Search results for: teaching and learning english
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9396

Search results for: teaching and learning english

1746 Implementation and Challenges of Assessment Methods in the Case of Physical Education Class in Some Selected Preparatory Schools of Kirkos Sub-City

Authors: Kibreab Alene Fenite

Abstract:

The purpose of this study is to investigate the implementation and challenges of different assessment methods for physical education class in some selected preparatory schools of kirkos sub city. The participants in this study are teachers, students, department heads and school principals from 4 selected schools. Of the total 8 schools offering in kirkos sub city 4 schools (Dandi Boru, Abiyot Kirse, Assay, and Adey Ababa) are selected by using simple random sampling techniques and from these schools all (100%) of teachers, 100% of department heads and school principals are taken as a sample as their number is manageable. From the total 2520 students, 252 (10%) of students are selected using simple random sampling. Accordingly, 13 teachers, 252 students, 4 department heads and 4 school principals are taken as a sample from the 4 selected schools purposefully. As a method of data gathering tools; questionnaire and interview are employed. To analyze the collected data, both quantitative and qualitative methods are used. The result of the study revealed that assessment in physical education does not implement properly: lack of sufficient materials, inadequate time allotment, large class size, and lack of collaboration and working together of teachers towards assessing the performance of students, absence of guidelines to assess the physical education subject, no different assessment method that is implementing on students with disabilities in line with their special need are found as major challenges in implementing the current assessment method of physical education. To overcome these problems the following recommendations have been forwarded. These are: the necessary facilities and equipment should be available; In order to make reliable, accurate, objective and relevant assessment, teachers of physical education should be familiarized with different assessment techniques; Physical education assessment guidelines should be prepared, and guidelines should include different types of assessment methods; qualified teachers should be employed, and different teaching room must be build.

Keywords: assessment, challenges, equipment, guidelines, implementation, performance

Procedia PDF Downloads 281
1745 Social Enterprises in India: Conceptualization and Challenges

Authors: Prajakta Khare

Abstract:

There is a huge number of social enterprises operating in India, across all enterprise sizes and forms addressing diverse social issues. Some cases such as such as Aravind eye care, Narayana Hridalaya, SEWA have been studied extensively in management literature and are known cases in social entrepreneurship. But there are several smaller social enterprises in India that are not called so per se due to the lack of understanding of the concept. There is a lack of academic research on social entrepreneurship in India and the term ‘social entrepreneurship’ is not yet widely known in the country, even by people working in this field as was found by this study. The present study aims to identify the most prominent form of social enterprises in India, the profile of the entrepreneurs, challenges faced, the lessons (theory and practices) emerging from their functioning and finally the factors contributing to the enterprises’ success. This is a preliminary exploratory study using primary data from 30 social enterprises in India. The study used snow ball sampling and a qualitative analysis. Data was collected from founders of social enterprises through written structured questionnaires, open-ended interviews and field visits to enterprises. The sample covered enterprises across sectors such as environment, affordable education, children’s rights, rain water harvesting, women empowerment etc. The interview questions focused on founder’s background and motivation, qualifications, funding, challenges, founder’s understanding and perspectives on social entrepreneurship, government support, linkages with other organizations etc. apart from several others. The interviews were conducted across 3 languages - Hindi, Marathi, English and were then translated and transcribed. 50% of founders were women and 65% of the total founders were highly qualified with a MBA, PhD or MBBS. The most important challenge faced by these entrepreneurs is recruiting skilled people. When asked about their understanding of the term, founders had diverse perspectives. Also, their understandings about the term social enterprise and social entrepreneur were extremely varied. Some founders identified the terms with doing something good for the society, some thought that every business can be called a social enterprise. 35% of the founders were not aware of the term social entrepreneur/ social entrepreneurship. They said that they could identify themselves as social entrepreneurs after discussions with the researcher. The general perception in India is that ‘NGOs are corrupt’- fighting against this perception to secure funds is also another problem as pointed out by some founders. There are unique challenges that social entrepreneurs in India face, as the political, social, economic environment around them is rapidly changing; and getting adequate support from the government is a problem. The research in its subsequent stages aims to clarify existing, missing and new definitions of the term to provide deeper insights in the terminology and issues relating to Social Entrepreneurship in India.

