Search results for: SPE’s comparative solution projects
2523 “I” on the Web: Social Penetration Theory Revised
Authors: Dr. Dionysis Panos Dpt. Communication, Internet Studies Cyprus University of Technology
Abstract:
The widespread use of New Media and particularly Social Media, through fixed or mobile devices, has changed in a staggering way our perception about what is “intimate" and "safe" and what is not, in interpersonal communication and social relationships. The distribution of self and identity-related information in communication now evolves under new and different conditions and contexts. Consequently, this new framework forces us to rethink processes and mechanisms, such as what "exposure" means in interpersonal communication contexts, how the distinction between the "private" and the "public" nature of information is being negotiated online, how the "audiences" we interact with are understood and constructed. Drawing from an interdisciplinary perspective that combines sociology, communication psychology, media theory, new media and social networks research, as well as from the empirical findings of a longitudinal comparative research, this work proposes an integrative model for comprehending mechanisms of personal information management in interpersonal communication, which can be applied to both types of online (Computer-Mediated) and offline (Face-To-Face) communication. The presentation is based on conclusions drawn from a longitudinal qualitative research study with 458 new media users from 24 countries for almost over a decade. Some of these main conclusions include: (1) There is a clear and evidenced shift in users’ perception about the degree of "security" and "familiarity" of the Web, between the pre- and the post- Web 2.0 era. The role of Social Media in this shift was catalytic. (2) Basic Web 2.0 applications changed dramatically the nature of the Internet itself, transforming it from a place reserved for “elite users / technical knowledge keepers" into a place of "open sociability” for anyone. (3) Web 2.0 and Social Media brought about a significant change in the concept of “audience” we address in interpersonal communication. The previous "general and unknown audience" of personal home pages, converted into an "individual & personal" audience chosen by the user under various criteria. (4) The way we negotiate the nature of 'private' and 'public' of the Personal Information, has changed in a fundamental way. (5) The different features of the mediated environment of online communication and the critical changes occurred since the Web 2.0 advance, lead to the need of reconsideration and updating the theoretical models and analysis tools we use in our effort to comprehend the mechanisms of interpersonal communication and personal information management. Therefore, is proposed here a new model for understanding the way interpersonal communication evolves, based on a revision of social penetration theory.Keywords: new media, interpersonal communication, social penetration theory, communication exposure, private information, public information
Procedia PDF Downloads 3752522 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops
Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding
Abstract:
BACKGROUND: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. OBJECTIVE: This article tried to optimize the layout of troops’ cafeteria and to improve the overall efficiency of the dining process. METHODS: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. RESULTS: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interference reduced as well, which verified corresponding simulation results. CONCLUSIONS: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.Keywords: layout optimization, dining efficiency, troops’ cafeteria, anylogic simulation, field experiment
Procedia PDF Downloads 1472521 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 2562520 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis
Procedia PDF Downloads 2262519 Designing a Pre-Assessment Tool to Support the Achievement of Green Building Certifications
Authors: Jisun Mo, Paola Boarin
Abstract:
The impact of common buildings on climate and environment has prompted people to get involved in the green building standards aimed at implementing rating tools or certifications. Thus, green building rating systems were introduced to the construction industry, and the demand for certified green buildings has increased gradually and succeeded considerably in enhancing people’s environmental awareness. However, the existing certification process has been unsatisfactory in attracting stakeholders and/or professionals who are actively engaged in adopting a rating system. It is because they have faced recurring barriers regarding limited information in understanding the rating process, time-consuming procedures and higher costs, which have a direct influence on pursuing green building rating systems. To promote the achievement of green building certifications within the building industry more successfully, this paper aims at designing a Pre-Assessment Tool (PAT) framework that can help stakeholders and/or professionals engaged in the construction industry to clarify their basic knowledge, timeframe and extra costs needed to activate a green building certification. First, taking the first steps towards the rating tool seems to be complicated because of upfront commitment to understanding the overall rating procedure is required. This