Search results for: real-time monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3156

Search results for: real-time monitoring

2436 Health Exposure Assessment of Sulfur Loading Operation

Authors: Ayman M. Arfaj, Jose Lauro M. Llamas, Saleh Y Qahtani

Abstract:

Sulfur Loading Operation (SLO) is an operation that poses risk of exposure to toxic gases such as Hydrogen Sulfid and Sulfur Dioxide during molten sulfur loading operation. In this operation molten sulfur is loaded into a truck tanker in a liquid state and the temperature of the tanker must maintain liquid sulfur within a 43-degree range — between 266 degrees and 309 degrees Fahrenheit in order for safe loading and unloading to occur. Accordingly, in this study, the e potential risk of occupational exposure to the airborne toxic gases was assessed at three sulfur loading facilities. The concentrations of toxic airborne substances such as Hydrogen Sulfide (H2S) and Sulfur Dioxide (SO2), were monitored during operations at the different locations within the sulfur loading operation facilities. In addition to extensive real-time monitoring, over one hundred and fifty samples were collected and analysed at internationally accredited laboratories. The concentrations of H2S, and SO2 were all found to be well below their respective occupational exposure limits. Very low levels of H2S account for the odours observed intermittingly during mixing and application operations but do not pose a considerable health risk and hence these levels are considered a nuisance. These results were comparable to those reported internationally. Aside from observing the usual general safe work practices such as wearing safety glasses, there are no specific occupational health related concerns at the examined sulfur loading facilities.

Keywords: exposure assessment, sulfur loading operation, health risk study, molten sulfur, toxic airborne substances, air contaminants monitoring

Procedia PDF Downloads 79
2435 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines

Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh

Abstract:

The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.

Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method

Procedia PDF Downloads 268
2434 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 361
2433 Social Construction of Sustainability and Quality of Life Indicators for Urban Passenger Transportation

Authors: Tzay-An Shiau, Kuan-Lin Ho

Abstract:

This study developed sustainability and quality of life indicators for urban passenger transportation by using Social Construction of Technology (SCOT). The initial indicators were proposed by referring to literatures and were summarized by using impact-based framework. Subsequently, the stakeholders were defined according to their interest, power and then classified into scientific, operational, policy making, policy monitoring and nonprofessional frames. The scientific frame consisted of nine scholars in transportation field. Ten representatives from Taipei Rapid Transit Corporation (TRTC), Taiwan Railways Administration (TRA) and bus operators were grouped into the operational frame. The policy making frame comprised of ten representatives from Department of Transportation, Taipei City Government (DOT, TCG), Department of Railways and Highways, Ministry of Transportation and Communication (DORH, MOTC), Directorate General of Highways, Ministry of Transportation and Communication (DGOH, MOTC) and Institute of Transportation, Ministry of Transportation and Communication (IOT, MOTC). The policy monitoring frame consisted of 15 representatives from Taipei City Councilor, legislator and reporter. The nonprofessional frame comprised of 72 Taipei citizens. The stakeholders were asked to evaluate the relative importance of indicators using Delphi survey method. Social construction of 14 transport sustainability indicators and 12 transport quality of life indicators were obtained.

Keywords: sustainability, quality of life, Social Construction of Technology (SCOT), stakeholder

Procedia PDF Downloads 465
2432 Assessment of Personal Level Exposures to Particulate Matter among Children in Rural Preliminary Schools as an Indoor Air Pollution Monitoring

Authors: Seyedtaghi Mirmohammadi, J. Yazdani, S. M. Asadi, M. Rokni, A. Toosi

Abstract:

There are many indoor air quality studies with an emphasis on indoor particulate matters (PM2.5) monitoring. Whereas, there is a lake of data about indoor PM2.5 concentrations in rural area schools (especially in classrooms), since preliminary children are assumed to be more defenseless to health hazards and spend a large part of their time in classrooms. The objective of this study was indoor PM2.5 concentration quality assessment. Fifteen preliminary schools by time-series sampling were selected to evaluate the indoor air quality in the rural district of Sari city, Iran. Data on indoor air climate parameters (temperature, relative humidity and wind speed) were measured by a hygrometer and thermometer. Particulate matters (PM2.5) were collected and assessed by Real Time Dust Monitor, (MicroDust Pro, Casella, UK). The mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3 in average. The multiple linear regression revealed that a correlation between PM2.5 concentration and relative humidity, distance from city center and classroom size. Classroom size yields reasonable negative relationship, the PM2.5 concentration was ranged from 65 to 540μg/m3 and statistically significant at 0.05 level and the relative humidity was ranged from 70 to 85% and dry bulb temperature ranged from 28 to 29°C were statistically significant at 0.035 and 0.05 level, respectively. A statistical predictive model was obtained from multiple regressions modeling for PM2.5 and indoor psychrometric parameters.