Keywords: challenges, India, social entrepreneurship, social entrepreneurs

Procedia PDF Downloads 467
1744 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 84
1743 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 116
1742 Sprinting Beyond Sexism and Gender Stereotypes: Indian Women Fans' Experiences in the Sports Fandom

Authors: Siddhi Deshpande, Jo Jo Chacko Eapen

Abstract:

Despite almost half of India’s female population engages in watching sports, their experiences in the sports fandom are concealed by ‘traditional masculinity,’ leading to potential exclusion and harassment. To explore these experiences in-depth, this qualitative study aims to understand what coping strategies Indian women fans employ, to sustain their team identification. Employing criterion sampling, participants were screened using The Sports Spectators Identification Scale (SSIS) to assess team identification and a Brief Sexism Questionnaire to confirm participants’ experience with sexism as it aligns with the purpose of the study. The participants were Indian women who had been following any sport for more than eight years, were fluent in English, and were not professionals in Sports. Ten highly identified fans with gendered experiences were recruited for one-on-one semi-structured, in-depth interviews. The data was analyzed using Interpretive Phenomenological Analysis (IPA) to understand the lived-in experiences of women fans experiencing sexism and gender stereotypes, revealing superordinate themes of (1) Ontogenesis and Emotional Investment; (2) Gendered Expectations and Sexism; (3) Coping Strategies and Resilience; (4) Identity, Femininity, Empowerment; (5) Advocacy for Equality and Inclusivity. The findings reflect that Indian women fans experience social exclusion, harassment, sexualization, and commodification, in both online and offline fandoms, where they are disproportionately targeted with threats, misogynistic comments, and attraction-based assumptions, questioning their ‘authenticity’ as fans due to their gender. Women fans interchange between proactive strategies of assertiveness, humor, and knowledge demonstration with defensive strategies of selective engagement, self-regulatory censorship, and desensitization to deal with sexism. In this interplay, the integration of women’s ‘fan identity’ with their self-concept showcases how being a sports fan adds meaning to their lives, despite the constant scrutiny in a male-dominated space, reflecting that femininity and sports should coexist. As a result, they find refuge in female fan communities due to their similar experiences in the fandom and advocate for an equal and inclusive environment where sports are above gender, and not the other way around. A key practical implication of this research is enabling sports organizations to develop inclusive fan engagement policies that actively encourage female fan participation. This includes sensitizing stadium staff and security personnel, promoting gender-neutral language, and, most importantly, establishing safety protocols to protect female fans from adverse experiences in the fandom.

Keywords: coping strategies, female sports fans, femininity, gendered experiences, team identification

Procedia PDF Downloads 48
1741 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 320
1740 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 409
1739 Analyze Needs for Training on Academic Procrastination Behavior on Students in Indonesia

Authors: Iman Dwi Almunandar, Nellawaty A. Tewu, Anshari Al Ghaniyy

Abstract:

The emergence of academic procrastination behavior among students in Indonesian, especially the students of Faculty of Psychology at YARSI University becomes a habit to be underestimated, so often interfere with the effectiveness of learning process. The lecturers at the Faculty of Psychology YARSI University have very often warned students to be able to do and collect assignments accordance to predetermined deadline. However, they are still violated it. According to researchers, this problem needs to do a proper training for the solution to minimize academic procrastination behavior on students. In this study, researchers conducted analyze needs for deciding whether need the training or not. Number of sample is 30 respondents which being choose with a simple random sampling. Measurement of academic procrastination behavior is using the theory by McCloskey (2011), there are six dimensions: Psychological Belief about Abilities, Distractions, Social Factor of Procrastination, Time Management, Personal Initiative, Laziness. Methods of analyze needs are using Questioner, Interview, Observations, Focus Group Discussion (FGD), Intelligence Tests. The result of analyze needs shows that psychology students generation of 2015 at the Faculty of Psychology YARSI University need for training on Time Management.

