Search results for: passive filters
329 Parametric Urbanism: A Climate Responsive Urban Form for the MENA Region
Authors: Norhan El Dallal
Abstract:
The MENA region is a challenging, rapid urbanizing region, with a special profile; culturally, socially, economically and environmentally. Despite the diversity between different countries of the MENA region they all share similar urban challenges where extensive interventions are crucial. A climate sensitive region as the MENA region requires special attention for development, adaptation and mitigation. Integrating climatic and environmental parameters into the planning process to create a responsive urban form is the aim of this research in which “Parametric Urbanism” as a trend serves as a tool to reach a more sustainable urban morphology. An attempt to parameterize the relation between the climate and the urban form in a detailed manner is the main objective of the thesis. The aim is relating the different passive approaches suitable for the MENA region with the design guidelines of each and every part of the planning phase. Various conceptual scenarios for the network pattern and block subdivision generation based on computational models are the next steps after the parameterization. These theoretical models could be applied on different climatic zones of the dense communities of the MENA region to achieve an energy efficient neighborhood or city with respect to the urban form, morphology, and urban planning pattern. A final criticism of the theoretical model is to be conducted showing the feasibility of the proposed solutions economically. Finally some push and pull policies are to be proposed to help integrate these solutions into the planning process.Keywords: parametric urbanism, climate responsive, urban form, urban and regional studies
Procedia PDF Downloads 480328 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada
Authors: Monica Anumula
Abstract:
Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort
Procedia PDF Downloads 179327 Toward Sustainable Building Design in Hot and Arid Climate with Reference to Riyadh City, Saudi Arabia
Authors: M. Alwetaishi
Abstract:
One of the most common and traditional strategies in architecture is to design buildings passively. This is a way to ensure low building energy reliance with respect to specific micro-building locations. There are so many ways where buildings can be designed passively, some of which are applying thermal insulation, thermal mass, courtyard and glazing to wall ratio. This research investigates the impact of each of these aspects with respect to the hot and dry climate of the capital of Riyadh. Thermal Analysis Simulation (TAS) will be utilized which is powered by Environmental Design Simulation Limited company (EDSL). It is considered as one of the most powerful tools to predict energy performance in buildings. There are three primary building designs and methods which are using courtyard, thermal mass and thermal insulation. The same building size and fabrication properties have been applied to all designs. Riyadh city which is the capital of the country was taken as a case study of the research. The research has taken into account various zone directions within the building as it has a large contribution to indoor energy and thermal performance. It is revealed that it is possible to achieve nearly zero carbon building in the hot and dry region in winter with minimum reliance on energy loads for building zones facing south, west and east. Moreover, using courtyard is more beneficial than applying construction materials into building envelope. Glazing to wall ratio is recommended to be 10% and not exceeding 30% in all directions in hot and arid regions.Keywords: sustainable buildings, hot and arid climates, passive building design, Saudi Arabia
Procedia PDF Downloads 156326 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices
Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes
Abstract:
Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves
Procedia PDF Downloads 466325 Studies of the Corrosion Kinetics of Metal Alloys in Stagnant Simulated Seawater Environment
Authors: G. Kabir, A. M. Mohammed, M. A. Bawa
Abstract:
The paper presents corrosion behaviors of Naval Brass, aluminum alloy and carbon steel in simulated seawater under stagnant conditions. The behaviors were characterized on the variation of chloride ions concentration in the range of 3.0wt% and 3.5wt% and exposure time. The weight loss coupon-method immersion technique was employed. The weight loss for the various alloys was measured. Based on the obtained results, the corrosion rate was determined. It was found that the corrosion rates of the various alloys are related to the chloride ions concentrations, exposure time and kinetics of passive film formation of the various alloys. Carbon steel, suffers corrosion many folds more than Naval Brass. This indicated that the alloy exhibited relatively strong resistance to corrosion in the exposure environment of the seawater. Whereas, the aluminum alloy exhibited an excellent and beneficial resistance to corrosion more than the Naval Brass studied. Despite the prohibitive cost, Naval Brass and aluminum alloy, indicated to have beneficial corrosion behavior that can offer wide range of application in seashore operations. The corrosion kinetics parameters indicated that the corrosion reaction is limited by diffusion mass transfer of the corrosion reaction elements and not by reaction controlled.Keywords: alloys, chloride ions concentration, corrosion kinetics, corrosion rate, diffusion mass transfer, exposure time, seawater, weight loss
Procedia PDF Downloads 302324 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study
Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar
Abstract:
Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis
Procedia PDF Downloads 62323 Flipped Classroom Instruction: Reflecting on the Experiences of Teachers and Students at Undergraduate University Level
Authors: Mubeshera Tufail
Abstract:
The purpose of the study was to explore the experiences and challenges faced by teachers and students with Flipped Classroom Instruction (FCI) for an undergraduate course at university level. The Flipped Classroom lesson plan consisted of two components: one was out-of-class component consisting of learning material for reading for students and other was within-class component involving a class quiz, class activity and the feedback/further reading task. Besides, experiences, the research study also covered the adaptations made to improve their experiences with Flipped Classroom during the study. The phenomenological research strategy was used for this research study. The data consisted of weekly reflective journals documented by class teacher and students. The reflective journals were recorded by teacher and students while working in Flipped Classroom for an undergraduate course at university level. The main challenges highlighted by teacher were related to effort and time required for planning, time management and students' guidance for shift of their role from passive to independent learner. The main challenges found in reflective journals of students were personal computers issue, electricity and internet speed issue. It is recommended to adapt to some locally useful lesson planning and classroom management techniques to enhance the effectiveness of Flipped Classroom Instruction in an undergraduate university level course.Keywords: flipped classroom instruction, undergraduate students, independent learner, technology-integrated classroom
Procedia PDF Downloads 162322 Myosin-Driven Movement of Nanoparticles – An Approach to High-Speed Tracking
Authors: Sneha Kumari, Ravi Krishnan Elangovan
Abstract:
This abstract describes the development of a high-speed tracking method by modification in motor components for nanoparticle attachment. Myosin motors are nano-sized protein machines powering movement that defines life. These miniature molecular devices serve as engines utilizing chemical energy stored in ATP to produce useful mechanical energy in the form of a few nanometre displacement events leading to force generation that is required for cargo transport, cell division, cell locomotion, translated to macroscopic movements like running etc. With the advent of in vitro motility assay (IVMA), detailed functional studies of the actomyosin system could be performed. The major challenge with the currently available IVMA for tracking actin filaments is a resolution limitation of ± 50nm. To overcome this, we are trying to develop Single Molecule IVMA in which nanoparticle (GNP/QD) will be attached along or on the barbed end of actin filaments using CapZ protein and visualization by a compact TIRF module called ‘cTIRF’. The waveguide-based illumination by cTIRF offers a unique separation of excitation and collection optics, enabling imaging by scattering without emission filters. So, this technology is well equipped to perform tracking with high precision in temporal resolution of 2ms with significantly improved SNR by 100-fold as compared to conventional TIRF. Also, the nanoparticles (QD/GNP) attached to actin filament act as a point source of light coffering ease in filament tracking compared to conventional manual tracking. Moreover, the attachment of cargo (QD/GNP) to the thin filament paves the way for various nano-technological applications through their transportation to different predetermined locations on the chipKeywords: actin, cargo, IVMA, myosin motors and single-molecule system
Procedia PDF Downloads 87321 Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter
Authors: Harish Aryal
Abstract:
