductively and creatively explored the process of separation anxiety among the Filipino incarcerated elderly men. Findings of this study invite nurses and other clinicians to identify developmentally appropriate strategies and interventions for this vulnerable and neglected sector of society.Keywords: elderly, grounded theory, separation anxiety, Filipino, incarcerated
Procedia PDF Downloads 36614494 Commodifying Things Past: Comparative Study of Heritage Tourism Practices in Montenegro and Serbia
Authors: Jovana Vukcevic, Sanja Pekovic, Djurdjica Perovic, Tatjana Stanovcic
Abstract:
This paper presents a critical inquiry into the role of uncomfortable heritage in nation branding with the particular focus on the specificities of the politics of memory, forgetting and revisionism in the post-communist post-Yugoslavia. It addresses legacies of unwanted, ambivalent or unacknowledged past and different strategies employed by the former-Yugoslav states and private actors in “rebranding” their heritage, ensuring its preservation, but re-contextualizing the narrative of the past through contemporary tourism practices. It questions the interplay between nostalgia, heritage and market, and the role of heritage in polishing the history of totalitarian and authoritarian regimes in the Balkans. It argues that in post-socialist Yugoslavia, the necessity to limit correlations with former ideology and the use of the commercial brush in shaping a marketable version of the past instigated the emergence of the profit-oriented heritage practices. Building on that argument, the paper addresses these issues as “commodification” and “disneyfication” of Balkans’ ambivalent heritage, contributing to the analysis of changing forms of memorialisation and heritagization practices in Europe. It questions the process of ‘coming to terms with the past’ through marketable forms of heritage tourism, fetching the boundary between market-driven nostalgia and state-imposed heritage policies. In order to analyse plurality of ways of dealing with controversial, ambivalent and unwanted heritage of dictatorships in the Balkans, the paper considers two prominent examples of heritage commodification in Serbia and Montenegro, and the re-appropriations of those narratives for the nation branding purposes. The first one is the story of the Tito’s Blue Train, the landmark of the socialist past and the symbol of Yugoslavia which has nowadays being used for birthday parties and marriage celebrations, while the second emphasises the unusual business arrangement turning the fortress Mamula, former concentration camp through the Second World War, into a luxurious Mediterranean resort. Questioning how the ‘uneasy’ past was acknowledged and embedded into the official heritage institutions and tourism practices, study examines the changing relation towards the legacies of dictatorships, inviting us to rethink the economic models of the things past. Analysis of these processes should contribute to better understanding of the new mnemonics strategies and (converging?) ways of ‘doing’ past in Europe.Keywords: commodification, heritage tourism, totalitarianism, Serbia, Montenegro
Procedia PDF Downloads 25514493 Short-Term Operation Planning for Energy Management of Exhibition Hall
Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.Keywords: exhibition hall, energy management, predictive model, simulation-based optimization
Procedia PDF Downloads 34114492 Comparison of Selected Behavioural Patterns of German Shepherd Puppies in Open-Field Test by Practical Assessment Report
Authors: Igor Miňo, Lenka Lešková
Abstract:
Over the past 80 years, open-field method has evolved as a commonly used tool for the analysis of animal behaviour. The study was carried out using 50 kennel-reared purebred puppies of the German Shepherd dog breed. All dogs were tested in 5th, 7th, and 9th week of age. For the purpose of behavioural analysis, an open-field evaluation report was designed prior to testing to ensure the most convenient, rapid, and suitable way to assess selected behavioural patterns in field conditions. Onset of vocalisation, intensity of vocalisation, level of physical activity, response to sound, and overall behaviour was monitored in the study. Correlations between measures of height, weight and chest circumference, and behavioural characteristics in the 5th, 7th, and 9th week of age were not statistically significant. Onset of vocalisation, intensity of vocalisation, level of physical activity and response to sound differed on statistically significant level between 5th, 7th, and 9th week of age. Results suggest that our practical assessment report may be used as an applicable method to evaluate the suitability of service dog puppies for future working roles.Keywords: dog, behaviour, open-field, testing
Procedia PDF Downloads 22114491 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant
Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.
