Search results for: sustainable production
10445 A Snapshot of Agricultural Waste in the European Union
Authors: Margarida Soares, Zlatina Genisheva, Lucas Nascimento, André Ribeiro, Tiago Miranda, Eduardo Pereira, Joana Carvalho
Abstract:
In the current global context, we face a significant challenge: the rapid population increase combined with the pressing need for sustainable management of agro-industrial waste. Beyond understanding how population growth impacts waste generation, it is essential to first identify the primary types of waste produced and the countries responsible to guide targeted actions. This study presents key statistical data on waste production from the agriculture, forestry, and fishing sectors across the European Union, alongside information on the agricultural areas dedicated to crop production in each European Union country. These insights will form the basis for future research into waste production by crop type and country to improve waste management practices and promote recovery methods that are vital for environmental sustainability. The agricultural sector must stay at the forefront of scientific and technological advancements to meet climate change challenges, protect the environment, and ensure food and health security. The study's findings indicate that population growth significantly increases pressure on natural resources, leading to a rise in agro-industrial waste production. EUROSTAT data shows that, in 2020, the agriculture, forestry, and fishing sectors produced over 21 million tons of waste. Spain emerged as the largest producer, contributing nearly 30% of the EU's total waste in these sectors. Furthermore, five countries—Spain, the Netherlands, France, Sweden, and Germany—were responsible for producing more than two-thirds of the waste from these sectors. Regarding agricultural land use, the data for 2020 revealed that around two-thirds of the total agricultural area was concentrated in six countries: France, Spain, Germany, Poland, Romania, and Italy. Regarding waste production per capita, the Netherlands had the highest figures in the EU for 2020. The data presented in this study highlights the urgent need for action in managing agricultural waste in the EU. As population growth continues to drive up demand for agricultural products, waste generation will inevitably rise unless significant changes are made in managing of agro-industrial waste. The countries must lead the way in adopting technological waste management strategies that focus on reducing, reusing, and recycling waste to benefit both the environment and society. Equally important is the need to promote collaborative efforts between governments, industries, and research institutions to develop and implement technologies that transform waste into valuable resources. The insights from this study are critical for informing future strategies to improve the management and valorization of waste from the agro-industrial sector. One of the most promising approaches is adopting circular economy principles to create closed-loop systems that minimize environmental impacts. By rethinking waste as a valuable resource rather than a by-product, agricultural industries can contribute to more sustainable practices that support both environmental health and economic growth.Keywords: agricultural area, agricultural waste, circular economy, environmental challenges, population growth
Procedia PDF Downloads 1310444 Understanding Solid Waste Management in Face of Political Instability: Actors, Roles, and Challenges to Sustainable Development in Kinshasa
Authors: Longondjo Etambakonga Clement
Abstract:
Local municipality responsible for solid waste management (SWM) in many developing countries is facing real challenge. This is even more critical in the country facing political instability. Few decades ago, it has emerged new urban governance including partnerships and involvement of formal and informal actors for an effective and sustainable solid waste management. This paper identifies SWM actors and analyzes their roles to sustainable development in Kinshasa. An attempt has been to examine the challenges facing the actors in managing effectively waste in the city. The study is based on the empirical data gathered in the years 2009 and 2014 in Kinshasa using expert interviews, observation and documentation. The findings indicate that solid waste in the city is poorly managed, activities not coordinated and fragmented, as consequence severe public health and environmental problems. Five group actors are involved in SWM in the city including government, private business, NGOs/CBOs/donors, household, scavengers, in which, scavengers are more visible in collection and recycling activities. The results suggest that recognition of informal collectors and recyclers (scavengers) and strengthening alliances among all SWM stakeholders can lead to greater effective SWM in the city. The key lessons learned include lack of city’s SWM culture over SWM, unwillingness to pay and lack of environmental consciences are the main obstructions to sustainable SWM, therefore there is a need for social capital approach to empower individual and group actors as to create capabilities for an sustainable SWM.Keywords: challenges, institutions, political instability, scavengers, solid waste management, sustainable development