The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution.Keywords: hodoscope, transient testing, collimators, MCNP, TREAT, hodogram, filters
Procedia PDF Downloads 77320 The Characteristics of Transformation of Institutional Changes and Georgia
Authors: Nazira Kakulia
Abstract:
The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system
Procedia PDF Downloads 264319 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator
Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui
Abstract:
Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator
Procedia PDF Downloads 487318 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector
Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim
Abstract:
Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.Keywords: DNA, gene delivery, nanoinjector, nanowire
Procedia PDF Downloads 275317 Activation of Mirror Neuron System Response to Drumming Training: A Functional Magnetic Resonance Imaging Study
Authors: Manal Alosaimi
Abstract:
Many rehabilitation strategies exist to aid persons with neurological disorders relearn motor skills through intensive training. Evidence supporting the theory that cortical areas involved in motor execution can be triggered by observing actions performed by others is attributed to the function of the mirror neuron system (MNS) indicates that activation of the MNS is associated with improvements in physical action and motor learning. Therefore, it is important to investigate the relationship between motor training (in this case, playing the drums) and the activation of the MNS. To achieve this, 15 healthy right-handed participants received drum-kit training for 21 weeks, during which time blood oxygen level-dependent (BOLD) signals were monitored in the brain using functional magnetic resonance imaging (fMRI). Participants were required to perform action–observation and action–execution fMRI tasks. The main results are that BOLD signals in classical regions of the MNS such as supramarginal gyri, inferior parietal lobule, and supplementary motor area increase significantly over the training period. Activation of these areas indicates that passive-observation of others performing these same skills may facilitate recovery of persons suffering from neurological disorders, and complement conventional rehabilitation programs that focus on action execution or intense training.Keywords: fMRI, mirror neuron system, magnetic resonance imaging, neuroplasticity, drumming, learning, music, action observation, action execution
Procedia PDF Downloads 37316 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran
Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei
Abstract:
Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran
Procedia PDF Downloads 416315 Incidence, Pattern and Risk Factors of Congenial Heart Diseases in Neonates in a Tertiary Care Hospital, Egyptian Study
Authors: Gehan Hussein, Hams Ahmad, Baher Matta, Yasmeen Mansi, Mohamad Fawzi
Abstract:
Background: Congenital heart disease (CHD) is a common problem worldwide with variable incidence in different countries. The exact etiology is unknown, suggested to be multifactorial. We aimed to study the incidence of various CHD in a neonatal intensive care unit (NICU) in a tertiary care hospital in Egypt and the possible associations with variable risk factors. Methods: Prospective study was conducted over a period of one year (2013 /2014) at NICU KasrAlAini School of Medicine, Cairo University. Questionnaire about possible maternal and/or paternal risk factors for CHD, clinical examination, bedside echocardiography were done. Cases were classified into groups: group 1 without CHD and group 2 with CHD. Results: from 723 neonates admitted to NICU, 180 cases were proved to have CHD, 58 % of them were males. patent ductus arteriosus(PDA) was the most common CHD (70%), followed by an atrial septal defect (ASD8%), while Fallot tetralogy and single ventricle were the least common (0.45 %) for each. CHD was found in 30 % of consanguineous parents Maternal age ≥ 35 years at the time of conception was associated with increased incidence of PDA (p= 0.45 %). Maternal diabetes and insulin intake were significantly associated with cases of CHD (p=0.02 &0.001 respectively), maternal hypertension and hypothyroidism were both associated with VSD, but the difference did not reach statistical significance (P=0.36 &0.44respectively). Maternal passive smoking was significantly associated with PDA (p=0.03). Conclusion: The most frequent CHD in the studied population was PDA, followed by ASD. Maternal conditions as diabetes was associated with VSD occurrence.Keywords: NICU, risk factors, congenital heart disease, echocardiography
Procedia PDF Downloads 190314 Environmental Impact Assessment in Mining Regions with Remote Sensing
Authors: Carla Palencia-Aguilar
Abstract:
Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.Keywords: carbon dioxide, NPP, MODIS, MINING
