Search results for: Reynolds stress model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20075

Search results for: Reynolds stress model

12545 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System

Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany

Abstract:

The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.

Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling

Procedia PDF Downloads 153
12544 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids

Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho

Abstract:

In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.

Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model

Procedia PDF Downloads 119
12543 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error

Procedia PDF Downloads 327
12542 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 424
12541 Management of Coronary Heart Disease through Yoga

Authors: Subramaniam Iyer

Abstract:

The most common disease that is pertaining to all human beings is heart-related. The reasons for coronary artery disease are due to lifestyle and eating habits. Due to this, many people mentally become sick, feeling that soon they will die due to their heart problems. This results in stress and anxiety, which has become common amongst all the Indians. Medicines are the commonest curative remedy in India, but it is proposed through this article some remedies through yoga. This article does not guarantee a 100% result, but it is a preventive remedy for coronary artery disease. Yoga is giving a new lease of life to many, so to tackle chronic diseases, it provides remedies that will be lifelong. It is brought to many people by Patanjali. Yoga will provide support to patients having coronary artery disease through its various relevant postures (asanas), which can be done very easily. Yoga does not send a message that if you do it regularly, you will be relieved from a particular disease. If it is performed every day, it will add vital energy for a smooth life, even if you are suffering from any chronic disease. In this article, we will be providing 6 postures (asanas), which can be performed at any time in the day, but the early morning will always be preferred (empty stomach) to get a good result. Secondly, these postures must be implemented after due consultation with your physician. If your physician disapproves, don’t do these postures as it will be harmful to your body.

Keywords: coronary artery, yoga, disease, remedy, medicine

Procedia PDF Downloads 171
12540 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 108
12539 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction

Authors: Alsaidi M. Altaher, Mohd Tahir Ismail

Abstract:

Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.

Keywords: boundary correction, median filter, simulation, wavelet thresholding

Procedia PDF Downloads 431
12538 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 85
12537 Climate Changes in Albania and Their Effect on Cereal Yield

Authors: Lule Basha, Eralda Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.

Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest

Procedia PDF Downloads 99
12536 A Model of the Adoption of Maritime Autonomous Surface Ship

Authors: Chin-Shan Lu, Yi-Pei Liu

Abstract:

This study examines the factors influencing the adoption of MASS in Taiwan's shipping industry. Digital technology and unmanned vehicle advancements have enhanced efficiency and reduced environmental impact in the shipping industry. The IMO has set regulations to promote low-carbon emissions and autonomous ship technology. Using the TOE framework and DOI theory, a research model was constructed, and data from 132 Taiwanese shipping companies were collected via a questionnaire survey. A structural equation modeling (SEM) was conducted to examine the relationships between variables. Results show that technological and environmental factors significantly influence operators' attitudes toward MASS, while organizational factors impact their willingness to adopt. Enhancing technological support, internal resource allocation, top management support, and cost management are crucial for promoting adoption. This study identifies key factors and provides recommendations for adopting autonomous ships in Taiwan's shipping industry.

Keywords: MASS, technology-organization-environment, diffusion of innovations theory, shipping industry

Procedia PDF Downloads 29
12535 The Improved Therapeutic Effect of Trans-Cinnamaldehyde on Adipose-Derived Stem Cells without Chemical Induction

Authors: Karthyayani Rajamani, Yi-Chun Lin, Tung-Chou Wen, Jeanne Hsieh, Yi-Maun Subeq, Jen-Wei Liu, Po-Cheng Lin, Horng-Jyh Harn, Shinn-Zong Lin, Tzyy-Wen Chiou

Abstract:

Assuring cell quality is an essential parameter for the success of stem cell therapy, utilization of various components to improve this potential has been the primary goal of stem cell research. The aim of this study was not only to demonstrate the capacity of trans-cinnamaldehyde (TC) to reverse stress-induced senescence but also improve the therapeutic abilities of stem cells. Because of the availability and the promising application potential in regenerative medicine, adipose-derived stem cells (ADSCs) were chosen for the study. We found that H2O2 treatment resulted in the expression of senescence characteristics in the ADSCs, including decreased proliferation rate, increased senescence-associated- β-galactosidase (SA-β-gal) activity, decreased SIRT1 (silent mating type information regulation 2 homologs) expression and decreased telomerase activity. However, TC treatment was sufficient to rescue or reduce the effects of H2O2 induction, ultimately leading to an increased proliferation rate, a decrease in the percentage of SA-β-gal positive cells, upregulation of SIRT1 expression, and increased telomerase activity of the senescent ADSCs at the cellular level. Further recently it was observed that the ADSCs were treated with TC without induction of senescence, all the before said positives were observed. Moreover, a chemically induced liver fibrosis animal model was used to evaluate the functionality of these rescued cells in vivo. Liver dysfunction was established by injecting 200 mg/kg thioacetamide (TAA) intraperitoneally into Wistar rats every third day for 60 days. The experimental rats were separated into groups; normal group (rats without TAA induction), sham group (without ADSC transplantation), positive control group (transplanted with normal ADSCs); H2O2 group (transplanted with H2O2 -induced senescent ADSCs), H2O2+TC group (transplanted with ADSCs pretreated with H2O2 and then further treated with TC) and TC group (ADSC treated with TC without H2O2 treatment). In the transplantation group, 1 × 106 human ADSCs were introduced into each rat via direct liver injection. Based on the biochemical analysis and immunohistochemical staining results, it was determined that the therapeutic effects on liver fibrosis by the induced senescent ADSCs (H2O2 group) were not as significant as those exerted by the normal ADSCs (the positive control group). However, the H2O2+TC group showed significant reversal of liver damage when compared to the H2O2 group 1 week post-transplantation. Further ADSCs without H2O2 treatment but with just TC treatment performed much better than all the groups. These data confirmed that the TC treatment had the potential to improve the therapeutic effect of ADSCs. It is therefore suggested that TC has potential applications in maintaining stem cell quality and could possibly aid in the treatment of senescence-related disorders.

Keywords: senescence, SIRT1, adipose derived stem cells, liver fibrosis

Procedia PDF Downloads 262
12534 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance

Authors: Michel Wakim, Rodrigo Rivera Tinoco

Abstract:

Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.

Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance

Procedia PDF Downloads 281
12533 Cross Analysis of Gender Discrimination in Print Media of Subcontinent via James Paul Gee Model

Authors: Luqman Shah

Abstract:

The myopic gender discrimination is now a well-documented and recognized fact. However, gender is only one facet of an individual’s multiple identities. The aim of this work is to investigate gender discrimination highlighted in print media in the subcontinent with a specific focus on Pakistan and India. In this study, an approach is adopted by using the James Paul Gee model for the identification of gender discrimination. As a matter of fact, gender discrimination is not consistent in its nature and intensity across global societies and varies as social, geographical, and cultural background change. The World has been changed enormously in every aspect of life, and there are also obvious changes towards gender discrimination, prejudices, and biases, but still, the world has a long way to go to recognize women as equal as men in every sphere of life. The history of the world is full of gender-based incidents and violence. Now the time came that this issue must be seriously addressed and to eradicate this evil, which will lead to harmonize society and consequently heading towards peace and prosperity. The study was carried out by a mixed model research method. The data was extracted from the contents of five Pakistani English newspapers out of a total of 23 daily English newspapers, and likewise, five Indian daily English newspapers out of 52 those were published 2018-2019. Two news stories from each of these newspapers, in total, twenty news stories were taken as sampling for this research. Content and semiotic analysis techniques were used to analyze through James Paul Gee's seven building tasks of language. The resources of renowned e-papers are utilized, and the highlighted cases in Pakistani newspapers of Indian gender-based stories and vice versa are scrutinized as per the requirement of this research paper. For analysis of the written stretches of discourse taken from e-papers and processing of data for the focused problem, James Paul Gee 'Seven Building Tasks of Language' is used. Tabulation of findings is carried to pinpoint the issue with certainty. Findings after processing the data showed that there is a gross human rights violation on the basis of gender discrimination. The print media needs a more realistic representation of what is what not what seems to be. The study recommends the equality and parity of genders.

