Search results for: representation of graph models
7460 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo De Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.Keywords: rainfall-runoff models, automatic calibration, hyperbolic smoothing method
Procedia PDF Downloads 1497459 Developing Location-allocation Models in the Three Echelon Supply Chain
Authors: Mehdi Seifbarghy, Zahra Mansouri
Abstract:
In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.Keywords: location, multi-echelon supply chain, covering, goal programming
Procedia PDF Downloads 5607458 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 887457 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1067456 Intensive Use of Software in Teaching and Learning Calculus
Authors: Nodelman V.
Abstract:
Despite serious difficulties in the assimilation of the conceptual system of Calculus, software in the educational process is used only occasionally, and even then, mainly for illustration purposes. The following are a few reasons: The non-trivial nature of the studied material, Lack of skills in working with software, Fear of losing time working with software, The variety of the software itself, the corresponding interface, syntax, and the methods of working with the software, The need to find suitable models, and familiarize yourself with working with them, Incomplete compatibility of the found models with the content and teaching methods of the studied material. This paper proposes an active use of the developed non-commercial software VusuMatica, which allows removing these restrictions through Broad support for the studied mathematical material (and not only Calculus). As a result - no need to select the right software, Emphasizing the unity of mathematics, its intrasubject and interdisciplinary relations, User-friendly interface, Absence of special syntax in defining mathematical objects, Ease of building models of the studied material and manipulating them, Unlimited flexibility of models thanks to the ability to redefine objects, which allows exploring objects characteristics, and considering examples and counterexamples of the concepts under study. The construction of models is based on an original approach to the analysis of the structure of the studied concepts. Thanks to the ease of construction, students are able not only to use ready-made models but also to create them on their own and explore the material studied with their help. The presentation includes examples of using VusuMatica in studying the concepts of limit and continuity of a function, its derivative, and integral.Keywords: counterexamples, limitations and requirements, software, teaching and learning calculus, user-friendly interface and syntax
Procedia PDF Downloads 837455 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 3257454 Nanoparticles on Biological Biomarquers Models: Paramecium Tetraurelia and Helix aspersa
Authors: H. Djebar, L. Khene, M. Boucenna, M. R. Djebar, M. N. Khebbeb, M. Djekoun
Abstract:
Currently in toxicology, use of alternative models permits to understand the mechanisms of toxicity at different levels of cells. Objectives of our research concern the determination of NPs ZnO, TiO2, AlO2, and FeO2 effect on ciliate protist freshwater Paramecium sp and Helix aspersa. The result obtained show that NPs increased antioxidative enzyme activity like catalase, glutathione –S-transferase and level GSH. Also, cells treated with high concentrations of NPs showed a high level of MDA. In conclusion, observations from growth and enzymatic parameters suggest on one hand that treatment with NPs provokes an oxidative stress and on the other that snale and paramecium are excellent alternatives models for ecotoxicological studies.Keywords: NPs, GST, catalase, GSH, MDA, toxicity, snale and paramecium
Procedia PDF Downloads 2837453 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth
Authors: Valentina Zhang
Abstract:
While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning
Procedia PDF Downloads 1487452 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3417451 Decision Making, Reward Processing and Response Selection
Authors: Benmansour Nassima, Benmansour Souheyla
Abstract:
The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.Keywords: decision-making, motivation, alteration, reward processing, response selection
Procedia PDF Downloads 4797450 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 1957449 Beer Brand Commercials and Gender Representation in Nigeria: Contextualization's of Selected Television and YouTube Visuals of the 2010s and 2020s
Authors: Theresa Belema Chris-Biriowu
Abstract:
The change in trends in relation to gender representation in beer brand commercials was the thrust of the study. The study investigated how beer brand commercials reflect societal realities in their portrayals of gender roles within the span of a decade. The major objective of the study was to find out how gender was contextualized in selected beer brand commercials that both air on Nigerian television and stream on YouTube. The study was anchored on the muted group theory. The population of the study was in two streams: the total number of beer beverages that are produced by the eleven breweries in Nigeria and the registered advertising agencies in Lagos, Nigeria. The sample size was also two-pronged: the purposive selection of beer brands that have their commercials on television and YouTube and the purposive selection of an ad agency that has produced running commercials for beer brands within the period between 2010s and 2020s. They adopted visual framing analysis and narrative analysis research techniques. The study qualitatively analyzed the contents of beer brand commercials and conducted an interview with the management of the ad agency for data collection. The data was presented in images and words. The findings showed that females are underrepresented and misrepresented in the beer brand commercials and that the beer brands are not producing commercials that adequately reflect the realities of present times. It was also found that very little has changed in the ad industry between the periods studied, and commercial screenplays are not written with a specific aim to either target the female demographics or give them equal opportunities to thrive in the beer economy. The study concluded that the gender gap in beer commercials subsists and translates to gender discrimination, especially since it is established that females are also stakeholders in the beer economy. The study recommends that beer brands should produce commercials that appeal to their audience irrespective of gender, reflect contemporary realities, and give all genders equal opportunities to thrive in the increasingly competitive industry.Keywords: beer brands, commercials, gender representation, visuals, television, YouTube
Procedia PDF Downloads 397448 Representation of How Patriarchy Affects Mental Health in Qala and Black Swan
Authors: Mokshida Bhat
Abstract:
This paper examines the representation of patriarchy in the movies 'Qala' and 'Black Swan' and how it affects the mental health of women. Both movies portray female characters who are subject to patriarchal attitudes and structures that limit their choices and opportunities and contribute to negative mental health outcomes. In 'Qala' the central character Qala confronts the patriarchal attitudes of her family and community, which contribute to feelings of frustration and despair. In 'Black Swan' the main character Nina is subject to the demands and expectations of a patriarchal system that leads to anxiety, paranoia, and disconnection from her own body and emotions. Both movies highlight the harmful impact of patriarchal attitudes on women's mental health, including feelings of disempowerment, objectification, and self-doubt. The paper suggests that these negative outcomes can be addressed through a rejection of patriarchal norms and an assertion of one's own agency and identity. Overall, this paper demonstrates the importance of recognizing the role of patriarchy in contributing to mental health struggles for women and the need for more diverse and empowering representations of women in media.Keywords: patriarchy, mental health, depression, PTSD, mental health in Indian cinema, patriarchy in Indian cinema, feminism and patriarchy, sexism
Procedia PDF Downloads 567447 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 287446 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round
Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner
Abstract:
Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models
Procedia PDF Downloads 2317445 A Novel Algorithm for Parsing IFC Models
Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai
Abstract:
Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD). Procedia PDF Downloads 3007444 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 2687443 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels
Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira
Abstract:
Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel
Procedia PDF Downloads 4707442 Women, Ethnic Minorities and Electoral Success
Authors: Karen Lesley Webster, Charles Crothers
Abstract:
As the population of the Auckland region in New Zealand becomes markedly more super-diverse, the question of fair and effective representation becomes increasingly relevant. This paper explores who stood and who was elected to local office, in the three Auckland triennial local elections, following the 2010 amalgamation of the regions local authorities. It addresses the question of how representative the electoral candidates and elected members of local government in Auckland were of the diverse population they serve. A quantitative analysis of the gender and ethnicity of the Auckland Council candidates and elected members in 2013, 2016, and 2019 triennial elections was undertaken, and the gender and ethnicity compared with that of the Auckland population. Our findings show that under the two-tiered shared governance model established by the Local Government Act (Auckland Council) 2009, electoral candidates have become more ethnically and gender representative of Aucklanders at the local level, while at the regional level, divergence from predominantly New Zealand European, male local representatives is emerging, albeit with less pace. These findings warrant further investigation, but overall, the research presents a cautiously optimistic picture of Auckland local democracy in terms of increasing representational diversity.Keywords: local government, representation, diversity, gender, ethnicity