Keywords: particulate matters, classrooms, regression, concentration, humidity

Procedia PDF Downloads 312
2431 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques

Authors: S. Visetpotjanakit, C. Khrautongkieo

Abstract:

Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.

Keywords: international atomic energy agency, proficiency test, radiation monitoring, seawater

Procedia PDF Downloads 172
2430 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie

Authors: Xiaofang Wei

Abstract:

Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.

Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria

Procedia PDF Downloads 177
2429 Biological Monitoring: Vegetation Cover, Bird Assemblages, Rodents, Terrestrial and Aquatic Invertebrates from a Closed Landfill

Authors: A. Cittadino, P. Gantes, C. Coviella, M. Casset, A. Sanchez Caro

Abstract:

Three currently active landfills receive the waste from Buenos Aires city and the Great Buenos Aires suburbs. One of the first landfills to receive solid waste from this area was located in Villa Dominico, some 7 km south from Buenos Aires City. With an area of some 750 ha, including riparian habitats, divided into 14 cells, it received solid wastes from June 1979 through February 2004. In December 2010, a biological monitoring program was set up by CEAMSE and Universidad Nacional de Lujan, still operational to date. The aim of the monitoring program is to assess the state of several biological groups within the landfill and to follow their dynamics overtime in order to identify if any, early signs of damage the landfill activities might have over the biota present. Bird and rodent populations, aquatic and terrestrial invertebrates’ populations, cells vegetation coverage, and surrounding areas vegetation coverage and main composition are followed by quarterly samplings. Bird species richness and abundance were estimated by observation over walk transects on each environment. A total of 74 different species of birds were identified. Species richness and diversity were high for both riparian surrounding areas and within the landfill. Several grassland -typical of the 'Pampa'- bird species were found within the landfill, as well as some migratory and endangered bird species. Sherman and Tomahawk traps are set overnight for small mammal sampling. Rodent populations are just above detection limits, and the few specimens captured belong mainly to species common to rural areas, instead of city-dwelling species. The two marsupial species present in the region were captured on occasions. Aquatic macroinvertebrates were sampled on a watercourse upstream and downstream the outlet of the landfill’s wastewater treatment plant and are used to follow water quality using biological indices. Water quality ranged between weak and severe pollution; benthic invertebrates sampled before and after the landfill, show no significant differences in water quality using the IBMWP index. Insect biota from yellow sticky cards and pitfall traps showed over 90 different morphospecies, with Shannon diversity index running from 1.9 to 3.9, strongly affected by the season. An easy-to-perform non-expert demandant method was used to assess vegetation coverage. Two scales of determination are utilized: field observation (1 m resolution), and Google Earth images (that allow for a better than 5 m resolution). Over the eight year period of the study, vegetation coverage over the landfill cells run from a low 83% to 100% on different cells, with an average between 95 to 99% for the entire landfill depending on seasonality. Surrounding area vegetation showed almost 100% coverage during the entire period, with an average density from 2 to 6 species per sq meter and no signs of leachate damaged vegetation.