Keywords: gender discrimination, print media, Paul Gee model, subcontinent

Procedia PDF Downloads 224
12532 Structure of Tourists’ Shopping Behavior: From the Tyranny of Hotels to Public Markets

Authors: Asmaa M. Marzouk, Abdallah M. Elshaer

Abstract:

Despite the well-recognized value of shopping as a revenue-generating resource, little effort was made to investigate what is the structure of tourists’ shopping behavior, which in turn, affect their travel experience. The purpose of this paper is to study the structure of tourists’ shopping process to better understand their shopping behavior by investigating factors that influence this activity other than hotels tyranny. This study specifically aims to propose a model incorporating those all variables. This empirical study investigates the shopping experience of international tourists using a questionnaire aimed to examine multinational samples selected from the tourist population visiting a specific destination in Egypt. This study highlights the various stakeholders that make tourists do shop independent of hotels. The results, therefore, demonstrate the relationship between the shopping process entities involved and configure the variables within the model in a way that provides a viable solution for visitors to avoid the tyranny of hotel facilities and amenities on the public markets.

Keywords: hotels’ amenities, shopping process, tourist behavior, tourist satisfaction

Procedia PDF Downloads 135
12531 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 541
12530 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 372
12529 Magnetic (Ethylene-Octene) Polymer Composites Reinforced With Carbon Black

Authors: Marcin Maslowski, Marian Zaborski

Abstract:

The aim of the study was to receive magnetorheological elastomer composites (MRE) with the best mechanical characteristics. MRE based on different magnetoactive fillers in ethylene-octene rubber are reported and studied. To improve mechanical properties of polymer mixtures, also carbon black (N550) was added during the composites preparation process. Micro and nan-sized magnetites (Fe3O4), as well as gamma iron oxide (gamma-Fe2O3) and carbonyl iron powder (CIP) are added together with carbon black (N550) were found to be an active fillers systems improving both static and dynamic mechanical properties of elastomers. They also changed magnetic properties of composites. Dynamic-mechanical analysis (DMA) indicates the presence of strongly developed secondary structure in vulcanizates. Reinforcing character of applied different fillers systems results in an increased stress at 100% elongation, tensile strength and cross-linking density of the vulcanizates. Studies investigated by vibration sample magnetometer (VSM) proved that all composites exhibit good magnetic properties.

Keywords: carbon black, mechanical properties, magnetorheological composites, magnetic fillers

Procedia PDF Downloads 344
12528 On Energy Condition Violation for Shifting Negative Mass Black Holes

Authors: Manuel Urueña Palomo

Abstract:

In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.

Keywords: black holes, CPT symmetry, negative mass, time transformation

Procedia PDF Downloads 154
12527 Thermodynamics of Stable Micro Black Holes Production by Modeling from the LHC

Authors: Aref Yazdani, Ali Tofighi

Abstract:

We study a simulative model for production of stable micro black holes based on investigation on thermodynamics of LHC experiment. We show that how this production can be achieved through a thermodynamic process of stability. Indeed, this process can be done through a very small amount of powerful fuel. By applying the second law of black hole thermodynamics at the scale of quantum gravity and perturbation expansion of the given entropy function, a time-dependent potential function is obtained which is illustrated with exact numerical values in higher dimensions. Seeking for the conditions for stability of micro black holes is another purpose of this study. This is proven through an injection method of putting the exact amount of energy into the final phase of the production which is equivalent to the same energy injection into the center of collision at the LHC in order to stabilize the produced particles. Injection of energy into the center of collision at the LHC is a new pattern that it is worth a try for the first time.

Keywords: micro black holes, LHC experiment, black holes thermodynamics, extra dimensions model

Procedia PDF Downloads 147
12526 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts

Authors: Josephine Shamash, Stuart Smith

Abstract:

We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.

Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching

Procedia PDF Downloads 134
12525 Neuro-Fuzzy Based Model for Phrase Level Emotion Understanding

Authors: Vadivel Ayyasamy

Abstract:

The present approach deals with the identification of Emotions and classification of Emotional patterns at Phrase-level with respect to Positive and Negative Orientation. The proposed approach considers emotion triggered terms, its co-occurrence terms and also associated sentences for recognizing emotions. The proposed approach uses Part of Speech Tagging and Emotion Actifiers for classification. Here sentence patterns are broken into phrases and Neuro-Fuzzy model is used to classify which results in 16 patterns of emotional phrases. Suitable intensities are assigned for capturing the degree of emotion contents that exist in semantics of patterns. These emotional phrases are assigned weights which supports in deciding the Positive and Negative Orientation of emotions. The approach uses web documents for experimental purpose and the proposed classification approach performs well and achieves good F-Scores.