Keywords: procrastination, psychology, analyze needs, behavior

Procedia PDF Downloads 381
1738 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
1737 The Role of ChatGPT in Enhancing ENT Surgical Training

Authors: Laura Brennan, Ram Balakumar

Abstract:

ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.

Keywords: artificial intelligence, otolaryngology, surgical training, medical education

Procedia PDF Downloads 159
1736 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 218
1735 Multilabel Classification with Neural Network Ensemble Method

Authors: Sezin Ekşioğlu

Abstract:

Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.

Keywords: multilabel, classification, neural network, KNN

Procedia PDF Downloads 155
1734 Investigating Factors Impacting Student Motivation in Classroom Use of Digital Games

Authors: Max Neu

Abstract:

A large variety of studies on the utilization of games in classroom settings promote positive effects on students motivation for learning. Still, most of those studies rarely can give any specifics about the factors that might lead to changes in students motivation. The undertaken study has been conducted in tandem with the development of a highly classroom-optimized serious game, with the intent of providing a subjectively positive initial contact with the subject of political participation and to enable the development of personal motivation towards further engagement with the topic. The goal of this explorative study was to Identify the factors that influence students motivation towards the subject when serious games are being used in classroom education. Therefor, students that have been exposed to a set of classes in which a classroom optimized serious game has been used. Afterwards, a selection of those have been questioned in guided interviews that have been evaluated through Qualitative Content Analysis. The study indicates that at least 23 factors in the categories, mechanics, content and context potentially influence students motivation to engage with the classes subject. The conclusions are of great value for the further production of classroom games as well as curricula involving digital games in general.

Keywords: formal education, games in classroom, motivation, political education

Procedia PDF Downloads 109
1733 Economic Impact and Benefits of Integrating Augmented Reality Technology in the Healthcare Industry: A Systematic Review

Authors: Brenda Thean I. Lim, Safurah Jaafar

Abstract:

Augmented reality (AR) in the healthcare industry has been gaining popularity in recent years, principally in areas of medical education, patient care and digital health solutions. One of the drivers in deciding to invest in AR technology is the potential economic benefits it could bring for patients and healthcare providers, including the pharmaceutical and medical technology sectors. Works of literature have shown that the benefits and impact of AR technologies have left trails of achievements in improving medical education and patient health outcomes. However, little has been published on the economic impact of AR in healthcare, a very resource-intensive industry. This systematic review was performed on studies focused on the benefits and impact of AR in healthcare to appraise if they meet the founded quality criteria so as to identify relevant publications for an in-depth analysis of the economic impact assessment. The literature search was conducted using multiple databases such as PubMed, Cochrane, Science Direct and Nature. Inclusion criteria include research papers on AR implementation in healthcare, from education to diagnosis and treatment. Only papers written in English language were selected. Studies on AR prototypes were excluded. Although there were many articles that have addressed the benefits of AR in the healthcare industry in the area of medical education, treatment and diagnosis and dental medicine, there were very few publications that identified the specific economic impact of technology within the healthcare industry. There were 13 publications included in the analysis based on the inclusion criteria. Out of the 13 studies, none comprised a systematically comprehensive cost impact evaluation. An outline of the cost-effectiveness and cost-benefit framework was made based on an AR article from another industry as a reference. This systematic review found that while the advancements of AR technology is growing rapidly and industries are starting to adopt them into respective sectors, the technology and its advancements in healthcare were still in their early stages. There are still plenty of room for further advancements and integration of AR into different sectors within the healthcare industry. Future studies will require more comprehensive economic analyses and costing evaluations to enable economic decisions for or against implementing AR technology in healthcare. This systematic review concluded that the current literature lacked detailed examination and conduct of economic impact and benefit analyses. Recommendations for future research would be to include details of the initial investment and operational costs for the AR infrastructure in healthcare settings while comparing the intervention to its conventional counterparts or alternatives so as to provide a comprehensive comparison on impact, benefit and cost differences.