Keywords: biological indicators, biota monitoring, landfill species diversity, waste management

Procedia PDF Downloads 140
2428 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 82
2427 Establishment of Landslide Warning System Using Surface or Sub-Surface Sensors Data

Authors: Neetu Tyagi, Sumit Sharma

Abstract:

The study illustrates the results of an integrated study done on Tangni landslide located on NH-58 at Chamoli, Uttarakhand. Geological, geo-morphological and geotechnical investigations were carried out to understand the mechanism of landslide and to plan further investigation and monitoring. At any rate, the movements were favored by continuous rainfall water infiltration from the zones where the phyllites/slates and Dolomites outcrop. The site investigations were carried out including the monitoring of landslide movements and of the water level fluctuations due to rainfall give us a better understanding of landslide dynamics that have been causing in time soil instability at Tangni landslide site. The Early Warning System (EWS) installed different types of sensors and all sensors were directly connected to data logger and raw data transfer to the Defence Terrain Research Laboratory (DTRL) server room with the help of File Transfer Protocol (FTP). The slip surfaces were found at depths ranging from 8 to 10 m from Geophysical survey and hence sensors were installed to the depth of 15m at various locations of landslide. Rainfall is the main triggering factor of landslide. In this study, the developed model of unsaturated soil slope stability is carried out. The analysis of sensors data available for one year, indicated the sliding surface of landslide at depth between 6 to 12m with total displacement up to 6cm per year recorded at the body of landslide. The aim of this study is to set the threshold and generate early warning. Local peoples already alert towards landslide, if they have any types of warning system.

Keywords: early warning system, file transfer protocol, geo-morphological, geotechnical, landslide

Procedia PDF Downloads 158
2426 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 132
2425 Framework for Enhancing Water Literacy and Sustainable Management in Southwest Nova Scotia

Authors: Etienne Mfoumou, Mo Shamma, Martin Tango, Michael Locke

Abstract:

Water literacy is essential for addressing emerging water management challenges in southwest Nova Scotia (SWNS), where growing concerns over water scarcity and sustainability have highlighted the need for improved educational frameworks. Current approaches often fail to fully represent the complexity of water systems, focusing narrowly on the water cycle while neglecting critical aspects such as groundwater infiltration and the interconnectedness of surface and subsurface water systems. To address these gaps, this paper proposes a comprehensive framework for water literacy that integrates the physical dimensions of water systems with key aspects of understanding, including processes, energy, scale, and human dependency. Moreover, a suggested tool to enhance this framework is a real-time hydrometric data map supported by a network of water level monitoring devices deployed across the province. These devices, particularly for monitoring dug wells, would provide critical data on groundwater levels and trends, offering stakeholders actionable insights into water availability and sustainability. This real-time data would facilitate deeper understanding and engagement with local water issues, complementing the educational framework and empowering stakeholders to make informed decisions. By integrating this tool, the proposed framework offers a practical, interdisciplinary approach to improving water literacy and promoting sustainable water management in SWNS.

Keywords: water education, water literacy, water management, water systems, Southwest Nova Scotia

Procedia PDF Downloads 33
2424 Urban Citizenship in a Sensor Rich Society

Authors: Mike Dee

Abstract:

Urban public spaces are sutured with a range of surveillance and sensor technologies that claim to enable new forms of ‘data based citizen participation’, but also increase the tendency for ‘function-creep’, whereby vast amounts of data are gathered, stored and analysed in a broad application of urban surveillance. This kind of monitoring and capacity for surveillance connects with attempts by civic authorities to regulate, restrict, rebrand and reframe urban public spaces. A direct consequence of the increasingly security driven, policed, privatised and surveilled nature of public space is the exclusion or ‘unfavourable inclusion’ of those considered flawed and unwelcome in the ‘spectacular’ consumption spaces of many major urban centres. In the name of urban regeneration, programs of securitisation, ‘gentrification’ and ‘creative’ and ‘smart’ city initiatives refashion public space as sites of selective inclusion and exclusion. In this context of monitoring and control procedures, in particular, children and young people’s use of space in parks, neighbourhoods, shopping malls and streets is often viewed as a threat to the social order, requiring various forms of remedial action. This paper suggests that cities, places and spaces and those who seek to use them, can be resilient in working to maintain and extend democratic freedoms and processes enshrined in Marshall’s concept of citizenship, calling sensor and surveillance systems to account. Such accountability could better inform the implementation of public policy around the design, build and governance of public space and also understandings of urban citizenship in the sensor saturated urban environment.