Procedia PDF Downloads 3347441 Identifying Missing Component in the Bechdel Test Using Principal Component Analysis Method
Authors: Raghav Lakhotia, Chandra Kanth Nagesh, Krishna Madgula
Abstract:
A lot has been said and discussed regarding the rationale and significance of the Bechdel Score. It became a digital sensation in 2013, when Swedish cinemas began to showcase the Bechdel test score of a film alongside its rating. The test has drawn criticism from experts and the film fraternity regarding its use to rate the female presence in a movie. The pundits believe that the score is too simplified and the underlying criteria of a film to pass the test must include 1) at least two women, 2) who have at least one dialogue, 3) about something other than a man, is egregious. In this research, we have considered a few more parameters which highlight how we represent females in film, like the number of female dialogues in a movie, dialogue genre, and part of speech tags in the dialogue. The parameters were missing in the existing criteria to calculate the Bechdel score. The research aims to analyze 342 movies scripts to test a hypothesis if these extra parameters, above with the current Bechdel criteria, are significant in calculating the female representation score. The result of the Principal Component Analysis method concludes that the female dialogue content is a key component and should be considered while measuring the representation of women in a work of fiction.Keywords: Bechdel test, dialogue genre, parts of speech tags, principal component analysis
Procedia PDF Downloads 1447440 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3767439 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof
Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba
Abstract:
In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof
Procedia PDF Downloads 1477438 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading
Authors: Peyman Aela, Lu Zong, Guoqing Jing
Abstract:
Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.Keywords: ballast, contact model, cyclic loading, DEM
Procedia PDF Downloads 1987437 Interpretation of Ultrasonic Backscatter of Linear FM Chirp Pulses from Targets Having Frequency-Dependent Scattering
Authors: Stuart Bradley, Mathew Legg, Lilyan Panton
Abstract:
Ultrasonic remote sensing is a useful tool for assessing the interior structure of complex targets. For these methods, significantly enhanced spatial resolution is obtained if the pulse is coded, for example using a linearly changing frequency during the pulse duration. Such pulses have a time-dependent spectral structure. Interpretation of the backscatter from targets is, therefore, complicated if the scattering is frequency-dependent. While analytic models are well established for steady sinusoidal excitations applied to simple shapes such as spheres, such models do not generally exist for temporally evolving excitations. Therefore, models are developed in the current paper for handling such signals so that the properties of the targets can be quantitatively evaluated while maintaining very high spatial resolution. Laboratory measurements on simple shapes are used to confirm the validity of the models.Keywords: linear FM chirp, time-dependent acoustic scattering, ultrasonic remote sensing, ultrasonic scattering
Procedia PDF Downloads 3177436 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines
Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota
Abstract:
In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.Keywords: automotive flows, flame propagation, combustion modelling, CNG
Procedia PDF Downloads 2937435 Local Spectrum Feature Extraction for Face Recognition
Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh
Abstract:
This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret
Procedia PDF Downloads 6697434 Of Rites of Narration and Representation of Orient and Occident in Thomas Heywood's Fair Maid of the West
Authors: Tarik Bouguerba
Abstract:
Thomas Heywood was an outstanding, prolific playwright of the period, writing both in prose and verse. Unlike Shakespeare in particular, Heywood could be considered as a playwright who was well informed about Morocco and wrote in greater detail about a possible dialogue among cultures. As it is a historical platform for power relations, The Fair Maid of the West recalled the heroism and excitement of English counterattacks against Spain in the Post-Armada period. This paper therefore pins down the acts of narration and representation of Morocco and Moroccans and examines how the Occident has contributed to the production of the Orient and finally attests to the metamorphosis the plot undergoes in Part I and Part II. As an adventure play, The Fair Maid of the West teaches about, informs of and confirms the existing patterns of virtue in European voyagers and at the same time it asserts how honor and chastity are European par excellence whereas villainy and wickedness are Oriental assets. Once taken captive, these virtues and traits are put into task as the plot disentangles. This paper also examines how the play in both parts generates a whole history of stereotypes about Morocco and unexpectedly subverts this stereotype; such a biased mode of narration of the Orient the playwright took up at first was played down at a later phase in the narrative.Keywords: Heywood, Occident, Orientalism, Stereotype, Virtue