Procedia PDF Downloads 35210443 Climate Change Impact on Economic Efficiency of Leguminous Crops Production and Perspectives in Kazakhstan
Authors: Zh. Bolatova, Zh. Bulkhairova, M. Kulshigashova
Abstract:
In this article, the authors consider the main aspects of climate change's impact on the economic efficiency of leguminous crop production and perspectives in Kazakhstan. It is worth noting that climate change has an impact on the instability of leguminous crops and leads to a decrease in production efficiency. Ultimately, all of the above determines the relevance and significance of this topic. The level of productivity of grain and legumes in the country and by regions of Kazakhstan was also analyzed. The authors conducted a survey and a deeper analysis of agricultural producers in the Kazakhstan region. In the end, the authors considered the prospects for the development of leguminous crops in Kazakhstan. For the article have been used different literature and reports from IPCC, WMO, WTO, FAO, UNEP, UNFCCC, UNDP, IMF, WB, OECD, KAZHYDROMET, Committee of the Statistics of Kazakhstan, etc.Keywords: climate change, economic efficiency, leguminous crops, production, yield
Procedia PDF Downloads 10910442 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport
Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky
Abstract:
Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.Keywords: bus, consumption energy, GHG, production, simulation, train
Procedia PDF Downloads 44310441 Coastal Foodscapes as Nature-Based Coastal Regeneration Systems
Authors: Gulce Kanturer Yasar, Hayriye Esbah Tuncay
Abstract:
Cultivated food production systems have coexisted harmoniously with nature for thousands of years through ancient techniques. Based on this experience, experimentation, and discovery, these culturally embedded methods have evolved to sustain food production, restore ecosystems, and harmoniously adapt to nature. In this era, as we seek solutions to food security challenges, enhancing and repairing our food production systems is crucial, making them more resilient to future disasters without harming the ecosystem. Instead of unsustainable conventional systems with ongoing destructive effects, we must investigate innovative and restorative production systems that integrate ancient wisdom and technology. Whether we consider agricultural fields, pastures, forests, coastal wetland ecosystems, or lagoons, it is crucial to harness the potential of these natural resources in addressing future global challenges, fostering both socio-economic resilience and ecological sustainability through strategic organization for food production. When thoughtfully designed and managed, marine-based food production has the potential to function as a living infrastructure system that addresses social and environmental challenges despite its known adverse impacts on the environment and local economies. These areas are also stages of daily life, vibrant hubs where local culture is produced and shared, contributing to the distinctive rural character of coastal settlements and exhibiting numerous spatial expressions of public nature. When we consider the history of humanity, indigenous communities have engaged in these sustainable production practices that provide goods for food, trade, culture, and the environment for many ages. Ecosystem restoration and socio-economic resilience can be achieved by combining production techniques based on ecological knowledge developed by indigenous societies with modern technologies. Coastal lagoons are highly productive coastal features that provide various natural services and societal values. They are especially vulnerable to severe physical, ecological, and social impacts of changing, challenging global conditions because of their placement within the coastal landscape. Coastal lagoons are crucial in sustaining fisheries productivity, providing storm protection, supporting tourism, and offering other natural services that hold significant value for society. Although there is considerable literature on the physical and ecological dimensions of lagoons, much less literature focuses on their economic and social values. This study will discuss the possibilities of coastal lagoons to achieve both ecologically sustainable and socio-economically resilient while maintaining their productivity by combining local techniques and modern technologies. The case study will present Turkey’s traditional aquaculture method, "Dalyans," predominantly operated by small-scale farmers in coastal lagoons. Due to human, ecological, and economic factors, dalyans are losing their landscape characteristics and efficiency. These 1000-year-old ancient techniques, rooted in centuries of traditional and agroecological knowledge, are under threat of tourism, urbanization, and unsustainable agricultural practices. Thus, Dalyans have diminished from 29 to approximately 4-5 active Dalyans. To deal with the adverse socio-economic and ecological consequences on Turkey's coastal areas, conserving Dalyans by protecting their indigenous practices while incorporating contemporary methods is essential. This study seeks to generate scenarios that envision the potential ways protection and development can manifest within case study areas.Keywords: coastal foodscape, lagoon aquaculture, regenerative food systems, watershed food networks