conceptual PAT framework can increase basic knowledge of the rating tool and the certification process, mainly in terms of all resources or information of each credit requirements. Second, the assessment process of rating tools is generally known as a “lengthy and time-consuming system”, contributing to unenthusiastic reactions concerning green building projects. The proposed framework can predict the timeframe needed to identify how long it will take for a green project to process each credit requirement and the documentation required from the beginning of the certification process to final approval. Finally, most people often have the initial perception that pursuing green building certification costs more than constructing a non-green building, which makes it more difficult to execute rating tools. To overcome this issue, this PAT will help users to estimate the extra expenses such as certification fees and third-party contributions based on the track of the amount of time it takes to implement the rating tool throughout all the related stages. Also, it can prevent unexpected or hidden costs occurring in the process of assessment. Therefore, this proposed PAT framework can be recommended as an effective method to support the decision-making of inexperienced users and play an important role in promoting green building certification.Keywords: green building rating tools, Pre-Occupancy Evaluation (PrOE), client’s decision-making, certification
Procedia PDF Downloads 2522518 Effect of Convective Dryness Combined with Osmotic Dehydration, Blanching, Microwave and Ultrasonic Treatment on Bioactive Compounds and Rehydration Capacity of Dried Plums
Authors: Elena Corina Popescu, Magda Gabriela Bratu
Abstract:
Increasing interest in keeping bioactive compounds (anthocyanins, vitamin C) and dried fruit quality has motivated the researchers to investigate new combined drying technologies. The aim of this study was to evaluate the effects of convective dryness combined with osmotic dehydration, blanching, microwave treatment and ultrasonic treatment on the quality of dried plums. Osmotic dehydration was achieved by maintaining plums for 1 h in sucrose solution (300Brix). For microwave treatment, the plums were kept at 400 W for 80 sec. For ultrasonic treatment, plums were immersed in distilled water and sonicated for 30 minutes at 40 kHz and 200 W. The blanching consists of immersing plums in hot water at 90°C for 20 seconds and cooling them rapidly. Conventional drying was carried out at 70°C for 630 minutes. Drying curves, drying rate, anthocyanin and vitamin C stability, acidity variation (expressed as malic acid), reducing sugar content, and rehydration capacity of dried plums were analyzed. Blanching led to the largest amount of evaporated water. Blanched plums have had 13.36% less water than sonicated ones. The lowest anthocyanal loss of 34.5% was obtained in osmotically dehydrated plums, and 2.93% vitamin C is found in the plums sonicated. There were no significant differences in regards acidity and reducing sugar. The plums blanched before drying have had a high capacity of rehydration.Keywords: anthocyanin, dried plums, pretreatments, vitamin C
Procedia PDF Downloads 2392517 Exploring the Role of IPv6 in Enhancing IoT Communication and Green Network Optimization for Business Sustainability
Authors: Saqib Warsi
Abstract:
The Internet of Things (IoT) has become an essential component of modern communication networks, with IPv6 playing a pivotal role in addressing the challenges posed by the rapidly growing number of connected devices. IPv6 provides an expanded address space, offering a solution to the limitations of IPv4 while enhancing routing efficiency and security. This paper explores the impact of IPv6 in improving IoT communication, focusing on its operational benefits for businesses. Additionally, we examine the integration of green communication principles, which aim to reduce energy consumption and operational costs, thus promoting environmental sustainability and business efficiency. Through qualitative analysis and simulation-based modeling, this paper investigates the benefits of IPv6 in IoT environments and evaluates the role of green communication strategies in optimizing network performance. Traffic measurement tools and network performance simulators were employed to analyze the efficiency, sustainability, and scalability of IPv6 networks. By presenting a comprehensive framework for traffic analysis, modeling, and optimization, this research highlights the potential of combining IPv6 and green communication practices to drive business growth while promoting environmental sustainability. The findings provide valuable insights for businesses adopting more sustainable and efficient communication networks.Keywords: IPv6, Internet of Things (IoT), green communications, traffic measurement and modeling, network virtualization
Procedia PDF Downloads 122516 Comparative Effect of Microbial Phytase Supplementation on Layer Chickens Fed Diets with Required or Low Phosphorous Level
Authors: Hamada Ahmed, Mervat A. Abdel-Latif, Alaa. A. Ghoraba, Samah A. Ganna
Abstract:
An experiment was conducted to determine the effect of microbial phytase (Quantum Blue®) supplementation on layer chickens fed diets with required or low phosphorous level in corn-soybean based diets. One hundred and sixteen 23-week-old Lohman brown laying hens were used in 8-week feeding trial. Hens were randomly allotted into four treatments where the group (1) (control group) was fed basal diet without phytase, group (2) fed basal diet supplemented with phytase, group (3) fed diet supplemented with phytase as a replacement of 25% of monocalcium phosphate and group (4) fed diet supplemented with phytase as a replacement of 50% of monocalcium phosphate. Records on daily egg production, egg mass, egg weight and body weight of hens at the end of experimental period were recorded. Results revealed no significant (p ≥ 0.05) differences were observed among the other dietary treatments in BW, egg production, egg mass, feed intake or feed conversion when these parameters were evaluated over the duration of the experiment while egg weight showed significant (p < 0.05) increase in all phytase supplemented groups. There was no significant (p ≥ 0.05) differences in egg quality including egg length, egg width, egg shape index, yolk height, yolk width, yolk index, yolk weight and yolk albumin ratio while egg albumin was significantly increased (p < 0.05) in group (2) and group (3). Egg shell weight increased significantly (p < 0.05) in all phytase supplemented groups when compared with the control group also shell thickness increased significantly (p < 0.05) in both group (2 &3). No significant (P ≥ 0.05) difference was observed in serum Ca, P level while alkaline phosphatase was significantly (P ˂ 0.05) increased in group (3). Egg shell analysis showed increase in egg shell ash% in all phytase supplemented groups when compared with the control group, egg shell calcium % was higher in group (3) and group (4) than the control group while group (2) showed lower egg shell calcium% than the other experimental groups, egg shell phosphorous% was higher in all phytase supplemented groups than the control group. Phosphorous digestability was significantly (P ˂ 0.05) increased in all phytase supplemented groups than the control group and the highest p digestability was in group (4). Calcium digestability showed significant (P ˂ 0.05) increase in all phytase supplemented groups when compared with the control group and the highest digetability was in group (4).Keywords: layers, microbial phytase, Ca and P availability, egg production, egg characteristics
Procedia PDF Downloads 1892515 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data
Authors: Minjuan Sun
Abstract:
Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.Keywords: credit score, digital footprint, Fintech, machine learning
Procedia PDF Downloads 1722514 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior
Procedia PDF Downloads 3322513 Impact of Pedagogical Techniques on the Teaching of Sports Sciences
Authors: Muhammad Saleem
Abstract:
Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement
Procedia PDF Downloads 342512 R-Killer: An Email-Based Ransomware Protection Tool
Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena
Abstract:
Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine
Procedia PDF Downloads 2192511 Restoring Ecosystem Balance in Arid Regions: A Case Study of a Royal Nature Reserve in the Kingdom of Saudi Arabia
Authors: Talal Alharigi, Kawther Alshlash, Mariska Weijerman
Abstract:
The government of Saudi Arabia has developed an ambitious “Vision 2030”, which includes a Green Initiative (i.e., the planting of 10 billion trees) and the establishment of seven Royal Reserves as protected areas that comprise 13% of the total land area. The main objective of the reserves is to restore ecosystem balance and reconnect people with nature. Two royal reserves are managed by The Imam Abdulaziz bin Mohammed Royal Reserve Development Authority, including Imam Abdulaziz bin Mohammed Royal Reserve and King Khalid Royal Reserve. The authority has developed a management plan to enhance the habitat through seed dispersal and the planting of 10 million trees, and to restock wildlife that was once abundant in these arid ecosystems (e.g., oryx, Nubian ibex, gazelles, red-necked ostrich). Expectations are that with the restoration of the native vegetation, soil condition and natural hydrologic processes will improve and lead to further enhancement of vegetation and, over time, an increase in biodiversity of flora and fauna. To evaluate the management strategies in reaching these expectations, a comprehensive monitoring and evaluation program was developed. The main objectives of this program are to (1) monitor the status and trends of indicator species, (2) improve desert ecosystem understanding, (3) assess the effects of human activities, and (4) provide science-based management recommendations. Using a random stratified survey design, a diverse suite of survey methods will be implemented, including belt and quadrant transects, camera traps, GPS tracking devices, and drones. Data will be gathered on biotic parameters (plant and animal diversity, density, and distribution) and abiotic parameters (humidity, temperature, precipitation, wind, air, soil quality, vibrations, and noise levels) to meet the goals of the monitoring program. This case study intends to provide a detailed overview of the management plan and monitoring program of two royal reserves and outlines the types of data gathered which can be made available for future research projects.Keywords: camera traps, desert ecosystem, enhancement, GPS tracking, management evaluation, monitoring, planting, restocking, restoration
Procedia PDF Downloads 1212510 High-Yield Synthesis of Nanohybrid Shish-Kebab of Polyethylene on Carbon NanoFillers