Keywords: augmented reality, benefit, economic impact, healthcare, patient care

Procedia PDF Downloads 207
1732 Research Study on the Concept of Unity of Ummah and Its Sources in the Light of Islamic Teachings

Authors: Ghazi Abdul Rehman Qasmi

Abstract:

Islam is the preacher and torch-bearer of unity and solidarity. All the followers of Islam are advised to be united. Islam strongly condemns those elements which disunite the unity of Muslim Ummah. Like pearls in a rosary, Islam has united the Muslims from all over the world in the wreath of unity and forbade the Muslims to avoid separation and to be disintegrated. The aspect of unity is prominent in all divine injunctions and about worship. By offering five times obligatory congregational prayers, passion of mutual love and affection is increased and on the auspicious days like Friday, Eid-ul-fiter and Eid-ul-azha, majority of the Muslims come together at central places to offer these congregational prayers. Thus unity and harmony among the Muslims can be seen. Similarly the Muslim pilgrims from all over the world eliminate all kind of worldly discrimination to perform many rituals of pilgrimage while wearing white color cloth as a dress. Pilgrimage is a demonstration of Islamic strength. When the Muslims from all over the world perform the same activities together and they offer their prayers under the leadership of one leader (IMAM). Muslims come together on the occasion of pilgrimage to perform Tawaf (seven circuits,first three circuits at a hurried pace(Rammal) and followed by four times, more closely, at a leisurely pace, round the Holy Kaabah to perform circumambulation known as Tawaf in religious terminology,Saee(running or walking briskly seven times between two small hills Safa&Marwa), Ramy-al-jamarat (throwing pebbles at the stone pillars, symbolizing the devil). In this way dignity and sublimity of Islam is increased and unity and integrity of Muslim Ummah is promoted also. By studying the life history of Hazrat Muhammad (P.B.U.H) we come to know that our Holy Prophet (P.B.U.H) has put emphasis on unity and integrity. We have to follow the Islamic teachings to create awareness among the members of Muslim Ummah. In the light of the Holy Quran and Sunnah, we have to utilize all the sources and potential for this noble cause.

Keywords: unity, Ummah, sources, Islamic teaching

Procedia PDF Downloads 294
1731 Rejuvenate: Face and Body Retouching Using Image Inpainting

Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny

Abstract:

In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.

Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery

Procedia PDF Downloads 74
1730 West African Islamic Civilization: Sokoto Caliphate and Science Education

Authors: Hassan Attahiru Gwandu

Abstract:

This study aims at surveying and analyzing the contribution of Sokoto scholars or Sokoto Caliphate in the development of science and technology in West Africa. Today, it is generally accepted that the 19th century Islamic revivalism in Hausaland was a very important revolution in the history of Hausa society and beyond. It is therefore, as a result of this movement or Jihad; the Hausaland (West Africa in general) witnessed several changes and transformations. These changes were in different sectors of life from politics, economy to social and religious aspect. It is these changes especially on religion that will be given considerations in this paper. The jihad resulted is the establishment of an Islamic state of Sokoto Caliphate, the revival Islam and development of learning and scholarship. During the existence of this Caliphate, a great deal of scholarship on Islamic laws were revived, written and documented by mostly, the three Jihad leaders; Usmanu Danfodiyo, his brother Abdullahi Fodiyo and his son Muhammad Bello. The trio had written more than one thousand books and made several verdicts on Islamic medicine. This study therefore, seeks to find out the contributions of these scholars or the Sokoto caliphate in the development of science in West Africa.

Keywords: Sokoto caliphate, scholarship, science and technology, West Africa

Procedia PDF Downloads 293
1729 Autonomy in Healthcare Organisations: A Comparative Case Study of Middle Managers in England and Iran

Authors: Maryam Zahmatkesh

Abstract:

Middle managers form a significant occupational category in organisations. They undertake a vital role, as they sit between the operational and strategic roles. Traditionally they were acting as diplomat administrators, and were only in power to meet the demands of professionals. Following the introduction of internal market, in line with the principles of New Public Management, middle managers have been considered as change agents. More recently, in the debates of middle managers, there is emphasis on entrepreneurialism and enacting strategic role. It was assumed that granting autonomy to the local organisations and the inception of semi-autonomous hospitals (Foundation Trusts in England and Board of Trustees in Iran) would give managers more autonomy to act proactively and innovatively. This thesis explores the hospital middle managers’ perception of and responses to public management reforms (in particular, hospital autonomy) in England and Iran. In order to meet the aims of the thesis, research was undertaken within the interpretative paradigm, in line with social constructivism. Data were collected from interviews with forty-five middle managers, observational fieldwork and documentary analysis across four teaching university hospitals in England and Iran. The findings show the different ways middle managers’ autonomy is constrained in the two countries. In England, middle managers have financial and human recourses, but their autonomy is constrained by government policy and targets. In Iran, middle managers are less constrained by government policy and targets, but they do not have financial and human resources to exercise autonomy. Unbalanced autonomy causes tension and frustration for middle managers. According to neo-institutional theory, organisations are deeply embedded within social, political, economic and normative settings that exert isomorphic and internal population-level pressures to conform to existing and established modes of operation. Health systems which are seeking to devolve autonomy to middle managers must appreciate the multidimensional nature of the autonomy, as well as the wider environment that organisations are embedded, if they are about to improve the performance of managers and their organisations.

Keywords: autonomy, healthcare organisations, middle managers, new public management

Procedia PDF Downloads 310
1728 The Social Aspects of Code-Switching in Online Interaction: The Case of Saudi Bilinguals

Authors: Shirin Alabdulqader

Abstract:

This research aims to investigate the concept of code-switching (CS) between English, Arabic, and the CS practices of Saudi online users via a Translanguaging (TL) lens for more inclusive view towards the nature of the data from the study. It employs Digitally Mediated Communication (DMC), specifically the WhatsApp and Twitter platforms, in order to understand how the users employ online resources to communicate with others on a daily basis. This project looks beyond language and considers the multimodal affordances (visual and audio means) that interlocutors utilise in their online communicative practices to shape their online social existence. This exploratory study is based on a data-driven interpretivist epistemology as it aims to understand how meaning (reality) is created by individuals within different contexts. This project used a mixed-method approach, combining a qualitative and a quantitative approach. In the former, data were collected from online chats and interview responses, while in the latter a questionnaire was employed to understand the frequency and relations between the participants’ linguistic and non-linguistic practices and their social behaviours. The participants were eight bilingual Saudi nationals (both men and women, aged between 20 and 50 years old) who interacted with others online. These participants provided their online interactions, participated in an interview and responded to a questionnaire. The study data were gathered from 194 WhatsApp chats and 122 Tweets. These data were analysed and interpreted according to three levels: conversational turn taking and CS; the linguistic description of the data; and CS and persona. This project contributes to the emerging field of analysing online Arabic data systematically, and the field of multimodality and bilingual sociolinguistics. The findings are reported for each of the three levels. For conversational turn taking, the CS analysis revealed that it was used to accomplish negotiation and develop meaning in the conversation. With regard to the linguistic practices of the CS data, the majority of the code-switched words were content morphemes. The third level of data interpretation is CS and its relationship with identity; two types of identity were indexed; absolute identity and contextual identity. This study contributes to the DMC literature and bridges some of the existing gaps. The findings of this study are that CS by its nature, and most of the findings, if not all, support the notion of TL that multiliteracy is one’s ability to decode multimodal communication, and that this multimodality contributes to the meaning. Either this is applicable to the online affordances used by monolinguals or multilinguals and perceived not only by specific generations but also by any online multiliterates, the study provides the linguistic features of CS utilised by Saudi bilinguals and it determines the relationship between these features and the contexts in which they appear.

Keywords: social media, code-switching, translanguaging, online interaction, saudi bilinguals

Procedia PDF Downloads 131
1727 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
1726 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images

Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim

Abstract:

In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.

Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles

Procedia PDF Downloads 260
1725 Providing Health Promotion Information by Digital Animation to International Visitors in Japan: A Factorial Design View of Nurses

Authors: Mariko Nishikawa, Masaaki Yamanaka, Ayami Kondo

Abstract:

Background: International visitors to Japan are at a risk of travel-related illnesses or injury that could result in hospitalization in a country where the language and customs are unique. Over twelve million international visitors came to Japan in 2015, and more are expected leading up to the Tokyo Olympics. One aspect of this is the potentially greater demand on healthcare services by foreign visitors. Nurses who take care of them have anxieties and concerns of their knowledge of the Japanese health system. Objectives: An effective distribution of travel-health information is vital for facilitating care for international visitors. Our research investigates whether a four-minute digital animation (Mari Info Japan), designed and developed by the authors and applied to a survey of 513 nurses who take care of foreigners daily, could clarify travel health procedures, reduce anxieties, while making it enjoyable to learn. Methodology: Respondents to a survey were divided into two groups. The intervention group watched Mari Info Japan. The control group read a standard guidebook. The participants were requested to fill a two-page questionnaire called Mari Meter-X, STAI-Y in English and mark a face scale, before and after the interventions. The questions dealt with knowledge of health promotion, the Japanese healthcare system, cultural concerns, anxieties, and attitudes in Japan. Data were collected from an intervention group (n=83) and control group (n=83) of nurses in a hospital, Japan for foreigners from February to March, 2016. We analyzed the data using Text Mining Studio for open-ended questions and JMP for statistical significance. Results: We found that the intervention group displayed more confidence and less anxiety to take care of foreign patients compared to the control group. The intervention group indicated a greater comfort after watching the animation. However, both groups were most likely to be concerned about language, the cost of medical expenses, informed consent, and choice of hospital. Conclusions: From the viewpoint of nurses, the provision of travel-health information by digital animation to international visitors to Japan was more effective than traditional methods as it helped them be better prepared to treat travel-related diseases and injury among international visitors. This study was registered number UMIN000020867. Funding: Grant–in-Aid for Challenging Exploratory Research 2010-2012 & 2014-16, Japanese Government.

Keywords: digital animation, health promotion, international visitor, Japan, nurse

Procedia PDF Downloads 307
1724 Uses of Fibrinogen Concentrate in the Management of Trauma-Induced Coagulopathy in the Prehospital Environment: A Scoping Review

Authors: Nura Khattab, Fayad Al-Haimus, Teruko Kishibe, Netanel Krugliak, Melissa McGowan, Brodie Nolan

Abstract:

Trauma-induced coagulopathy remains a significant contributor to mortality in severely injured patients. Fibrinogen is essential for early hemostasis and is recognized as the first coagulation factor to fall below critical levels, compromising the coagulation cascade. Early administration of fibrinogen concentrate may be feasible and effective to prevent coagulopathy. We conducted this scoping review to characterize the existing quantity of literature, and to explore the usage of prehospital fibrinogen concentrate products in improving clinical outcomes in trauma patients. Methods: A search strategy was developed in consultation with an information specialist. We searched MEDLINE, Embase, Cochrane, and Scopus from inception to May 6th 2024. English studies evaluating prehospital/military usage of fibrinogen concentrate in trauma patients were included. Studies were assessed by three independent reviewers for meeting inclusion and exclusion criteria. Reference lists of included articles were reviewed to identify additional studies meeting inclusion criteria. Clinical endpoints regarding fibrinogen concentrate were extracted and synthesized. Results: The literature search returned 1301 articles with seven studies meeting the inclusion criteria. Five studies (71%) were conducted in civilian settings and two studies (29%) were conducted in military settings. Of the included studies, three (43%) utilized a randomized control trial. We identified seven outcomes that compared varying concentrations of fibrinogen or fibrinogen concentrate to a placebo group. The outcomes included overall mortality, death from hemorrhage, thromboembolic events, clotting time, maximum clot firmness, clot stability at ER admission, and fibrinogen concentration at ER admission. Apart from thromboembolic events, all other reported outcomes showed statistically significant differences in group comparisons, determined using p values. The four (57%) non-clinical studies underscored the robustness, practicality, and degree of fibrinogen concentrate utilization in military environments and retrieval services. Conclusion: Preliminary research suggests that prehospital fibrinogen concentrate administration in traumatic bleeding patients is both feasible and effective, improving mortality and clotting parameters. While implementing a time-saving and proactive approach with fibrinogen holds potential for enhancing trauma care, the current evidence is limited. Further studies in this novel field are warranted.

