Search results for: renewable
644 Photocatalytic Hydrogen Production from Butanol over Ag/TiO2
Authors: Thabelo Nelushi, Michael Scurrell, Tumelo Seadira
Abstract:
Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation.Keywords: butanol, hydrogen production, silver particles, TiO2 nanoparticles
Procedia PDF Downloads 210643 Sustainable Lighting Solutions in Residential Interiors to Combat the Ever-Growing Problem of Environmental Degradation
Authors: Ankita Sharma, Reenu Singh
Abstract:
In order to conserve the ecology and the environment, there is a need to focus on sustainable lighting solutions such as LED bulbs instead of incandescent bulbs, candle-powered lamps, self-cooling smart bulbs, and many more, that are both eco-friendly and practical. This paper focuses on such sustainable solutions to lighting, which will have a major positive impact on the environment in the coming future. A questionnaire survey was conducted to note the responses of people living in high-rise buildings in metropolitan cities with regards to such sustainable lighting choices in their homes. The result of such questionnaire survey has helped to design parameters which are used to ideate design interventions in this field of sustainable lighting choices. This paper includes proposals to facilitate the reduction of electric power in interior lighting through various lighting accessory design interventions. Thus, such design interventions will allow us to design more sustainable interior spaces, and renewable energy strategies can be developed in the field of lighting, which will not only help to save energy but also positively affect other aspects of human well-being such as productivity, heritage conservation and economic well-being too!Keywords: sustainable, interior lighting, lighting design, environmental impact, metropolitan cities
Procedia PDF Downloads 205642 Production and Characterisation of Lipase from a Novel Streptomyces.sp - Its Molecular Identification
Authors: C. Asha Poorna, N. S. Pradeep
Abstract:
The biological function of lipase is to catalyze the hydrolysis of triacylglycerols to give free fatty acid, diacylglycerols, mono-acylglycerols and glycerol. They constitute the most important group of biocatalysts for biotechnological applications. The aim of the present study was to identify the lipolytic activity of Streptomyces sp. From soil sample collected from the sacred groves of southern Kerala. The culture conditions of the isolate were optimised and the enzyme was purified and characterised. The purification was attempted with acetone precipitation. The isolate observed to have high lipolytic activity and identified to be of Streptomyces strain. The purification was attempted with acetone precipitation. The purified enzyme observed to have an apparent molecular mass of ~60kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed maximum activity at 60oC and pH-8. The lipase showed tolerance towards different organic solvents like ethanol and methanol that are commonly used in transesterification reactions to displace alcohol from triglycerides contained in renewable resources to yield fatty acid alkyl esters known as biodiesel.Keywords: lipase, Streptomyces, biodiesel, fatty acid, transesterification
Procedia PDF Downloads 327641 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab
Authors: Zenab Naseem, Sadia Imran
Abstract:
One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.Keywords: alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development
Procedia PDF Downloads 254640 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles
Authors: Khaoula Bensaida, Osama Eljamal
Abstract:
The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.
Procedia PDF Downloads 144639 Bio-Oil Production and Chromatographic Characterization from the Pyrolysis of Oil Palm Empty Fruit Bunches
Authors: Arif Ferdiyanto, Fajar Hamida, Arif Hidayat
Abstract:
Oil palm empty fruit bunches, derived biomass available in Indonesia, is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. An interesting alternative of utilising the oil palm empty fruit bunches is in the production of bio-oil by pyrolysis. Pyrolysis of oil palm empty fruit bunches to bio-oil is being considered for national energy security and environmental advantages. The aim of this study was to produce bio-oil by pyrolysis of oil palm empty fruit bunches at various temperature and observe its detailed chemical composition. The biomass was submitted to a pyrolysis in a batch reactor. Experiments were carried out at a temperature range of 450–600°C and heating rate range of 10-20°C/min. The yield of bio-oil was found to be maximum at the temperature of 600°C. The bio-oils detailed compositions were investigated using FTIR and GC-MS. The bio-char produced as a co-product can be a potential soil amendment with multiple benefits including soil fertility and for solid fuel applications that also contributes to the preservation of the environment. The present investigation suggests the suitability of oil palm empty fruit bunches as a potential feedstock for exploitation of energy and biomaterials through pyrolysis process.Keywords: bio-oil, oil palm empty fruit bunches, pyrolysis, renewable energy
Procedia PDF Downloads 341638 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification
Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih
Abstract:
Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.Keywords: methanol, palm oil, simulation, transesterification, triolein
Procedia PDF Downloads 320637 A Joint Possibilistic-Probabilistic Tool for Load Flow Uncertainty Assessment-Part I: Formulation
Authors: Morteza Aien, Masoud Rashidinejad, Mahmud Fotuhi-Firuzabad
Abstract:
As energetic and environmental issues are getting more and more attention all around the world, the penetration of distributed energy resources (DERs) mainly those harvesting renewable energies (REs) ascends with an unprecedented rate. This matter causes more uncertainties to appear in the power system context; ergo, the uncertainty analysis of the system performance is an obligation. The uncertainties of any system can be represented probabilistically or possibilistically. Since sufficient historical data about all the system variables is not available, therefore, they do not have a probability density function (PDF) and must be represented possibilistiacally. When some of system uncertain variables are probabilistic and some are possibilistic, neither the conventional pure probabilistic nor pure possibilistic methods can be implemented. Hence, a combined solution is appealed. The first of this two-paper series formulates a new possibilistic-probabilistic tool for the load flow uncertainty assessment. The proposed methodology is based on the evidence theory and joint propagation of possibilistic and probabilistic uncertainties. This possibilistic- probabilistic formulation is solved in the second companion paper in an uncertain load flow (ULF) study problem.Keywords: probabilistic uncertainty modeling, possibilistic uncertainty modeling, uncertain load flow, wind turbine generator
Procedia PDF Downloads 561636 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production
Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne
Abstract:
— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling
Procedia PDF Downloads 188635 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.Keywords: city, consumption, energy, generation
Procedia PDF Downloads 129634 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan
Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa
Abstract:
Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement
Procedia PDF Downloads 243633 Energy Audit and Renovation Scenarios for a Historical Building in Rome: A Pilot Case Towards the Zero Emission Building Goal
Authors: Domenico Palladino, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Silvia Di Turi
Abstract:
The aim to achieve a fully decarbonized building stock by 2050 stands as one of the most challenging issues within the spectrum of energy and climate objectives. Numerous strategies are imperative, particularly emphasizing the reduction and optimization of energy demand. Ensuring the high energy performance of buildings emerges as a top priority, with measures aimed at cutting energy consumptions. Concurrently, it is imperative to decrease greenhouse gas emissions by using renewable energy sources for the on-site energy production, thereby striving for an energy balance leading towards zero-emission buildings. Italy's predominant building stock comprises ancient buildings, many of which hold historical significance and are subject to stringent preservation and conservation regulations. Attaining high levels of energy efficiency and reducing CO2 emissions in such buildings poses a considerable challenge, given their unique characteristics and the imperative to adhere to principles of conservation and restoration. Additionally, conducting a meticulous analysis of these buildings' current state is crucial for accurately quantifying their energy performance and predicting the potential impacts of proposed renovation strategies on energy consumption reduction. Within this framework, the paper presents a pilot case in Rome, outlining a methodological approach for the renovation of historic buildings towards achieving Zero Emission Building (ZEB) objective. The building has a mixed function with offices, a conference hall, and an exposition area. The building envelope is made of historical and precious materials used as cladding which must be preserved. A thorough understanding of the building's current condition serves as a prerequisite for analyzing its energy performance. This involves conducting comprehensive archival research, undertaking on-site diagnostic examinations to characterize the building envelope and its systems, and evaluating actual energy usage data derived from energy bills. Energy simulations and audit are the first step in the analysis with the assessment of the energy performance of the actual current state. Subsequently, different renovation scenarios are proposed, encompassing advanced building techniques, to pinpoint the key actions necessary for improving mechanical systems, automation and control systems, and the integration of renewable energy production. These scenarios entail different levels of renovation, ranging from meeting minimum energy performance goals to achieving the highest possible energy efficiency level. The proposed interventions are meticulously analyzed and compared to ascertain the feasibility of attaining the Zero Emission Building objective. In conclusion, the paper provides valuable insights that can be extrapolated to inform a broader approach towards energy-efficient refurbishment of historical buildings that may have limited potential for renovation in their building envelopes. By adopting a methodical and nuanced approach, it is possible to reconcile the imperative of preserving cultural heritage with the pressing need to transition towards a sustainable, low-carbon future.Keywords: energy conservation and transition, energy efficiency in historical buildings, buildings energy performance, energy retrofitting, zero emission buildings, energy simulation
Procedia PDF Downloads 67632 Economic Forecasting Analysis for Solar Photovoltaic Application
Authors: Enas R. Shouman
Abstract:
Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.Keywords: photovoltaic, financial methods, solar energy, economics, PV panel