Procedia PDF Downloads 7510440 The Impact of Artificial Intelligence on Human Rights Development
Authors: Romany Wagih Farag Zaky
Abstract:
The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 5510439 Time Series Modelling for Forecasting Wheat Production and Consumption of South Africa in Time of War
Authors: Yiseyon Hosu, Joseph Akande
Abstract:
Wheat is one of the most important staple food grains of human for centuries and is largely consumed in South Africa. It has a special place in the South African economy because of its significance in food security, trade, and industry. This paper modelled and forecast the production and consumption of wheat in South Africa in the time covid-19 and the ongoing Russia-Ukraine war by using annual time series data from 1940–2021 based on the ARIMA models. Both the averaging forecast and selected models forecast indicate that there is the possibility of an increase with respect to production. The minimum and maximum growth in production is projected to be between 3million and 10 million tons, respectively. However, the model also forecast a possibility of depression with respect to consumption in South Africa. Although Covid-19 and the war between Ukraine and Russia, two major producers and exporters of global wheat, are having an effect on the volatility of the prices currently, the wheat production in South African is expected to increase and meat the consumption demand and provided an opportunity for increase export with respect to domestic consumption. The forecasting of production and consumption behaviours of major crops play an important role towards food and nutrition security, these findings can assist policymakers and will provide them with insights into the production and pricing policy of wheat in South Africa.Keywords: ARIMA, food security, price volatility, staple food, South Africa
Procedia PDF Downloads 10210438 The Impact of the Cell-Free Solution of Lactic Acid Bacteria on Cadaverine Production by Listeria monocytogenes and Staphylococcus aureus in Lysine-Decarboxylase Broth
Authors: Fatih Özogul, Nurten Toy, Yesim Özogul
Abstract:
The influences of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on cadaverine and other biogenic amine production by Listeria monocytogenes and Staphylococcus aureus were investigated in lysine decarboxylase broth (LDB) using HPLC. Cell-free solutions were prepared from Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidophilus and Streptococcus thermophiles. Two different concentrations that were 50% and 25% CFS and the control without CFSs were prepared. Significant variations on biogenic amine production were observed in the presence of L. monocytogenes and S. aureus (P<0.05). The role of CFS on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine formation in control by L. monocytogenes and S. aureus were 500.9 and 948.1 mg/L, respectively while the CFSs of LAB induced 4-fold lower cadaverine production by L. monocytogenes and 7-fold lower cadaverine production by S. aureus. CFSs resulted in strong decreases in cadaverine and putrescine production by L. monocytogenes and S. aureus, although remarkable increases were observed for histamine, spermidine, spermine, serotonin, dopamine, tyramine, and agmatine, in the presence of LAB in lysine decarboxylase broth.Keywords: cell-free solution, lactic acid bacteria, cadaverine, food borne-pathogen
Procedia PDF Downloads 54110437 Sustainable Tourism a Challenge to Competitivity: OBSERVE Project
Authors: Rui Lança, Elisa Silva, Fátima Farinha, Miguel José Oliveira, Manuel Duarte Pinheiro, Cátia Miguel
Abstract:
Tourism has a great potential to bring up progress across the Sustainable Development Goals (SDGs). If well managed and monitored, the tourism sector can create quality jobs, reduce poorness and offer incentives for environmental preservation, helping on the transition towards more inclusive and resilient economies. However, without proper safeguards and investments, expansion of the tourism market will increase pressure on biodiversity and the ecosystems on which the livelihoods of local communities depend. Competitivity is a key dimension in tourism, sustainable tourism challenge new dimensions to competitivity, namely environmental, social, institutional and economic achieve a medium and long-term competitivity. It is undoubtedly clear on the tourism sector, the importance of the region sustainability in the current touristic destinations offer. The basis of a tourism region prosperity will depend on /of it. The OBSERVE project intends to be an instrument for monitoring and evaluating the sustainability levels of the Algarve region. Its main objective is to provide environmental, economic, social-cultural and institutional indicators to support the decision-making process for a sustainable growth of the region. The project´s main goal is a digital portal with the most relevant indicators to allow evaluating and communicating the performance of the region in a sustainable growth perspective. This paper presents the OBSERVE project and highlights the potential contribution to a broad perspective of competitivity and its contribution for different stakeholders and the touristic value chain. Limitations and opportunities are also discussed.Keywords: sustainable tourism, competitivity, OBSERVE project, Algarve region
Procedia PDF Downloads 14810436 Terrorism and Sustainable Tourism Development
Authors: P. Okoro Ugo Chigozie, P. A. Igbojekwe, E. N. Ukabuilu
Abstract:
Tourism and terrorism experiences are best viewed as dynamic, complex systems with extreme diverse consequences on any nation’s economy. Tourism is one of the biggest industries in the world and one of the economical sectors which grows rapidly; tourism has positive impact on the nation’s economy. Terrorism is the method or the theory behind the method whereby an organized group or party seeks to achieve its avowed aims chiefly through the systematic use of violence; the consequences of terrorism on tourist destinations are inescapable and can be profound. Especially, it threatens the attractiveness of a tourist destination and strips the competitiveness of that destination. Destination’s vulnerability to politically motivated violence not only retracts tourists, but threatens sustainable tourism development. This paper examines the activities of the Jamaata Ahlis Sunna Liddaawati -an Islamic sect popularly known as Boko Haram – and its impact on sustainable tourism development in the Nigeria state. Possible triggers of this insurgency and potentially evolving measure against its influence on sustainable tourism including, strong image management of the tourism industry, feasible tourist safety policy, viable anti-terrorism measures, proactive respond to the challenge of terrorism, reinforcement of the legitimate frameworks and irrevocable penalty against menace of corruption; are discussed in this paper, as limiting the effects of insurgency on the attractiveness of Nigeria as safe tourists destination.Keywords: Nigeria, terrorism, sustainable tourism development, corruption and competitiveness
Procedia PDF Downloads 62010435 Architectural Approaches to a Sustainable Community with Floating Housing Units Adapting to Climate Change and Sea Level Rise in Vietnam
Authors: Nguyen Thi Thu Trang
Abstract:
Climate change and sea level rise is one of the greatest challenges facing human beings in the 21st century. Because of sea level rise, several low-lying coastal areas around the globe are at risk of being completely submerged, disappearing under water. Particularly in Viet Nam, the rise in sea level is predicted to result in more frequent and even permanently inundated coastal plains. As a result, land reserving fund of coastal cities is going to be narrowed in near future, while construction ground is becoming increasingly limited due to a rapid growth in population. Faced with this reality, the solutions are being discussed not only in tradition view such as accommodation is raised or moved to higher areas, or “living with the water”, but also forwards to “living on the water”. Therefore, the concept of a sustainable floating community with floating houses based on the precious value of long term historical tradition of water dwellings in Viet Nam would be a sustainable solution for adaptation of climate change and sea level rise in the coastal areas. The sustainable floating community is comprised of sustainability in four components: architecture, environment, socio-economic and living quality. This research paper is focused on sustainability in architectural component of floating community. Through detailed architectural analysis of current floating houses and floating communities in Viet Nam, this research not only accumulates precious values of traditional architecture that need to be preserved and developed in the proposed concept, but also illustrates its weaknesses that need to address for optimal design of the future sustainable floating communities. Based on these studies the research would provide guidelines with appropriate architectural solutions for the concept of sustainable floating community with floating housing units that are adapted to climate change and sea level rise in Viet Nam.Keywords: guidelines, sustainable floating community, floating houses, Vietnam