Keywords: fibrinogen concentrate, prehospital, military, trauma, trauma-induced coagulopathy

Procedia PDF Downloads 25
1723 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
1722 Awarness the Effect of Quality Food and Nutrition on Health Will Help Develop a Healthy Lifestyle

Authors: Hamnah Nisar

Abstract:

As food is something which is particularly important for survival, in fact, it improves the quality of life and promotes health. Quality food is a key to a healthy life. Consumption of food depends on the knowledge we have regarding the nutrients it contains. Moreover, the awareness and knowledge about something is an initial stage for its improvement. We cannot work on anything unless we have knowledge about it. The pros and cons, effects, causes, dos, and don'ts, especially for an important things like food, are a necessity to learn. That is why my research would be all about analyzing what difference awareness makes on people and how making people more aware about a certain thing can help them improve their lifestyles and bring a positive change for them. The research would be done through questionnaires and interviews among two classes, one would be the upper class and the other would-be lower class. Because the upper class can easily access learning facilities and can know about the new things than the lower class. The questions would be related to what kind of food do they consume, what health issues they face, or what health issues are common among their regions. The results of the research would be helpful to know firstly the effects of awareness and education regarding food on health, how a basic thing like knowledge can have a significant effect on health and can be the cause of several diseases.

Keywords: nutrition, awareness, quality food, knowledge

Procedia PDF Downloads 77
1721 The Results of Reading Test on Movement Staff Notation System

Authors: Sonay Ödemiş

Abstract:

Movement Staff Notation System (MSNS) is a movement transcription, analyzing method, and it's been constantly improved since it was first developed in 2005. This method is based on human anatomy, is being used and applied in the lessons at The Department of Turkish Folk Dances in Istanbul Technical University, nowadays. In this research, it is aimed to discover, how MSNS can help to participants about learning the basic movements of lower extremity. This experiment has six volunteers who were randomly selected. Each volunteer has been graded for their dance backgrounds and all the volunteers have been studied for six weeks. Each week has included different topic and examples such as contacts on foot, jumps, timing, directions and basic symbols of MSNS. Examples have changed from easy to hard. On conclusion, 6 volunteer subjects were tested in final test. The tests were recorded with the camera. In this presentation, it will be explained and detailed the results of the reading test on MSNS. Some of important video records will be watched and interpreted after the test. As a conclusion, all the scores will be interpreted and assessed from different perspectives.

Keywords: dance notation, Turkish dances, reading test, Education

Procedia PDF Downloads 233
1720 'Low Electronic Noise' Detector Technology in Computed Tomography

Authors: A. Ikhlef

Abstract:

Image noise in computed tomography, is mainly caused by the statistical noise, system noise reconstruction algorithm filters. Since last few years, low dose x-ray imaging became more and more desired and looked as a technical differentiating technology among CT manufacturers. In order to achieve this goal, several technologies and techniques are being investigated, including both hardware (integrated electronics and photon counting) and software (artificial intelligence and machine learning) based solutions. From a hardware point of view, electronic noise could indeed be a potential driver for low and ultra-low dose imaging. We demonstrated that the reduction or elimination of this term could lead to a reduction of dose without affecting image quality. Also, in this study, we will show that we can achieve this goal using conventional electronics (low cost and affordable technology), designed carefully and optimized for maximum detective quantum efficiency. We have conducted the tests using large imaging objects such as 30 cm water and 43 cm polyethylene phantoms. We compared the image quality with conventional imaging protocols with radiation as low as 10 mAs (<< 1 mGy). Clinical validation of such results has been performed as well.