Keywords: citizenship, public space, surveillance, young people

Procedia PDF Downloads 450
2423 Concentration and Stability of Fatty Acids and Ammonium in the Samples from Mesophilic Anaerobic Digestion

Authors: Mari Jaakkola, Jasmiina Haverinen, Tiina Tolonen, Vesa Virtanen

Abstract:

These process monitoring of biogas plant gives valuable information of the function of the process and help to maintain a stable process. The costs of basic monitoring are often much lower than the costs associated with re-establishing a biologically destabilised plant. Reactor acidification through reactor overload is one of the most common reasons for process deterioration in anaerobic digesters. This occurs because of a build-up of volatile fatty acids (VFAs) produced by acidogenic and acetogenic bacteria. VFAs cause pH values to decrease, and result in toxic conditions in the reactor. Ammonia ensures an adequate supply of nitrogen as a nutrient substance for anaerobic biomass and increases system's buffer capacity, counteracting acidification lead by VFA production. However, elevated ammonia concentration is detrimental to the process due to its toxic effect. VFAs are considered the most reliable analytes for process monitoring. To obtain accurate results, sample storage and transportation need to be carefully controlled. This may be a challenge for off-line laboratory analyses especially when the plant is located far away from the laboratory. The aim of this study was to investigate the correlation between fatty acids, ammonium, and bacteria in the anaerobic digestion samples obtained from an industrial biogas factory. The stability of the analytes was studied comparing the results of the on-site analyses performed in the factory site to the results of the samples stored at room temperature and -18°C (up to 30 days) after sampling. Samples were collected in the biogas plant consisting of three separate mesofilic AD reactors (4000 m³ each) where the main feedstock was swine slurry together with a complex mixture of agricultural plant and animal wastes. Individual VFAs, ammonium, and nutrients (K, Ca, Mg) were studied by capillary electrophoresis (CE). Longer chain fatty acids (oleic, hexadecanoic, and stearic acids) and bacterial profiles were studied by GC-MSD (Gas Chromatography-Mass Selective Detector) and 16S rDNA, respectively. On-site monitoring of the analytes was performed by CE. The main VFA in all samples was acetic acid. However, in one reactor sample elevated levels of several individual VFAs and long chain fatty acids were detected. Also bacterial profile of this sample differed from the profiles of other samples. Acetic acid decomposed fast when the sample was stored in a room temperature. All analytes were stable when stored in a freezer. Ammonium was stable even at a room temperature for the whole testing period. One reactor sample had higher concentration of VFAs and long chain fatty acids than other samples. CE was utilized successfully in the on-site analysis of separate VFAs and NH₄ in the biogas production site. Samples should be analysed in the sampling day if stored in RT or freezed for longer storage time. Fermentation reject can be stored (and transported) at ambient temperature at least for one month without loss of NH₄. This gives flexibility to the logistic solutions when reject is used as a fertilizer.

Keywords: anaerobic digestion, capillary electrophoresis, ammonium, bacteria

Procedia PDF Downloads 168
2422 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 365
2421 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: impersonation, image registration, incrimination, object detection, threshold evaluation

Procedia PDF Downloads 231
2420 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
2419 Seismic Activity and Groundwater Behavior at Kalabsha Area, Aswan, Egypt

Authors: S. M. Moustafa, A. Ezzat, Y. S. Taha, G. H. Hassib, S. Hamada

Abstract:

After the occurrence of 14, Nov, 1981 earthquake (M = 5.3), on Kalabska fault, south of Egypt, seismic stations distributed in and around the Kalabsha area, in order to monitoring, recording and studying the seismic activity in the area. In addition of that, from 1989 a number of piezometer wells drilled in the same area, distribed on at the both side of the active faults area and in different water bearing formations, in order to measuring the groundwater parameters (level, temperature, ph, and conductivity) to monitoring the relationship between those parameters and the seismic activity at Kalabsha area. The behavior of groundwater due to seismic activity over the world studied by several scientists i.e. H. Wakita (1979) on Izu-Oshima earthquake (M= 7.0) at Japan, M. E. Contadakis & G.asteriadis (1972), and Evans (1966), they found an anomalies on groundwater measurements prior, co, and post the occurrence of bigger earthquakes, referring to the probability of precursory evidence of impending earthquakes. In Kalabsha area south of Egypt, this study has been done using recorded seismic data, and the measurements of underground water parameters. same phenomena of anomalies founded on groundwater measurements pre, co. and post the occurrence of earthquakes with magnitude bigger than 3, and no systematic regularity exists for epicenter distance, duration of anomalies or time lag between anomalies appear and occurrence of events. Also the results found present strong relation between the groundwater in the upper unconfined aquifer Nubian Sandstone formation, and Kalabsha seismic activity, otherwise no relation between the seismic activities in the area with the deep groundwater in the lower confined aquifer Sandstone.