Procedia PDF Downloads 51810434 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 10810433 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico
Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez
Abstract:
Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes
Procedia PDF Downloads 13310432 Biosurfactant: A Greener Approach for Enhanced Concrete Rheology and Strength
Authors: Olivia Anak Rayeg, Clotilda Binti Petrus, Arnel Reanturco Ascotia, Ang Chung Huap, Caroline Marajan, Rudy Tawie Joseph Sipi
Abstract:
Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology.Keywords: concrete rheology, green admixture, fungal biosurfactant, phospholipids, rhizopus oryzae
Procedia PDF Downloads 4310431 Sustainable Opportunities of Educational Facilities Provided to the Imprisoned Women's Children in Karachi's Central Jail
Authors: Waqar Un Nisa Faizi, Anila Fatima Shakil, Wilayat Bibi, Sajjad Hayat Akhtar
Abstract:
This study will discuss the sustainable opportunities regarding educational facilities provided to the children of imprisoned women in the different jails of Pakistan particularly in Central Jail of Karachi. It will also discuss the importance of educational facilities which are required for the mental and personal growth of the children as education has the capability to enhance the general knowledge and the personality of any individual. Education is extremely important for the children whether they live in a society or in prison, because they are the future of any country. Therefore, the point of discussion in this paper will be the provision of educational facilities and sustainable opportunities regarding these facilities to the children of imprisoned women in Karachi and other countries of the world.Keywords: imprisoned, educational facilities, criminal activities, positive atmosphere
Procedia PDF Downloads 34310430 Sustainable Dyeing of Cotton and Polyester Blend Fabric without Reduction Clearing
Authors: Mohammad Tofayel Ahmed, Seung Kook An
Abstract:
In contemporary research world, focus is more set on sustainable products and innovative processes. The global textile industries are putting tremendous effort to achieve a balance between economic development and ecological protection concurrently. The conservation of water sources and environment have become immensely significant issue in textile dyeing production. Accordingly, an attempt has been taken in this study to develop a process to dye polyester blend cotton without reduction clearing process and any extra wash off chemical by simple modification aiming at cost reduction and sustainability. A widely used combination of 60/40 cotton/polyester (c/p) single jersey knitted fabric of 30’s, 180 g/m² was considered for study. Traditionally, pretreatment is done followed by polyester part dyeing, reduction clearing and cotton part dyeing for c/p blend dyeing. But in this study, polyester part is dyed right away followed by pretreatment process and cotton part dyeing by skipping the reduction clearing process diametrically. The dyed samples of both traditional and modified samples were scrutinized by various color fastness tests, dyeing parameters and by consumption of water, steam, power, process time and total batch cost. The modified process in this study showed no necessity of reduction clearing process for polyester blend cotton dyeing. The key issue contributing to avoid the reduction clearing after polyester part dyeing has been the multifunctional effect of NaOH and H₂O₂ while pretreatment of cotton after polyester part dyeing. The results also revealed that the modified process could reduce the consumption of water, steam, power, time and cost remarkably. The bulk trial of modified process demonstrated the well exploitability to dye polyester blend cotton substrate ensuring all fastness and dyeing properties regardless of dyes category, blend ratio, color, and shade percentage thus making the process sustainable, eco-friendly and economical. Furthermore, the proposed method could be applicable to any cellulosic blend with polyester.Keywords: cotton, dyeing, economical, polyester
Procedia PDF Downloads 18810429 Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050
Authors: Ali Hashemifarzad, Jens Zum Hingst
Abstract:
The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a.Keywords: energy demand, energy transition, German Energiewende, 100% renewable energy production
Procedia PDF Downloads 13410428 Production Sharing Contracts Transparency Simulation
Authors: Chariton Christou, David Cornwell
Abstract:
Production Sharing Contract (PSC) is the type of contract that is being used widely in our time. The financial crisis made the governments tightfisted and they do not have the resources to participate in a development of a field. Therefore, more and more countries introduce the PSC. The companies have the power and the money to develop the field with their own way. The main problem is the transparency of oil and gas companies especially in the PSC and how this can be achieved. Many discussions have been made especially in the U.K. What we are suggesting is a dynamic financial simulation with the help of a flow meter. The flow meter will count the production of each field every day (it will be installed in a pipeline). The production will be the basic input of the simulation. It will count the profit, the costs and more according to the information of the flow meter. In addition it will include the terms of the contract and the costs that have been paid. By all these parameters the simulation will be able to present in real time the information of a field (taxes, employees, R-factor). By this simulation the company will share some information with the government but not all of them. The government will know the taxes that should be paid and what is the sharing percentage of it. All of the other information could be confidential for the company. Furthermore, oil company could control the R-factor by changing the production each day to maximize its sharing percentages and as a result of this the profit. This idea aims to change the way that governments 'control' oil companies and bring a transparency evolution in the industry. With the help of a simulation every country could be next to the company and have a better collaboration.Keywords: production sharing contracts, transparency, simulation
Procedia PDF Downloads 37510427 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate
Authors: F. L. Motta, M. H. A. Santana
Abstract:
Humic Acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm Empty Fruit Bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.Keywords: empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride
Procedia PDF Downloads 30610426 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities
Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo
Abstract:
Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization
Procedia PDF Downloads 6910425 Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas
Authors: U. Schmidt, D. Dannehl, I. Schuch, J. Suhl, T. Rocksch, R. Salazar-Moreno, E. Fitz-Rodrigues, A. Rojano Aquilar, I. Lopez Cruz, G. Navas Gomez, R. A. Abraham, L. C. Irineo, N. G. Gilberto
Abstract:
The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.Keywords: semi closed, greenhouses, urban farming, solar heat collector, closed water cycles, aquaponics
Procedia PDF Downloads 33210424 Perceived Environmental Effects of Charcoal Production among Rural Dwellers in Rainforest and Guinea Savannah Agro-Ecological Zones of Nigeria
Authors: P. O. Eniola, S. O. Odebode
Abstract:
Charcoal production constitutes serious environmental problems to most developing countries of the world. Hence, the study assessed perceived environmental effects of charcoal production (CP) among the rural dwellers in rainforest and guinea savannah (GS) zones of Nigeria. Multi-stage sampling procedure was used to select 83 and 85 charcoal producers in GS and rainforest zones respectively. Eighteen statements on perceived environmental effects of charcoal production were collected. Data was collected through the use of structured interview schedule and analysed using both descriptive and inferential statistics. Descriptive analysis showed that the mean age was 43 years, 90.5% males, 90.6% married and 35.3% of respondents had no formal education. The majority (80.0%) of the respondents make use of earth mound method of CP and 52.9% of respondents produced between 32-32000kg of charcoal per annum. Respondents (62.7%) perceived that charcoal production could lead to erosion, 62.4% reduce the available trees for future use (62.4%) and reduce available air in the environment (54.1%). A significant difference existed in the perceived environmental effects of charcoal production between rainforest and guinea savannah agro-ecological zones (F=14.62). There is a need for the government to quickly work on other available and affordable alternative household energy sources.Keywords: deforestation, energy, earth mound method, environment
Procedia PDF Downloads 39610423 Environmental Aspects in the Job Performed by Supervisors Working in Industries
Authors: Mahesh Chandra Paliwal, Ajay Kumar Jain
Abstract:
Supervisors working in the industries must have the knowledge and skills for performing their job for environmental protection and sustainable development. A survey of thirty industries was conducted to know the roles of supervisors related to environmental protection and sustainable development. A questionnaire was prepared based on the discussion with the environmental experts. The findings of the study show that supervisors must be aware of practices followed for good housekeeping, water management, waste management, maintenance of effluent treatment plants, monitoring pollution control level to perform their job to save the environment. These aspects must be incorporated in diploma curriculum so that the diploma pass outs may use this knowledge and skills in the industries.Keywords: environmental protection, sustainable development, water management, waste management, curriculum