Keywords: emotions, sentences, phrases, classification, patterns, fuzzy, positive orientation, negative orientation

Procedia PDF Downloads 385
12524 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 489
12523 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 65
12522 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 244
12521 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data

Authors: Benjamin Leiby, Darryl Ahner

Abstract:

This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions while presenting a need for further refinement that mimics predictive mean matching.

Keywords: correlation, country conflict, imputation, stochastic regression

Procedia PDF Downloads 124
12520 A Simulated Evaluation of Model Predictive Control

Authors: Ahmed AlNouss, Salim Ahmed

Abstract:

Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.

Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)

Procedia PDF Downloads 410
12519 One-Hit Multiple Instance Logistic Regression for Binary Classification and Its Application to Atomic Force Microscopy Images for Bladder Cancer Determination

Authors: Eugene Demidenko, John Seigne, Igor Sokolov

Abstract:

Multiple instance classification is a known machine learning tech-nique when only a bag of features is labeled. The method of binary multiple instance classification, termed multiple instance logistic regression (LR), received the most attention as a well-defined statistical model. This algorithm is realized in several computer languages, including R (milr) and MATLAB. This work suggests improving this model, which is called the one-hit multiple instance LR. Unlike the existing ap-proach, where unknown labels are treated as missing observations, our model directly implements the ML approach. As such, it is methodologically straightforward and computationally stable, especially when features are highly correlated and/or bags are heterogeneous. Since the one-hit LR admits a closed form for the log-likelihood function, an efficient Fisher scoring algorithm applies with the variances of the regres-sion coefficients computed through the inverse of the Fisher information matrix at the final iteration. Numerical experiments demonstrate the superiority of the one-hit LR in terms of regression coefficients and classification accuracy. Another advantage of our approach is developing the optimal probability threshold for classification (the traditional threshold equals 0 5). The one-hit LR is illustrated with a noninvasive bladder cancer identification where each patient, in the multiple instance terminol-ogy ’bag,’ contains feature images of multiple cells from a urine sample of the same individual. We show that the one-hit LR with two Atomic Force Microscopy (AFM) image features leads to a perfect (AUC=1) or almost perfect (AUC=0.978) classifica-tion of normal and cancer patients among 20 individuals. The -value 0.0018 confirms that the latter AUC is unlikely to be obtained by chance.

Keywords: AUC, classification accuracy, classification p-value, Fisher information, ML, ROC curve

Procedia PDF Downloads 9
12518 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 223
12517 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: flexible edge seal, stress, support pillar, vacuum glazing

Procedia PDF Downloads 236
12516 The Educational Role of Non-Governmental Organizations among Young Refugees: An Ethnographic Study

Authors: Ceyda Sensin

Abstract:

Chios Island in Greece hosts many refugees from the Middle East since the Turkey-EU Refugee Deal. Thus, it has become commonplace for non-governmental organizations (NGO) to provide help for refugees in various ways. The purpose of this research is to identify ways in which improvements can be made in the educational services offered to young adult refugees (age group 14-22) by the NGO’s. To meet this aim, an unstructured observational technique was used in this qualitative study. The data was collected as a participant observer in February 2018. According to the observations made in this study, it came out that international NGOs may utilize volunteering team members on an urgent basis since they are a free resource from all around the world. In this study, it was observed that the volunteering team members without any teaching qualifications or teaching experience have struggled with reaching refugee students with or without potential mental health problems from exposure to stress, turmoil and trauma. Therefore, this study highly recommends the use of more relevantly trained professionals, alongside the volunteer staff. Alternatively, the volunteer staffs need to have teacher training and periodical refresher training.

Keywords: ethnographic study, non-governmental organizations, refugees, qualitative research method

Procedia PDF Downloads 305