Keywords: computed tomography, electronic noise, scintillation detector, x-ray detector

Procedia PDF Downloads 126
1719 Empirical Study on Grassroots Innovation for Entrepreneurship Development with Microfinance Provision as Moderator

Authors: Sonal H. Singh, Bhaskar Bhowmick

Abstract:

The research hypothesis formulated in this paper examines the importance of microfinance provision for entrepreneurship development by engendering a high level of entrepreneurial orientation among the grassroots entrepreneurs. A theoretically well supported empirical framework is proposed to identify the influence of financial services and non-financial services provided by microfinance institutes in strengthening the impact of grassroots innovation on entrepreneurial orientation under resource constraints. In this paper, Grassroots innovation is perceived in three dimensions: new learning practice, localized solution, and network development. The study analyzes the moderating effect of microfinance provision on the relationship between grassroots innovation and entrepreneurial orientation. The paper employed structural equation modelling on 400 data entries from the grassroots entrepreneurs in India. The research intends to help policymakers, entrepreneurs and microfinance providers to promote the innovative design of microfinance services for the well-being of grassroots entrepreneurs and to foster sustainable entrepreneurship development.

Keywords: entrepreneurship development, grassroots innovation, India, structural equation model

Procedia PDF Downloads 265
1718 The Relevance of Community Involvement in Flood Risk Governance Towards Resilience to Groundwater Flooding. A Case Study of Project Groundwater Buckinghamshire, UK

Authors: Claude Nsobya, Alice Moncaster, Karen Potter, Jed Ramsay

Abstract:

The shift in Flood Risk Governance (FRG) has moved away from traditional approaches that solely relied on centralized decision-making and structural flood defenses. Instead, there is now the adoption of integrated flood risk management measures that involve various actors and stakeholders. This new approach emphasizes people-centered approaches, including adaptation and learning. This shift to a diversity of FRG approaches has been identified as a significant factor in enhancing resilience. Resilience here refers to a community's ability to withstand, absorb, recover, adapt, and potentially transform in the face of flood events. It is argued that if the FRG merely focused on the conventional 'fighting the water' - flood defense - communities would not be resilient. The move to these people-centered approaches also implies that communities will be more involved in FRG. It is suggested that effective flood risk governance influences resilience through meaningful community involvement, and effective community engagement is vital in shaping community resilience to floods. Successful community participation not only uses context-specific indigenous knowledge but also develops a sense of ownership and responsibility. Through capacity development initiatives, it can also raise awareness and all these help in building resilience. Recent Flood Risk Management (FRM) projects have thus had increasing community involvement, with varied conceptualizations of such community engagement in the academic literature on FRM. In the context of overland floods, there has been a substantial body of literature on Flood Risk Governance and Management. Yet, groundwater flooding has gotten little attention despite its unique qualities, such as its persistence for weeks or months, slow onset, and near-invisibility. There has been a little study in this area on how successful community involvement in Flood Risk Governance may improve community resilience to groundwater flooding in particular. This paper focuses on a case study of a flood risk management project in the United Kingdom. Buckinghamshire Council is leading Project Groundwater, which is one of 25 significant initiatives sponsored by England's Department for Environment, Food and Rural Affairs (DEFRA) Flood and Coastal Resilience Innovation Programme. DEFRA awarded Buckinghamshire Council and other councils 150 million to collaborate with communities and implement innovative methods to increase resilience to groundwater flooding. Based on a literature review, this paper proposes a new paradigm for effective community engagement in Flood Risk Governance (FRG). This study contends that effective community participation can have an impact on various resilience capacities identified in the literature, including social capital, institutional capital, physical capital, natural capital, human capital, and economic capital. In the case of social capital, for example, successful community engagement can influence social capital through the process of social learning as well as through developing social networks and trust values, which are vital in influencing communities' capacity to resist, absorb, recover, and adapt. The study examines community engagement in Project Groundwater using surveys with local communities and documentary analysis to test this notion. The outcomes of the study will inform community involvement activities in Project Groundwater and may shape DEFRA policies and guidelines for community engagement in FRM.

Keywords: flood risk governance, community, resilience, groundwater flooding

Procedia PDF Downloads 70
1717 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce

Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada

Abstract:

With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.

Keywords: distributed algorithm, MapReduce, multi-class, support vector machine

Procedia PDF Downloads 401