Procedia PDF Downloads 1427433 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users
Authors: Devon Brown, Liu Chunmei
Abstract:
This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework
Procedia PDF Downloads 257432 Issues in the Learning and Construction of a National Music Identity in Multiracial Malaysia: Diversity, Complexity, and Contingency
Authors: Loo Fung Ying, Loo Fung Chiat
Abstract:
The formation of a musical identity that shapes the nation in this multiracial country reveals many complexities, conundrums, and contingencies. Creativity and identity formation at the level of an individual or a collective group further diversified musical expression, representation, and style, which has led to an absence of regularities. In addition, ‘contemporizing accretion,’ borrowing a term used by Schnelle in theology (2009), further complicates musical identity, authenticity, conception, and realization. Thus, in this paper, we attempt to define the issues surrounding the teaching and learning of the multiracial Malaysian national music identity. We also discuss unnecessary power hierarchies, interracial conflicts, and sentiments in the construct of a multiracial national music identity by referring to genetic origins, the evolution of music, and the neglected issues of representation and reception at a global level from a diachronic perspective. Lastly, by synthesizing Ladson-Billings, Gay, Kruger, and West-Burns’s culturally relevant/responsive pedagogical theories, we discuss possible analytic tools for consideration that are more multiculturally relevant and responsive for the teaching, learning, and construction of a multiracial Malaysian national music identity.Keywords: Malaysia, music, multiracial, national music identity, culturally relevant/responsive pedagogy
Procedia PDF Downloads 2017431 When the Rubber Hits the Road: The Enactment of Well-Intentioned Language Policy in Digital vs. In Situ Spaces on Washington, DC Public Transportation
Authors: Austin Vander Wel, Katherin Vargas Henao
Abstract:
Washington, DC, is a city in which Spanish, along with several other minority languages, is prevalent not only among tourists but also those living within city limits. In response to this linguistic diversity and DC’s adoption of the Language Access Act in 2004, the Washington Metropolitan Area Transit Authority (WMATA) committed to addressing the need for equal linguistic representation and established a five-step plan to provide the best multilingual information possible for public transportation users. The current study, however, strongly suggests that this de jure policy does not align with the reality of Spanish’s representation on DC public transportation–although perhaps doing so in an unexpected way. In order to investigate Spanish’s de facto representation and how it contrasts with de jure policy, this study implements a linguistic landscapes methodology that takes critical language-policy as its theoretical framework (Tollefson, 2005). Specifically concerning de facto representation, it focuses on the discrepancies between digital spaces and the actual physical spaces through which users travel. These digital vs. in situ conditions are further analyzed by separately addressing aural and visual modalities. In digital spaces, data was collected from WMATA’s website (visual) and their bilingual hotline (aural). For in situ spaces, both bus and metro areas of DC public transportation were explored, with signs comprising the visual modality and recordings, driver announcements, and interactions with metro kiosk workers comprising the aural modality. While digital spaces were considered to successfully fulfill WMATA’s commitment to representing Spanish as outlined in the de jure policy, physical spaces show a large discrepancy between what is said and what is done, particularly regarding the bus system, in addition to the aural modality overall. These discrepancies in situ spaces place Spanish speakers at a clear disadvantage, demanding additional resources and knowledge on the part of residents with limited or no English proficiency in order to have equal access to this public good. Based on our critical language-policy analysis, while Spanish is represented as a right in the de jure policy, its implementation in situ clearly portrays Spanish as a problem since those seeking bilingual information can not expect it to be present when and where they need it most (Ruíz, 1984; Tollefson, 2005). This study concludes with practical, data-based steps to improve the current situation facing DC’s public transportation context and serves as a model for responding to inadequate enactment of de jure policy in other language policy settings.Keywords: Urban landscape, language access, critical-language policy, spanish, public transportation
Procedia PDF Downloads 73