Procedia PDF Downloads 104313 Innovative In-Service Training Approach to Strengthen Health Care Human Resources and Scale-Up Detection of Mycobacterium tuberculosis
Authors: Tsegahun Manyazewal, Francesco Marinucci, Getachew Belay, Abraham Tesfaye, Gonfa Ayana, Amaha Kebede, Tsegahun Manyazewal, Francesco Marinucci, Getachew Belay, Abraham Tesfaye, Gonfa Ayana, Amaha Kebede, Yewondwossen Tadesse, Susan Lehman, Zelalem Temesgen
Abstract:
In-service health trainings in Sub-Saharan Africa are mostly content-centered with higher disconnection with the real practice in the facility. This study intended to evaluate in-service training approach aimed to strengthen health care human resources. A combined web-based and face-to-face training was designed and piloted in Ethiopia with the diagnosis of tuberculosis. During the first part, which lasted 43 days, trainees accessed web-based material and read without leaving their work; while the second part comprised a one-day hands-on evaluation. Trainee’s competency was measured using multiple-choice questions, written-assignments, exercises and hands-on evaluation. Of 108 participants invited, 81 (75%) attended the course and 71 (88%) of them successfully completed. Of those completed, 73 (90%) scored a grade from A to C. The approach was effective to transfer knowledge and turn it into practical skills. In-service health training should transform from a passive one-time-event to a continuous behavioral change of participants and improvements on their actual work.Keywords: Ethiopia, health care, Mycobacterium tuberculosis, training
Procedia PDF Downloads 504312 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms
Authors: Farhat Imtiaz, Umar Farooq
Abstract:
In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation
Procedia PDF Downloads 135311 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.Keywords: amplitude, NACA0012, tubercles, unmanned space robots
Procedia PDF Downloads 146310 The Combination of Curcuma Extract and IgG Colostrum on Strongyloides Infection in CD1 Mice
Authors: Laurentius J. M. Rumokoy, Jimmy Posangi, Wisje Lusia Toar, Julio Lopez Aban
Abstract:
The threat of pathogen infection agents to the neonates is a major health problem to the new born life livestock. Neonate losses became an important case in the world as well as in Indonesia. This condition can be triggered by an infection with nematode in conjunction with a failure of immunoglobulin passive transfer. The study was conducted to evaluate the role of the curcuma combined with IgG colostrum on the development of parasites in the gut of CD1 mice. Animal experiments were divided in four groups (G) based on the treatment: G1 (infection only); G2 (curcuma+infection), G3 (IgG + infection) and G4 (curcuma+IgG+infection). The parameters measured were EPG (eggs per gram) and female in the intestine. The results obtained showed that the treatment has no a significant influence on the number of eggs per gram of feces in the group infected compared to the control group without receiving IgG nor curcuma. However, the EGP response tended to decrease at day 6 in G3 and G4 with a minimum number at zero eggs. This performant showed that the immunoglobulin-G and curcuma substances could slightly decreased the number of eggs in animal infected with Strongyloides. The results obtained showed also that the treatment has no significant difference (P > 0.05) on female larva in the gut of MCD1 experimental. In other side, we found that the best performance to inhibit the female quantity in the gut was the treatment with IgG and infection of parasite in G3. In this treatment, the minimum number was five female only in the gut. The results described IgG response was better than the curcuma single use in reducing the female parasite in the gut. This positive response of IgG compared to other controls group was associated with the function of colostrum antibodies.Keywords: parasites, livestock, curcuma, colostrums
Procedia PDF Downloads 176309 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter
Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar
Abstract:
Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).Keywords: filter media, hydraulic loading rate, residence time distribution, tracer
Procedia PDF Downloads 277308 Efficacy of Heart Failure Reversal Treatment Followed by 90 Days Follow up in Chronic Heart Failure Patients with Low Ejection Fraction
Authors: Rohit Sane, Snehal Dongre, Pravin Ghadigaonkar, Rahul Mandole
Abstract:
The present study was designed to evaluate efficacy of heart failure reversal therapy (HFRT) that uses herbal procedure (panchakarma) and allied therapies, in chronic heart failure (CHF) patients with low ejection fraction. Methods: This efficacy study was conducted in CHF patients (aged: 25-65 years, ejection fraction (EF) < 30%) wherein HFRT (60-75 minutes) consisting of snehana (external oleation), swedana (passive heat therapy), hrudaydhara(concoction dripping treatment) and basti(enema) was administered twice daily for 7 days. During this therapy and next 30 days, patients followed the study dinarcharya and were prescribed ARJ kadha in addition to their conventional treatment. The primary endpoint of this study was evaluation of maximum aerobic capacity uptake (MAC) as assessed by 6-minute walk distance (6MWD) using Cahalins equation from baseline, at end of 7 day treatment, follow-up after 30 days and 90 days. EF was assessed by 2D Echo at baseline and after 30 days of follow-up. Results: CHF patients with < 30% EF (N=52, mean [SD] age: 58.8 [10.8], 85% men) were enrolled in the study. There was a 100% compliance to study therapy. A significant improvement was observed in MAC levels (7.11%, p =0.029), at end of 7 day therapy as compared to baseline. This improvement was maintained at two follow-up visits. Moreover, ejection fraction was observed to be increased by 6.38%, p=0,012 as compared to baseline at day 7 of the therapy. Conclusions: This 90 day follow up study highlights benefit of HFRT, as a part of maintenance treatment for CHF patients with reduced ejection fraction.Keywords: chronic heart failure, functional capacity, heart failure reversal therapy, oxygen uptake, panchakarma
Procedia PDF Downloads 233307 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: machine-learning, habitability, exoplanets, supercomputing
Procedia PDF Downloads 89306 Machine Learning for Exoplanetary Habitability Assessment
Authors: King Kumire, Amos Kubeka
Abstract:
The synergy of machine learning and astronomical technology advancement is giving rise to the new space age, which is pronounced by better habitability assessments. To initiate this discussion, it should be recorded for definition purposes that the symbiotic relationship between astronomy and improved computing has been code-named the Cis-Astro gateway concept. The cosmological fate of this phrase has been unashamedly plagiarized from the cis-lunar gateway template and its associated LaGrange points which act as an orbital bridge to the moon from our planet Earth. However, for this study, the scientific audience is invited to bridge toward the discovery of new habitable planets. It is imperative to state that cosmic probes of this magnitude can be utilized as the starting nodes of the astrobiological search for galactic life. This research can also assist by acting as the navigation system for future space telescope launches through the delimitation of target exoplanets. The findings and the associated platforms can be harnessed as building blocks for the modeling of climate change on planet earth. The notion that if the human genus exhausts the resources of the planet earth or there is a bug of some sort that makes the earth inhabitable for humans explains the need to find an alternative planet to inhabit. The scientific community, through interdisciplinary discussions of the International Astronautical Federation so far, has the common position that engineers can reduce space mission costs by constructing a stable cis-lunar orbit infrastructure for refilling and carrying out other associated in-orbit servicing activities. Similarly, the Cis-Astro gateway can be envisaged as a budget optimization technique that models extra-solar bodies and can facilitate the scoping of future mission rendezvous. It should be registered as well that this broad and voluminous catalog of exoplanets shall be narrowed along the way using machine learning filters. The gist of this topic revolves around the indirect economic rationale of establishing a habitability scoping platform.Keywords: exoplanets, habitability, machine-learning, supercomputing
Procedia PDF Downloads 116305 Counselor and Object of Hate: A Case Study of Latina Clinician and Two White Supremacist Patients
Authors: Reagan Rodriguez
Abstract:
The following research is a case study of two white patients with white extremist values and their Latina Clinician. Researchers suggest that white supremacy as an ideology has been documented in the United States since the early 1800s. Ethnicity and race were growing key factors linked to central motives behind hate crimes in U.S., which may suggest that we are living in another wave of white supremacist and domestic terrorism that seek to eradicate a threatening and dangerous “other”. This research seeks to address and contribute a qualitative perspective to white supremacist ideology within a bio-psycho-social framework. The current research seeks to contribute to address the gap in literature on ethnic minority clinicians and white patients with racist ideology. The research also seeks to examine the themes not commonly found in racially matched and gendered matched therapeutic dyads where patients hold white extremist values. This case study examines white supremacist ideology from a psychodynamic perspective, examining themes such as “feeling forgotten”, reduced empathy related to “broken promises”, sexualization of the passing minority counselor, and utilizing minimal autonomy in verbal and non-verbal signals. A thematic analysis of case notes and quotes are used to further contextualize emerging therapeutic themes and the psychodynamic analysis of the manifestation of white supremacist actions ranging from active to passive forms of violence.Keywords: case study, extremism, race and gender, white supremacist ideology