Procedia PDF Downloads 32810422 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System
Authors: Maryam Hamlehdar, Guillermo A. Narsilio
Abstract:
To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling
Procedia PDF Downloads 6810421 Understanding the Impact of Consumers’ Perceptions and Attitudes toward Eco-Friendly Hotel Recommended Advertisements on Tourist Buying Behavior
Authors: Cherouk Amr Yassin
Abstract:
This study aims to provide insight into consumer decision-making, which has become very complicated to understand and predict in the existing world of sustainable development. The deficiency of a good understanding of the tourist's perception and attitude toward sustainable development in the tourism industry may impede the ability of organizations to build a sustainable marketing orientation and may negatively influence predicted consumer response. Therefore, this research paper adds further insights into the attitude toward recommended eco-friendly hotel advertisements and their effect on the purchase intention of eco-friendly services. Structural equational modeling was completed to realize the effects of the variables under investigation. The findings revealed that consumer decision-making in choosing eco-friendly hotels is affected by the positive attitude toward sustainable development ads, influenced by informativeness and credibility as values perceived by eco-friendly hotels. This study provides practical implications for tourism, marketers, hotel managers, promoters, and consumers.Keywords: attitude, consumer behavior, consumer decision making, eco-friendly hotels, perception, the tourism industry
Procedia PDF Downloads 11310420 International Trade, Food Security, and Climate Change in an Era of Liberal Trade
Authors: M. Barsa
Abstract:
This paper argues that current liberal trade regimes have had the unfortunate effect of concentrating food production by area and by crop. While such hyper-specialization and standardization might be efficient under ordinary climate conditions, the increasing severity of climate shocks makes such a food production system especially vulnerable. Examining domestic US crop production, and the fact that similar patterns are evident worldwide, this paper explores the vulnerabilities of several major crops and suggests that the academic arguments surrounding increasing liberalization of trade are ill-suited to the climate challenges to come. Indeed, a case can be made that protectionist measures—especially by developing countries whose agricultural sectors are vulnerable to the cheap US and European exports—are increasingly necessary to scatter food production geographically and to retain a resilient diversity of crop varieties.Keywords: climate change, crop resilience, diversity, international trade
Procedia PDF Downloads 13010419 Rapid Mitochondrial Reactive Oxygen Species Production Precedes NF-κB Activation and Pro-inflammatory Responses in Macrophages
Authors: Parinaz Tavakoli Zaniani, Dimitrios Balomenos
Abstract:
Mitochondrial reactive oxygen species (mROS) play a crucial role in macrophage pro-inflammatory activation, although a detailed understanding of the mechanism and kinetics by which mROS drive signaling molecules is still lacking. In general, it is thought that NF-κB activation drives mROS and general ROS production. Here, We performed a detailed kinetic analysis of mROS production during macrophage activation. We found early mROS generation after LPS (lipopolysaccharide) stimulation. Remarkably as early as 5 minutes, mROS signaling promoted initial NF-κB, MAPK activation and pro-inflammatory cytokine production, as established through inhibition or quenching of mROS. On the contrary, NF-κB inhibition had no effect on mROS production. Our findings point to a mechanism by which mROS increase TRAF-6 ubiquitination and, thus NF-κB activity. mROS inhibition reduced LPS-induced lethality in an in vivo septic shock model by controlling pro-inflammatory cytokine production. Overall, our research provides novel insights into the role of mROS as a primary messenger in the pathway of macrophage and as a regulator of inflammatory responses. We found that early mROS production promotes initial NF-κB, and MAPK activation by regulating TRAF-6 ubiquitination and that mROS inhibition can reduce LPS-induced inflammatory cytokines and lethality in a septic shock model. These findings might lead to novel immunotherapeutic strategies targeting early mROS production and control of extreme inflammation in the context of sepsis and other inflammatory diseases.Keywords: mitochondria, reactive oxygen species, nuclear factor κB, lipopolysaccharide, macrophages
Procedia PDF Downloads 7510418 Participatory Action Research for Sustainability with Special Focus on Student Initiatives
Authors: Soni T. L.