Procedia PDF Downloads 109631 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst
Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis
Abstract:
Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10
Procedia PDF Downloads 394630 Identify and Prioritize the Sustainable Development of Sports Venues Using New and Degradable Energies with a Hierarchical Analysis Approach
Authors: Mahsaossadat Pourrahmati Khelejan
Abstract:
The purpose of this research was to identify and prioritize the sustainable development of sports venues using new and degradable energies with using the AHP Hierarchical Analysis approach. The research method is a descriptive strategy with regard to the direction of implementation and is a hierarchical research with a practical purpose. In this study, 30 experts (physical education faculty members, geography professors, accredited sports venues managers, and renewable energy engineers) were selected using purposeful sampling method as the research population. The research tool was a researcher-made questionnaire on the factors affecting the sustainable development of sports venues by using new technologies and degradable energy. Finally, the research questionnaire was designed with four components and 21 items. All steps were performed by using Expert Choice software. The importance of indicators that influence the sustainable development of sports venues is highlighted by the use of clean and degradable energy, for example: 1. Economic factor, weighing 0.420 2. Environmental index, weighing 0. 320 3. Physical index, weighing 0.148 4. Social index, weighing 0.122.Keywords: Sports Venues, Sustainable Development, Degradable Energies, Prioritize
Procedia PDF Downloads 133629 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth
Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari
Abstract:
South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output
Procedia PDF Downloads 470628 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels
Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra
Abstract:
In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels
Procedia PDF Downloads 147627 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator
Authors: Dib Djalel, Mordjaoui Mourad
Abstract:
The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power
Procedia PDF Downloads 483626 The Exploration of Sustainable Landscape in Iran: From Persian Garden to Modern Park
Authors: Honey Fadaie, Vahid Parhoodeh
Abstract:
This paper concentrates on the result of research based on studies on parameters of sustainability in Persian Garden design as a traditional Iranian landscape and in a contemporary park, Jamshidieh in Iran as a new experience of re-creation of Persian Gardens’ sustainable design. Since, sustainable development has three parts: social, economic and environmental. The complexities of each part are too great to discuss in a paper of this length, thus the authors decided to analyze the design of Persian garden by considering their environmental sustainability. By the analysis of sustainable features and characteristics of traditional gardens, and exploration of parameters of sustainability in Iranian modern landscape, Such as Jamshideh Park, the main objective of this research is to identify the strategies for sustainable landscaping and parameters of creating sustainable green spaces for contemporary cities. The results demonstrate that in Persian Gardens, sustainable parameters such as productive networks and local renewable materials have been used to achieve sustainable development. At the conclusion, guidelines and recommendations for sustainable landscaping are presented.Keywords: Jamshidieh park, Persian garden, sustainable landscape, urban green space
Procedia PDF Downloads 475625 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District
Authors: C. Matasane, C. Dwarika, R. Naidoo
Abstract:
The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou, Limpopo Province for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.Keywords: renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation
Procedia PDF Downloads 376624 Investigation of Biochar from Banana Peel
Authors: Anurita Selvarajoo, Svenja Hanson
Abstract:
Growing energy needs and increasing environmental issues are creating awareness for alternative energy which substitutes the non-renewable and polluting fossil fuels. Agricultural wastes are a good feedstock for biochar production through the pyrolysis process. There is potential to generate solid fuel from agricultural wastes, as there are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study on the pyrolysis of banana peel. The effects of pyrolysis temperatures on the yield of biochar from the banana peel were investigated. Banana peel was pyrolysed in a horizontal tubular reactor under inert atmosphere by varying the temperatures between 300 and 700 0C. With increasing temperature, the total biochar yield decreased with increased heating value. It was found that the pyrolysis temperature had major effect on the yield of biochar product. It also exerted major influence on the heating value and C,H and O composition. The obtained biochar ranged between 31.9 to 56.7 %wt, at different pyrolysis temperatures. The optimum biochar yield was obtained at 325 0C. Biochar yield obtained at optimum temperature was 47 % wt with a heating value of 25.9 MJ kg-1. The study has been performed in order to demonstrate that agricultural wastes like banana peel are also important source of solid fuel.Keywords: agricultural Wastes, banana peel, biochar, pyrolysis
Procedia PDF Downloads 297623 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System
Authors: Safia Bashir, Zulfiqar Memon
Abstract:
During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system
Procedia PDF Downloads 158622 India's Geothermal Energy Landscape and Role of Geophysical Methods in Unravelling Untapped Reserves
Authors: Satya Narayan
Abstract:
India, a rapidly growing economy with a burgeoning population, grapples with the dual challenge of meeting rising energy demands and reducing its carbon footprint. Geothermal energy, an often overlooked and underutilized renewable source, holds immense potential for addressing this challenge. Geothermal resources offer a valuable, consistent, and sustainable energy source, and may significantly contribute to India's energy. This paper discusses the importance of geothermal exploration in India, emphasizing its role in achieving sustainable energy production while mitigating environmental impacts. It also delves into the methodology employed to assess geothermal resource feasibility, including geophysical surveys and borehole drilling. The results and discussion sections highlight promising geothermal sites across India, illuminating the nation's vast geothermal potential. It detects potential geothermal reservoirs, characterizes subsurface structures, maps temperature gradients, monitors fluid flow, and estimates key reservoir parameters. Globally, geothermal energy falls into high and low enthalpy categories, with India mainly having low enthalpy resources, especially in hot springs. The northwestern Himalayan region boasts high-temperature geothermal resources due to geological factors. Promising sites, like Puga Valley, Chhumthang, and others, feature hot springs suitable for various applications. The Son-Narmada-Tapti lineament intersects regions rich in geological history, contributing to geothermal resources. Southern India, including the Godavari Valley, has thermal springs suitable for power generation. The Andaman-Nicobar region, linked to subduction and volcanic activity, holds high-temperature geothermal potential. Geophysical surveys, utilizing gravity, magnetic, seismic, magnetotelluric, and electrical resistivity techniques, offer vital information on subsurface conditions essential for detecting, evaluating, and exploiting geothermal resources. The gravity and magnetic methods map the depth of the mantle boundary (high-temperature) and later accurately determine the Curie depth. Electrical methods indicate the presence of subsurface fluids. Seismic surveys create detailed sub-surface images, revealing faults and fractures and establishing possible connections to aquifers. Borehole drilling is crucial for assessing geothermal parameters at different depths. Detailed geochemical analysis and geophysical surveys in Dholera, Gujarat, reveal untapped geothermal potential in India, aligning with renewable energy goals. In conclusion, geophysical surveys and borehole drilling play a pivotal role in economically viable geothermal site selection and feasibility assessments. With ongoing exploration and innovative technology, these surveys effectively minimize drilling risks, optimize borehole placement, aid in environmental impact evaluations, and facilitate remote resource exploration. Their cost-effectiveness informs decisions regarding geothermal resource location and extent, ultimately promoting sustainable energy and reducing India's reliance on conventional fossil fuels.Keywords: geothermal resources, geophysical methods, exploration, exploitation
Procedia PDF Downloads 86621 Nearly Zero-Energy Regulation and Buildings Built with Prefabricated Technology: The Case of Hungary
Authors: András Horkai, Attila Talamon, Viktória Sugár
Abstract:
There is an urgent need nowadays to reduce energy demand and the current level of greenhouse gas emission and use renewable energy sources increase in energy efficiency. On the other hand, the European Union (EU) countries are largely dependent on energy imports and are vulnerable to disruption in energy supply, which may, in turn, threaten the functioning of their current economic structure. Residential buildings represent a significant part of the energy consumption of the building stock. Only a small part of the building stock is exchanged every year, thus it is essential to increase the energy efficiency of the existing buildings. Present paper focuses on the buildings built with industrialized technology only, and their opportunities in the boundaries of nearly zero-energy regulation. Current paper shows the emergence of panel construction method, and past and present of the ‘panel’ problem in Hungary with a short outlook to Europe. The study shows as well as the possibilities for meeting the nearly zero and cost optimized requirements for residential buildings by analyzing the renovation scenarios of an existing residential typology.Keywords: Budapest, energy consumption, industrialized technology, nearly zero-energy buildings
Procedia PDF Downloads 348620 Suitability Evaluation of CNW as Scaffold for Osteoblast
Authors: Hoo Cheol Lee, Dae Seung Kim, Sang Myung Jung, Gwang Heum Yoon, Hwa Sung Shin
Abstract:
Loss of bone tissue can occur due to a bone tissue disease and aging or fracture. Renewable formation of bone is mainly made by its differentiation and metabolism. For this reason, osteoblasts have been studied for regeneration of bone tissue. So, tissue engineering has attracted attention as a recovery means. In tissue engineering, a particularly important factor is a scaffold that supports cell growth. For osteoblast scaffold, we used the cellulose nanowhisker (CNW) extracted from marine organism. CNW is one of an abundant material obtained from a number of plants and animals. CNW is polymer consisting of monomer cellulose and this composition offers biodegradability and biocompatibility to CNW. Mechanical strength of CNW is superior to the existing natural polymers. In addition, substances of marine origin have a low risk of secondary infection by bacteria and pathogen in contrast with those of land-derived. For evaluating its suitability as an osteoblast scaffold, we fabricate CNW film for osteoblast culture and performed the MTT assay and ALP assay to confirm its cytotoxicity and effect on differentiation. Taking together these results, we assessed CNW is a potential candidate of a material for bone tissue regeneration.Keywords: bone regeneration, cellulose nanowhisker, marine derived material, osteoblast