Procedia PDF Downloads 145304 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery
Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas
Abstract:
The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition
Procedia PDF Downloads 150303 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 303302 African Mesquite Exerts Neuroprotective Activity Against Quaternary Metal Mixture -Induced Olfactory Bulb-Hippocampal Oxido-Inflammatory Stress via NRF2-HMOX-1-TNF-Alpha Pathway Pathway
Authors: Orish E. Orisakwe, Chinna N. Orish, Anthonet N. Ezejiofor
Abstract:
African mesquite has been recognized for its antimicrobial, anti-inflammatory, and potential anticarcinogenic activities. However, its neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. Therefore, the objective of this study was to investigate the neuroprotective properties of African mesquite in the hippocampus and olfactory bulb against common environmental pollutants, including Cd, As, Hg, and Pb. Thirty-five albino Sprague Dawley rats were divided into five groups for the experiment. Group 1 served as the control and did not receive either the heavy metal mixture (HMM) or African mesquite. Group 2 was orally administered HMM, consisting of PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg), for 960 days. Meanwhile, groups 3, 4, and 5 were treated with HMM along with African mesquite at doses of 500 mg/kg, 1000 mg/kg, and 1500 mg/kg, respectively. African mesquite reduced heavy metal accumulation in the hippocampus and olfactory bulb. Additionally, Sprague Dawley rats exhibited improved performance in the Passive avoidance and Cincinnati Maze tests. Furthermore, treatment with African mesquite significantly alleviated inflammation macromolecules peroxidation. It also restored the concentrations of SOD, CAT, GSH, GPx, Hmox-1, and reduced the activity of AChE, NRF2 and NFkB and improved histopathological findings. African mesquite exhibits a multifaceted neuroprotective effect with the potential to mitigate various aspects of heavy metal-induced neurotoxicity.Keywords: African mesquite, heavy metal mixture;, neurotoxicity;, chemoprevention
Procedia PDF Downloads 72301 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure
Authors: Mohamed Ouzzane, Mahmoud Bady
Abstract:
Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).Keywords: air cooling system, refrigeration, thermal ejector, thermal compression
Procedia PDF Downloads 159300 Psychological Skills Training for Severely Injured Athletes to Enhance Recovery and Return to Sport
Authors: John E Coumbe-Lilley
Abstract:
This IRB-approved study explored athletes' emotional recovery experiences following a severe sports injury keeping them out of their sport for six months or longer. A realistic thematic analytical approach was used to interpret the findings of 44 semi-structured interviews of athletes who competed at high school, college, and professional levels of competition. Thematic analysis validated by a self-rating scale demonstrated athletes cross a series of emotional thresholds during their injury rehabilitation process. Results showed athletes crossed two to six emotional thresholds before positive emotion and coping were consistently experienced following their injury. Athletes reported being unequipped to cope with negative emotional intensity, the longevity of recovery, and enduring depression during long-term rehabilitation. Positive emotional recovery was expected no sooner than nine months and up to 2.5 years following a sports injury. In addition, 100% of athletes received no psychological skills training (PST) for coping and recovery, and 93% of athletes indicated passive psychological coping strategies in the first month following injury, which extended their time to recover. Athletes recommended immediate, realistic, and evidence-based strategies benefitting the emotional recovery of severely injured athletes emotional recovery to improve athletes' emotional well-being during long-term rehabilitation and enhance their return to sport. Future experimental research might compare the post-PST program that emerged from this study to determine its efficacy in improving the recovery of severely injured athletes.Keywords: sports, injury, rehabilitation, psychological skills training, coping
Procedia PDF Downloads 135