Keywords: seismicity, groundwater, Aswan, Egypt

Procedia PDF Downloads 382
2418 Design and Testing of Electrical Capacitance Tomography Sensors for Oil Pipeline Monitoring

Authors: Sidi M. A. Ghaly, Mohammad O. Khan, Mohammed Shalaby, Khaled A. Al-Snaie

Abstract:

Electrical capacitance tomography (ECT) is a valuable, non-invasive technique used to monitor multiphase flow processes, especially within industrial pipelines. This study focuses on the design, testing, and performance comparison of ECT sensors configured with 8, 12, and 16 electrodes, aiming to evaluate their effectiveness in imaging accuracy, resolution, and sensitivity. Each sensor configuration was designed to capture the spatial permittivity distribution within a pipeline cross-section, enabling visualization of phase distribution and flow characteristics such as oil and water interactions. The sensor designs were implemented and tested in closed pipes to assess their response to varying flow regimes. Capacitance data collected from each electrode configuration were reconstructed into cross-sectional images, enabling a comparison of image resolution, noise levels, and computational demands. Results indicate that the 16-electrode configuration yields higher image resolution and sensitivity to phase boundaries compared to the 8- and 12-electrode setups, making it more suitable for complex flow visualization. However, the 8 and 12-electrode sensors demonstrated advantages in processing speed and lower computational requirements. This comparative analysis provides critical insights into optimizing ECT sensor design based on specific industrial requirements, from high-resolution imaging to real-time monitoring needs.

Keywords: capacitance tomography, modeling, simulation, electrode, permittivity, fluid dynamics, imaging sensitivity measurement

Procedia PDF Downloads 14
2417 Judicial Review of Indonesia's Position as the First Archipelagic State to implement the Traffic Separation Scheme to Establish Maritime Safety and Security

Authors: Rosmini Yanti, Safira Aviolita, Marsetio

Abstract:

Indonesia has several straits that are very important as a shipping lane, including the Sunda Strait and the Lombok Strait, which are the part of the Indonesian Archipelagic Sea Lane (IASL). An increase in traffic on the Marine Archipelago makes the task of monitoring sea routes increasingly difficult. Indonesia has proposed the establishment of a Traffic Separation Scheme (TSS) in the Sunda Strait and the Lombok Strait and the country now has the right to be able to conceptualize the TSS as well as the obligation to regulate it. Indonesia has the right to maintain national safety and sovereignty. In setting the TSS, Indonesia needs to issue national regulations that are in accordance with international law and the general provisions of the IMO (International Maritime Organization) can then be used as guidelines for maritime safety and security in the Sunda Strait and the Lombok Strait. The research method used is a qualitative method with the concept of linguistic and visual data collection. The source of the data is the analysis of documents and regulations. The results show that the determination of TSS was justified by International Law, in accordance with article 22, article 41, and article 53 of the United Nations Convention on the Law of the Sea (UNCLOS) 1982. The determination of TSS by the Indonesian government would be in accordance with COLREG (International Convention on Preventing Collisions at Sea) 10, which has been designed to follow IASL. Thus, TSS can provide a function as a safety and monitoring medium to minimize ship accidents or collisions, including the warship and aircraft of other countries that cross the IASL.