Procedia PDF Downloads 347619 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain
Authors: Vijay H. Ingole, Efthimia Lioliou
Abstract:
Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.Keywords: indirubin, bacterial strain, fermentation, HPLC
Procedia PDF Downloads 27618 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis
Authors: Hakimeh Masoudigavgani
Abstract:
Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)
Procedia PDF Downloads 581617 Uses for Closed Coal Mines: Construction of Underground Pumped Storage Hydropower Plants
Authors: Javier Menéndez, Jorge Loredo
Abstract:
Large scale energy storage systems (LSESS) such as pumped-storage hydro-power (PSH) are required in the current energy transition towards a low carbon economy by using green energies that produce low levels of greenhouse gas (GHG) emissions. Coal mines are currently being closed in the European Union and their underground facilities may be used to build PSH plants. However, the development of this projects requires the excavation of a network of tunnels and a large cavern that would be used as a powerhouse to install the Francis turbine and motor-generator. The technical feasibility to excavate the powerhouse cavern has been analyzed in the North of Spain. Three-dimensional numerical models have been conducted to analyze the stability considering shale and sandstone rock mass. Total displacements and thickness of plastic zones were examined considering different support systems. Systematic grouted rock bolts and fibre reinforced shotcrete were applied at the cavern walls and roof. The results obtained show that the construction of the powerhouse is feasible applying proper support systems.Keywords: closed mines, mine water, numerical model, pumped-storage, renewable energies
Procedia PDF Downloads 96616 Energy Potential of Turkey and Evaluation of Solar Energy Technology as an Alternative Energy
Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen
Abstract:
Emerging demand for energy in developing countries rapid population growth and industrialization are causing a rapid increase, such as Turkey. Energy is an important and indispensable factor in the industry. At the same time, energy is one of the main indicators that reflect a country's economic and social development potential. There is a linear relationship between the energy consumption and social development, and in parallel this situation, it is seen that energy consumption increase with economic growth and prosperity. In recent year’s, energy sources consumption is increasingly continuing, because of population growth and economy in Turkey. 80% of the energy used in Turkey is supplied from abroad. At the same time, while almost all of the energy obtained from our country is met by hydropower. Alternatively, studies of determining and using potential renewable energy sources such as solar energy have been realized for recent years. In this study, first of all, the situation of energy sources was examined in Turkey. Information of reserve/capacity, production and consumption values of energy sources were emphasized. For this purpose, energy production and consumption, CO2 emission and electricity energy consumption of countries were investigated. Energy consumption and electricity energy consumption per capita were comparatively analyzed.Keywords: energy potential, alternative energy sources, solar energy, Turkey
Procedia PDF Downloads 440615 Analysis of Bio-Oil Produced by Pyrolysis of Coconut Shell
Authors: D. S. Fardhyanti, A. Damayanti
Abstract:
The utilization of biomass as a source of new and renewable energy is being carried out. One of the technologies to convert biomass as an energy source is pyrolysis which is converting biomass into more valuable products, such as bio-oil. Bio-oil is a liquid which is produced by steam condensation process from the pyrolysis of coconut shells. The composition of a coconut shell e.g. hemicellulose, cellulose and lignin will be oxidized to phenolic compounds as the main component of the bio-oil. The phenolic compounds in bio-oil are corrosive; they cause various difficulties in the combustion system because of a high viscosity, low calorific value, corrosiveness, and instability. Phenolic compounds are very valuable components which phenol has used as the main component for the manufacture of antiseptic, disinfectant (known as Lysol) and deodorizer. The experiments typically occurred at the atmospheric pressure in a pyrolysis reactor at temperatures ranging from 300 oC to 350 oC with a heating rate of 10 oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the bio-oil components. The obtained bio-oil has the viscosity of 1.46 cP, the density of 1.50 g/cm3, the calorific value of 16.9 MJ/kg, and the molecular weight of 1996.64. By GC-MS, the analysis of bio-oil showed that it contained phenol (40.01%), ethyl ester (37.60%), 2-methoxy-phenol (7.02%), furfural (5.45%), formic acid (4.02%), 1-hydroxy-2-butanone (3.89%), and 3-methyl-1,2-cyclopentanedione (2.01%).Keywords: bio-oil, pyrolysis, coconut shell, phenol, gas chromatography-mass spectroscopy
Procedia PDF Downloads 247