Authors: Dilip Depan, Austin Simoneaux, William Chirdon, Ahmed Khattab
Abstract:
In this study, we present a novel approach to synthesize polymer nanocomposites with nanohybrid shish-kebab architecture (NHSK). For this low-density and high density polyethylene (PE) was crystallized on various carbon nano-fillers using a novel and convenient method to prepare high-yield NHSK. Polymer crystals grew epitaxially on carbon nano-fillers using a solution crystallization method. The mixture of polymer and carbon fillers in xylene was flocculated and precipitated in ethanol to improve the product yield. Carbon nanofillers of varying diameter were also used as a nucleating template for polymer crystallization. The morphology of the prepared nanocomposites was characterized scanning electron microscopy (SEM), while differential scanning calorimetry (DSC) was used to quantify the amount of crystalline polymer. Interestingly, whatever the diameter of the carbon nanofiller is, the lamellae of PE is always perpendicular to the long axis of nanofiller. Surface area analysis was performed using BET. Our results indicated that carbon nanofillers of varying diameter can be used to effectively nucleate the crystallization of polymer. The effect of molecular weight and concentration of the polymer was discussed on the basis of chain mobility and crystallization capability of the polymer matrix. Our work shows a facile, rapid, yet high-yield production method to form polymer nanocomposites to reveal application potential of NHSK architecture.Keywords: carbon nanotubes, polyethylene, nanohybrid shish-kebab, crystallization, morphology
Procedia PDF Downloads 3342509 Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature
Authors: Huang Haoxin
Abstract:
Large dark current at room temperature has long been the major bottleneck that impedes the development of high-performance infrared photodetectors towards miniaturization and integration. Although infrared photodetectors based on layered 2D narrow bandgap semiconductors have shown admirable advantages compared with those based on conventional compounds, which typically suffer from expensive cryogenic operations, it is still urgent to develop a simple but effective strategy to further reduce the dark current. Herein, a tellurium (Te) based infrared photodetector is reported with a specifically designed asymmetric electrical contact area. The deliberately introduced asymmetric electrical contact raises the electric field intensity difference in the Te channel near the drain and the source electrodes, resulting in spontaneous asymmetric carrier diffusion under global infrared light illumination under zero bias. Specifically, the Te-based photodetector presents promising detector performance at room temperature, including a low dark current of≈1 nA, an ultrahigh photocurrent/dark current ratio of 1.57×10⁴, a high specific detectivity (D*) of 3.24×10⁹ Jones, and relatively fast response speed of ≈720 μs at zero bias. The results prove that the simple design of asymmetric electrical contact areas can provide a promising solution to high-performance 2D semiconductor-based infrared photodetectors working at room temperature.Keywords: asymmetrical contact, tellurium, dark current, infrared photodetector, sensitivity
Procedia PDF Downloads 582508 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities
Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav
Abstract:
The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks
Procedia PDF Downloads 282507 Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System
Authors: Mehdi Bakhtiarzadeh, Reza Efatnejad, Kambiz Rezapour Rezapour
Abstract:
Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency.Keywords: solar water desalination, heat exchanger, photovoltaic system, technical and economic evaluation
Procedia PDF Downloads 1742506 Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast
Authors: Fernando M. Soto, Gaetano Di Mino
Abstract:
The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%.Keywords: empirical approach, rubber-asphalt, sub-ballast, superpave mix-design
Procedia PDF Downloads 3722505 Preparation and Characterization of Phosphate-Nickel-Titanium Composite Coating Obtained by Sol Gel Process for Corrosion Protection
Authors: Khalidou Ba, Abdelkrim Chahine, Mohamed Ebn Touhami
Abstract:
A strong industrial interest is focused on the development of coatings for anticorrosion protection. In this context, phosphate composite materials are expanding strongly due to their chemical characteristics and their interesting physicochemical properties. Sol-gel coatings offer high homogeneity and purity that may lead to obtain coating presenting good adhesion to metal surface. The goal behind this work is to develop efficient coatings for corrosion protection of steel to extend its life. In this context, a sol gel process allowing to obtain thin film coatings on carbon steel with high resistance to corrosion has been developed. The optimization of several experimental parameters such as the hydrolysis time, the temperature, the coating technique, the molar ratio between precursors, the number of layers and the drying mode has been realized in order to obtain a coating showing the best anti-corrosion properties. The effect of these parameters on the microstructure and anticorrosion performance of the films sol gel coating has been investigated using different characterization methods (FTIR, XRD, Raman, XPS, SEM, Profilometer, Salt Spray Test, etc.). An optimized coating presenting good adhesion and very stable anticorrosion properties in salt spray test, which consists of a corrosive attack accelerated by an artificial salt spray consisting of a solution of 5% NaCl, pH neutral, under precise conditions of temperature (35 °C) and pressure has been obtained.Keywords: sol gel, coating, corrosion, XPS