Abstract:
Sustainable environmental stress is a major concern which needs immediate attention. This paper is an attempt to present participatory action research for sustainable agriculture. Being first and best culture, agriculture protects and improves the natural environment, the social and economic conditions of people, and safeguards the health and welfare of all groups. During course of time agriculture turned to agribusiness, then the values are not safeguarded. Moreover, in today’s busy life many are not taking efforts to take part in agriculture production. Then children are not getting the opportunity to understand agriculture and farming practices. So student initiatives are vital to make them aware. Here the programmes structured by the researcher come under the auspicious of National Service Scheme, a student-centered educational programme, organized by Ministry of Youth Affairs, Government of India. The twin objectives of the study are to examine the role of student initiatives for sustainable agriculture and the role of participatory action research in student initiatives. SWOT analysis is made to study strengths, weaknesses, threats and opportunities. The Methodology adopted is Participatory Action Research. The method is participatory in a sense there is collaboration through participation. The method is action, there is lab land experiences which is real. The method is research that there is documented lessons and creation of new knowledge. Plan of action cover measures adopted and strategies taken i.e., bhavana – kalpana – yojana – sadhana. Through the team effort, the team was successful in converting more than 10 hectares of barren land into cultivable land within and outside the campus. Team efforts of students saved a huge amount of labour cost and produced a huge quantity of organic output and the team was also successful in creating 1000 rain pits in the premises of College for rainwater harvesting. The findings include conveyance of the Message: Food Production is superior to Food donation. Moreover, the study fostered good work ethic and social responsibility among students. Students undertake innovative programmes underlying social and environmental issues and participants got increased opportunities to interact with local and less privileged and acquired increased awareness about real-life experiences which make them confident to interact with people and it resulted in the strengthening of social capital- cooperation, team spirit, social commitment among students. Participants promoted sustainable domestic efforts and ultimately environmental protection is ensured. Finally, there is recognition to the team, institution and the researcher at the university level, state level and at the national level. The learned lessons are, if the approach is good, the response is good and success generates success. Participatory action research is empowering experience for practitioners, focusing the combined time, energy and creativity of a committed group we should lead so many programmes which makes the institution centre of excellence. Authorities should take necessary steps for the Inclusion of community development activities in the curriculum. Action research is problem, client and action centered. So, we must adapt and adopt, coordinates and correlates measures which preserve and conserve the environment.Keywords: participatory action research, student initiatives, sustainable development, sustainability
Procedia PDF Downloads 15610417 Planning Healthy, Livable, and Sustainable Community in Terms of Effective Indicators on Policy Maker
Authors: Reihaneh Rafiemanzelat, Maryam Baradaran
Abstract:
Creating healthy communities that are sustainable and livable is a desire of policy makers in European countries. Indicators have used at the level of international, national, state to evaluate the level of health in cities and regions. Therefore, there are many challenges in the assumption of health and planning indicators. This research provides an overview of health indicators used to date in Europe according to World Health Organization (WHO) strategy. It then discusses on how indicators have been successful to the creation of healthy, livable and sustainable cities in Europe. This research is based on qualitative research to review the documentary researches on health issue and urban planning. The result will show the positive and negative effects of in process indicators on European cities.Keywords: healthy community, livability, sustainability, WHO strategy
Procedia PDF Downloads 34510416 Hydrogen Production Using Solar Energy
Authors: I. M. Sakr, Ali M. Abdelsalam, K. A. Ibrahim, W. A. El-Askary
Abstract:
This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the rate of hydrogen production increases using the polymeric membrane installed between the electrodes. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. Smaller gaps between the pair of electrodes are demonstrated to produce higher rates of hydrogen with higher system efficiency.Keywords: hydrogen production, water electrolysis, solar energy, concentration
Procedia PDF Downloads 378