Keywords: archipelago state, maritime law, maritime security, traffic separation scheme

Procedia PDF Downloads 129
2416 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 76
2415 Pavement Quality Evaluation Using Intelligent Compaction Technology: Overview of Some Case Studies in Oklahoma

Authors: Sagar Ghos, Andrew E. Elaryan, Syed Ashik Ali, Musharraf Zaman, Mohammed Ashiqur Rahman

Abstract:

Achieving desired density during construction is an important indicator of pavement quality. Insufficient compaction often compromises pavement performance and service life. Intelligent compaction (IC) is an emerging technology for monitoring compaction quality during the construction of asphalt pavements. This paper aims to provide an overview of findings from four case studies in Oklahoma involving the compaction quality of asphalt pavements, namely SE 44th St project (Project 1) and EOC Turnpike project (Project 2), Highway 92 project (Project 3), and 108th Avenue project (Project 4). For this purpose, an IC technology, the intelligent compaction analyzer (ICA), developed at the University of Oklahoma, was used to evaluate compaction quality. Collected data include GPS locations, roller vibrations, roller speed, the direction of movement, and temperature of the asphalt mat. The collected data were analyzed using a widely used software, VETA. The average densities for Projects 1, 2, 3 and 4, were found as 89.8%, 91.50%, 90.7% and 87.5%, respectively. The maximum densities were found as 94.6%, 95.8%, 95.9%, and 89.7% for Projects 1, 2, 3, and 4, respectively. It was observed that the ICA estimated densities correlated well with the field core densities. The ICA results indicated that at least 90% of the asphalt mats were subjected to at least two roller passes. However, the number of passes required to achieve the desired density (94% to 97%) differed from project to project depending on the underlying layer. The results of these case studies show both opportunities and challenges in using IC for monitoring compaction quality during construction in real-time.

Keywords: asphalt pavement construction, density, intelligent compaction, intelligent compaction analyzer, intelligent compaction measure value

Procedia PDF Downloads 158
2414 The Effects of Teacher Efficacy, Instructional Leadership and Professional Learning Communities on Student Achievement in Literacy and Numeracy: A Look at Primary Schools within Sibu Division

Authors: Jarrod Sio Jyh Lih

Abstract:

This paper discusses the factors contributing to student achievement in literacy and numeracy in primary schools within Sibu division. The study involved 694 level 1 primary schoolteachers. Using descriptive statistics, the study observed high levels of practice for teacher efficacy, instructional leadership and professional learning communities (PLCs). The differences between gender, teaching experience and academic qualification were analyzed using the t-test and one-way analysis of variance (ANOVA). The study reported significant differences in respondent perceptions based on teaching experience vis-à-vis teacher efficacy. Here, the post hoc Tukey test revealed that efficaciousness grows with experience. A correlation test observed positive and significant correlations between all independent variables. Binary logistic regression was applied to predict the independent variables’ influence on student achievement. The findings revealed that a dimension of instructional leadership – ‘monitoring student progress’ - emerged as the best predictor of student achievement for literacy and numeracy. The result indicated the students were more than 4 times more likely to achieve the national key performance index for both literacy and numeracy when student progress was monitored. In conclusion, ‘monitoring student progress’ had a positive influence on students’ achievement for literacy and numeracy, hence making it a possible course of action for school heads. However, more comprehensive studies are needed to ascertain its consistency within the context of Malaysia.

Keywords: efficacy, instructional, literacy, numeracy

Procedia PDF Downloads 263
2413 Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring

Authors: Mariza Kaskara, Stella Girtsou, Maria Prodromou, Alexia Tsouni, Christodoulos Mettas, Stavroula Alatza, Kyriaki Fotiou, Marios Tzouvaras, Charalampos Kontoes, Diofantos Hadjimitsis

Abstract:

Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project.

Keywords: earth observation, monitoring, natural hazards, remote sensing

Procedia PDF Downloads 41
2412 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marylin Wolf

Abstract:

This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver

Procedia PDF Downloads 391
2411 Early-Stage Venture Investment Model: Evidence from Saudi Arabia

Authors: Tibah Alharbi, Renzo Cordina, David Power

Abstract:

Relatively few studies have explored how venture capitalist investors (VCs) make investment decisions and the information they rely on when taking an equity stake in an investee company. In addition, little is known about how much investors monitor start-ups after the decision to invest has been made. The VC scene in the US or European context is understood better than that of developing countries such as those in the Middle East. Although some differences among VC investors have been identified, the reasons behind such differences have not been fully explored – especially in a country such as Saudi Arabia. Therefore, this research seeks to understand the impact of external factors on the VC investor’ behaviour. The unique cultural and legal environments in the Kingdom of Saudi Arabia, the growing VC sector in the country, and the increasing importance attached to start-ups under the Saudi Government’s Vision 2030 program make such an investigation timely. Ascertaining the perceptions of VC investors in such a context will provide a deeper understanding of the determinants of VC investment in a novel setting. Using semi-structured interviews with over 20 participants, the research explores the structure of VC funds, the cycle of the VC investment in a start-up from the sourcing of deals, the screening and evaluation of such deals, the closing of such deals, and finally, the monitoring of such investments before the decision to exit such deals at the appropriate time. The results show some similarities to the VC model, which characterizes such investment in the US and Europe, but several differences emerge given the unique cultural and legal settings within the Kingdom. The results provide an in-depth understanding of the VC investors’ mindset relative to the existing studies in the literature.