Procedia PDF Downloads 1322504 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 302503 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing
Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik
Abstract:
The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.Keywords: life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development
Procedia PDF Downloads 1772502 Optimal Consume of NaOH in Starches Gelatinization for Froth Flotation
Authors: André C. Silva, Débora N. Sousa, Elenice M. S. Silva, Thales P. Fontes, Raphael S. Tomaz
Abstract:
Starches are widely used as depressant in froth flotation operations in Brazil due to their efficiency, increasing the selectivity in the inverse flotation of quartz depressing iron ore. Starches market have been growing and improving in recent years, leading to better products attending the requirements of the mineral industry. The major source of starch used for iron ore is corn starch, which needs to be gelatinized with sodium hydroxide (NaOH) prior to use. This stage has a direct impact on industrials costs, once the lowest consumption of NaOH in gelatinization provides better control of the pH in the froth flotation and reduces the amount of electrolytes present in the pulp. In order to evaluate the gelatinization degree of different starches and flour were subjected to the addiction of NaOH and temperature variation experiments. Samples of starch (corn, cassava, HIPIX 100, HIPIX 101 and HIPIX 102 commercialized by Ingredion) and flour (cassava and potato) were tested. The starch samples were characterized through Scanning Electronic Microscopy and the amylose content were determined through spectrometry, swelling and solubility tests. The gelatinization was carried out through titration with NaOH, keeping the solution temperature constant at 40 oC. At the end of the tests, the optimal amount of NaOH consumed to gelatinize the starch or flour from different botanical sources was established and a correlation between the content of amylopectin in the starch and the starch/NaOH ratio needed for its gelatinization.Keywords: froth flotation, gelatinization, sodium hydroxide, starches and flours
Procedia PDF Downloads 3682501 Choice Analysis of Ground Access to São Paulo/Guarulhos International Airport Using Adaptive Choice-Based Conjoint Analysis (ACBC)
Authors: Carolina Silva Ansélmo
Abstract:
Airports are demand-generating poles that affect the flow of traffic around them. The airport access system must be fast, convenient, and adequately planned, considering its potential users. An airport with good ground access conditions can provide the user with a more satisfactory access experience. When several transport options are available, service providers must understand users' preferences and the expected quality of service. The present study focuses on airport access in a comparative scenario between bus, private vehicle, subway, taxi and urban mobility transport applications to São Paulo/Guarulhos International Airport. The objectives are (i) to identify the factors that influence the choice, (ii) to measure Willingness to Pay (WTP), and (iii) to estimate the market share for each modal. The applied method was Adaptive Choice-based Conjoint Analysis (ACBC) technique using Sawtooth Software. Conjoint analysis, rooted in Utility Theory, is a survey technique that quantifies the customer's perceived utility when choosing alternatives. Assessing user preferences provides insights into their priorities for product or service attributes. An additional advantage of conjoint analysis is its requirement for a smaller sample size compared to other methods. Furthermore, ACBC provides valuable insights into consumers' preferences, willingness to pay, and market dynamics, aiding strategic decision-making to provide a better customer experience, pricing, and market segmentation. In the present research, the ACBC questionnaire had the following variables: (i) access time to the boarding point, (ii) comfort in the vehicle, (iii) number of travelers together, (iv) price, (v) supply power, and (vi) type of vehicle. The case study questionnaire reached 213 valid responses considering the scenario of access from the São Paulo city center to São Paulo/Guarulhos International Airport. As a result, the price and the number of travelers are the most relevant attributes for the sample when choosing airport access. The market share of the selection is mainly urban mobility transport applications, followed by buses, private vehicles, taxis and subways.Keywords: adaptive choice-based conjoint analysis, ground access to airport, market share, willingness to pay
Procedia PDF Downloads 812500 Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana
Authors: Benson Tette, Thomas Mensah
Abstract:
As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector.Keywords: carpentry, computer-aided manufacturing (CAM), Ghana, information technology(IT)
Procedia PDF Downloads 1002499 Resilience and Urban Transformation: A Review of Recent Interventions in Europe and Turkey
Authors: Bilge Ozel
Abstract:
Cities are high-complex living organisms and are subjects to continuous transformations produced by the stress that derives from changing conditions. Today the metropolises are seen like “development engines” of the countries and accordingly they become the centre of better living conditions that encourages demographic growth which constitutes the main reason of the changes. Indeed, the potential for economic advancement of the cities directly represents the economic status of their countries. The term of “resilience”, which sees the changes as natural processes and represents the flexibility and adaptability of the systems in the face of changing conditions, becomes a key concept for the development of urban transformation policies. The term of “resilience” derives from the Latin word ‘resilire’, which means ‘bounce’, ‘jump back’, refers to the ability of a system to withstand shocks and still maintain the basic characteristics. A resilient system does not only survive the potential risks and threats but also takes advantage of the positive outcomes of the perturbations and ensures adaptation to the new external conditions. When this understanding is taken into the urban context - or rather “urban resilience” - it delineates the capacity of cities to anticipate upcoming shocks and changes without undergoing major alterations in its functional, physical, socio-economic systems. Undoubtedly, the issue of coordinating the urban systems in a “resilient” form is a multidisciplinary and complex process as the cities are multi-layered and dynamic structures. The concept of “urban transformation” is first launched in Europe just after World War II. It has been applied through different methods such as renovation, revitalization, improvement and gentrification. These methods have been in continuous advancement by acquiring new meanings and trends over years. With the effects of neoliberal policies in the 1980s, the concept of urban transformation has been associated with economic objectives. Subsequently this understanding has been improved over time and had new orientations such as providing more social justice and environmental sustainability. The aim of this research is to identify the most applied urban transformation methods in Turkey and its main reasons of being selected. Moreover, investigating the lacking and limiting points of the urban transformation policies in the context of “urban resilience” in a comparative way with European interventions. The emblematic examples, which symbolize the breaking points of the recent evolution of urban transformation concepts in Europe and Turkey, are chosen and reviewed in a critical way.Keywords: resilience, urban dynamics, urban resilience, urban transformation
Procedia PDF Downloads 2672498 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 702497 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation
Authors: A. Naamane, M. Hasnaoui
Abstract:
Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel
Procedia PDF Downloads 1372496 The Promising Way to Minimize the Negative Effects of Iron Fortification
Authors: M. Juffrie, Siti Helmyati, Toto Sudargo, B. J. Istiti Kandarina
Abstract:
Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota.Keywords: tempeh, synbiotic, iron, haemoglobin, gut microbiota
Procedia PDF Downloads 4622495 Quantitative Analysis of Caffeine in Pharmaceutical Formulations Using a Cost-Effective Electrochemical Sensor
Authors: Y. T. Gebreslassie, Abrha Tadesse, R. C. Saini, Rishi Pal
Abstract:
Caffeine, known chemically as 3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione, is a naturally occurring alkaloid classified as an N-methyl derivative of xanthine. Given its widespread use in coffee and other caffeine-containing products, it is the most commonly consumed psychoactive substance in everyday human life. This research aimed to develop a cost-effective, sensitive, and easily manufacturable sensor for the detection of caffeine. Antraquinone-modified carbon paste electrode (AQMCPE) was fabricated, and the electrochemical behavior of caffeine on this electrode was investigated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in a solution of 0.1M perchloric acid at pH 0.56. The modified electrode displayed enhanced electrocatalytic activity towards caffeine oxidation, exhibiting a two-fold increase in peak current and an 82 mV shift of the peak potential in the negative direction compared to an unmodified carbon paste electrode (UMCPE). Exploiting the electrocatalytic properties of the modified electrode, SWV was employed for the quantitative determination of caffeine. Under optimized experimental conditions, a linear relationship between peak current and concentration was observed within the range of 2.0 x 10⁻⁶ to 1.0× 10⁻⁴ M, with a correlation coefficient of 0.998 and a detection limit of 1.47× 10⁻⁷ M (signal-to-noise ratio = 3). Finally, the proposed method was successfully applied to the quantitative analysis of caffeine in pharmaceutical formulations, yielding recovery percentages ranging from 95.27% to 106.75%.Keywords: antraquinone-modified carbon paste electrode, caffeine, detection, electrochemical sensor, quantitative analysis
Procedia PDF Downloads 712494 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process
Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar
Abstract:
Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.Keywords: electrodeposition, microstructure, optical properties, ZnO thin films
Procedia PDF Downloads 325