Abstract:
The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.Keywords: availability, displacement, vibration, rio-vibro, condition monitoring
Procedia PDF Downloads 9614490 Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 41114489 Memory and Narratives Rereading before and after One Week
Authors: Abigail M. Csik, Gabriel A. Radvansky
Abstract:
As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals.Keywords: memory, event cognition, distributed practice, consolidation
Procedia PDF Downloads 22614488 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal
Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi
Abstract:
One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.Keywords: waste water, pesticides pollution, adsorption, activated carbon
Procedia PDF Downloads 8014487 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 10014486 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 4514485 Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method
Authors: Lavinia Ruta, Ileana Farcasanu
Abstract:
The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications.Keywords: YSD, nanobodies, GFP, Saccharomyces cerevisiae
Procedia PDF Downloads 6614484 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species
Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das
Abstract:
Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker
Procedia PDF Downloads 20214483 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour
Authors: H. Apaza, L. Chévez, H. Loro
Abstract:
Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.Keywords: food, plastic, microplastic, NIR hyperspectral imaging, unmixing
Procedia PDF Downloads 13414482 Blogging vs Paper-and-Pencil Writing: Evidences from an Iranian Academic L2 Setting
Authors: Mehran Memari, Bita Asadi
Abstract:
Second language (L2) classrooms in academic contexts usually consist of learners with diverse L2 proficiency levels. One solution for managing such heterogeneous classes and addressing individual needs of students is to improve learner autonomy by using technological innovations such as blogging. The focus of this study is on investigating the effects of blogging on improving the quality of Iranian university students' writings. For this aim, twenty-six Iranian university students participated in the study. Students in the experimental group (n=13) were required to blog daily while the students in the control group (n=13) were asked to write a daily schedule using paper and pencil. After a 3-month period of instruction, the five last writings of the students from both groups were rated by two experienced raters. Also, students' attitudes toward the traditional method and blogging were surveyed using a questionnaire and a semi-structured interview. The research results showed evidences in favor of the students who used blogging in their writing program. Also, although students in the experimental group found blogging more demanding than the traditional method, they showed an overall positive attitude toward the use of blogging as a way of improving their writing skills. The findings of the study have implications for the incorporation of computer-assisted learning in L2 academic contexts.Keywords: blogging, computer-assisted learning, paper and pencil, writing
Procedia PDF Downloads 40414481 A Mathematical Model Approach Regarding the Children’s Height Development with Fractional Calculus
Authors: Nisa Özge Önal, Kamil Karaçuha, Göksu Hazar Erdinç, Banu Bahar Karaçuha, Ertuğrul Karaçuha
Abstract:
The study aims to use a mathematical approach with the fractional calculus which is developed to have the ability to continuously analyze the factors related to the children’s height development. Until now, tracking the development of the child is getting more important and meaningful. Knowing and determining the factors related to the physical development of the child any desired time would provide better, reliable and accurate results for childcare. In this frame, 7 groups for height percentile curve (3th, 10th, 25th, 50th, 75th, 90th, and 97th) of Turkey are used. By using discrete height data of 0-18 years old children and the least squares method, a continuous curve is developed valid for any time interval. By doing so, in any desired instant, it is possible to find the percentage and location of the child in Percentage Chart. Here, with the help of the fractional calculus theory, a mathematical model is developed. The outcomes of the proposed approach are quite promising compared to the linear and the polynomial method. The approach also yields to predict the expected values of children in the sense of height.Keywords: children growth percentile, children physical development, fractional calculus, linear and polynomial model
Procedia PDF Downloads 15414480 Strength Investigation of Liquefied Petroleum Gas Cylinders: Dynamic Loads
Authors: Moudar Zgoul, Hashem Alkhaldi
Abstract:
A large number of transportable LPG cylinders are manufactured annually for domestic use. These LPG cylinders are manufactured from mild steel and filled maximally with 12.5 kg liquefied gas under internal pressure of 0.6 N/mm² at a temperature of 50°C. Many millions of such LPG cylinders are in daily use mainly, for purposes of space heating, water heating, and cooking. Thereby, they are imposed to severe conditions leading to their failure. Each year not less than 5000 of these LPG cylinders fail, some of those failures cause damage and loss in lives and properties. In this work, LPG cylinders were investigated; Stress calculations and deformations under dynamic (impact) loadings were carried out to simulate the effects of such loads on the cylinders while in service. Analysis of the LPG cylinders was carried out using the finite element method; shell and cylindrical elements were used at the top, bottom, and in middle (weld region), permitting elastic-plastic analysis for a thin-walled LPG cylinder. Variables such as maximum stresses and maximum deflections under the effect of impact loading were investigated in this work. Results showed that the maximum stresses reach 680 MPa when dropped from 3m-height. The maximum radial deformation occurs at the cylinder’s top in case of the top-position impact. This information should be useful for enhancing the strength of such cylinders and to for prolonging their service life.Keywords: dynamic analysis, finite element method, impact load, LPG cylinders
Procedia PDF Downloads 32814479 Perceived Environmental Effects of Charcoal Production among Rural Dwellers in Rainforest and Guinea Savannah Agro-Ecological Zones of Nigeria
Authors: P. O. Eniola, S. O. Odebode
Abstract:
Charcoal production constitutes serious environmental problems to most developing countries of the world. Hence, the study assessed perceived environmental effects of charcoal production (CP) among the rural dwellers in rainforest and guinea savannah (GS) zones of Nigeria. Multi-stage sampling procedure was used to select 83 and 85 charcoal producers in GS and rainforest zones respectively. Eighteen statements on perceived environmental effects of charcoal production were collected. Data was collected through the use of structured interview schedule and analysed using both descriptive and inferential statistics. Descriptive analysis showed that the mean age was 43 years, 90.5% males, 90.6% married and 35.3% of respondents had no formal education. The majority (80.0%) of the respondents make use of earth mound method of CP and 52.9% of respondents produced between 32-32000kg of charcoal per annum. Respondents (62.7%) perceived that charcoal production could lead to erosion, 62.4% reduce the available trees for future use (62.4%) and reduce available air in the environment (54.1%). A significant difference existed in the perceived environmental effects of charcoal production between rainforest and guinea savannah agro-ecological zones (F=14.62). There is a need for the government to quickly work on other available and affordable alternative household energy sources.Keywords: deforestation, energy, earth mound method, environment
Procedia PDF Downloads 398