Keywords: exit, monitoring, start-ups, venture capital

Procedia PDF Downloads 147
2410 The Assessment of Particulate Matter Pollution in Kaunas Districts

Authors: Audrius Dedele, Aukse Miskinyte

Abstract:

Air pollution is a major problem, especially in large cities, causing a variety of environmental issues and a risk to human health effects. In order to observe air quality, to reduce and control air pollution in the city, municipalities are responsible for the creation of air quality management plans, air quality monitoring and emission inventories. Atmospheric dispersion modelling systems, along with monitoring, are powerful tools, which can be used not only for air quality management, but for the assessment of human exposure to air pollution. These models are widely used in epidemiological studies, which try to determine the associations between exposure to air pollution and the adverse health effects. The purpose of this study was to determine the concentration of particulate matter smaller than 10 μm (PM10) in different districts of Kaunas city during winter season. ADMS-Urban dispersion model was used for the simulation of PM10 pollution. The inputs of the model were the characteristics of stationary, traffic and domestic sources, emission data, meteorology and background concentrations were entered in the model. To assess the modelled concentrations of PM10 in Kaunas districts, geographic information system (GIS) was used. More detailed analysis was made using Spatial Analyst tools. The modelling results showed that the average concentration of PM10 during winter season in Kaunas city was 24.8 µg/m3. The highest PM10 levels were determined in Zaliakalnis and Aleksotas districts with are the highest number of individual residential properties, 32.0±5.2 and 28.7±8.2 µg/m3, respectively. The lowest pollution of PM10 was modelled in Petrasiunai district (18.4 µg/m3), which is characterized as commercial and industrial neighbourhood.

Keywords: air pollution, dispersion model, GIS, Particulate matter

Procedia PDF Downloads 269
2409 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 163
2408 Retrofitting Residential Buildings for Energy Efficiency: An Experimental Investigation

Authors: Naseer M. A.

Abstract:

Buildings are major consumers of energy in both their construction and operation. They account for 40% of World’s energy use. It is estimated that 40-60% of this goes for conditioning the indoor environment. In India, like many other countries, the residential buildings have a major share (more than 50%) in the building sector. Of these, single-family units take a mammoth share. The single-family dwelling units in the urban and fringe areas are built in two stories to minimize the building foot print on small land parcels. And quite often, the bedrooms are located in the first floors. The modern buildings are provided with reinforced concrete (RC) roofs that absorb heat throughout the day and radiate the heat into the interiors during the night. The rooms that are occupied in the night, like bedrooms, are having their indoors uncomfortable. This has resulted in the use of active systems like air-conditioners and air coolers, thereby increasing the energy use. An investigation conducted by monitoring the thermal comfort condition in the residential building with RC roofs have proved that the indoors are really uncomfortable in the night hours. A sustainable solution to improve the thermal performance of the RC roofs was developed by an experimental study by continuously monitoring the thermal comfort parameters during summer (the period that is most uncomfortable in temperate climate). The study conducted in the southern peninsular India, prove that retrofitting of existing residential building can give a sustainable solution in abating the ever increasing energy demand especially when it is a fact that these residential buildings that are built for a normal life span of 40 years would continue to consume the energy for the rest of its useful life.

Keywords: energy efficiency, thermal comfort, retrofitting, residential buildings

Procedia PDF Downloads 252
2407 From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds

Authors: Hounyèmè Romuald, Mama Daouda, Argillier Christine

Abstract:

The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data.

Keywords: pressure proxies, bayesian inference, bioindicators, acadjas, functional traits

Procedia PDF Downloads 84