Search results for: oxygen ionic conductors
1173 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate
Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon
Abstract:
The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.Keywords: encapsulation, flexible, low melting point alloy, OLED
Procedia PDF Downloads 5991172 Utilization and Proximate Composition of Nile Tilapia, Common Carp and African Mudfish Polycultured in Fertilized Ponds
Authors: I. A. Yola
Abstract:
Impact of poultry dropping, cow dung and rumen content on utilization and proximate composition of Oreochromis niliticus, Clarias gariepinus and Cyprinus capio in a polyculture system were studied. The research was conducted over a period of 52 weeks. Poultry droppings (PD), cow dung (CD) and rumen content (RC) were applied at three levels 30g,60g and 120g/m2/week, 25g,50g and 100g/m2/week and 22g, 44g and 88g/m2/week treatment, respectively. The control only conventional feed with 40% CP without manure application was used. Physicochemical and biological properties measured were higher in manure pond than control. The difference was statistically significant (P < 0.05) between and within treatments with exception of temperature with a combined mean of 27.900C. The water was consistently alkaline with mean values for pH of 6.61, transparency 22.6cm, conductivity 35.00µhos/cm, dissolved oxygen 4.6 mg/l, biological oxygen demand 2.8mg/l, nitrate and phosphates 0.9mg/l and 0.35mg/l, respectively. The three fish species increase in weight with increased manure rate, with a higher value in PD treatment on C. capio record 340g, O. niloticus weighed 310g and C. gariepinus 280g over the experimental period. Fishes fed supplementary diet (control) grew bigger with highest value on C. capio (685g) O. niloticus (620g) and then C. gariepinus (526g). The differences were statistically significant (P < 0.05). The result of whole body proximate analysis indicated that various manures and rates had an irregular pattern on the protein and ash gain per 100g of fish body weight gain. The combined means for whole fish carcass protein, lipids, moisture, ash and gross energy were 11.84, 2.43, 74.63, 3.00 and 109.9 respectively. The notable exceptions were significant (p < 0.05) increases in body fat and gross energy gains in all fish species accompanied by decreases in percentages of moisture as manure rates increased. Survival percentage decreases from 80% to 70%. It is recommended to use poultry dropping as manure/feeds at the rate of 120kg/ha/week for good performances in polyculture.Keywords: organic manure, Nile tilapia, African mud fish, common carp, proximate composition
Procedia PDF Downloads 5551171 Antioxidant Potency of Ethanolic Extracts from Selected Aromatic Plants by in vitro Spectrophotometric Analysis
Authors: Tatjana Kadifkova Panovska, Svetlana Kulevanova, Blagica Jovanova
Abstract:
Biological systems possess the ability to neutralize the excess of reactive oxygen species (ROS) and to protect cells from destructive alterations. However, many pathological conditions (cardiovascular diseases, autoimmune disorders, cancer) are associated with inflammatory processes that generate an excessive amount of reactive oxygen species (ROS) that shift the balance between endogenous antioxidant systems and free oxygen radicals in favor of the latter, leading to oxidative stress. Therefore, an additional source of natural compounds with antioxidant properties that will reduce the amount of ROS in cells is much needed despite their broad utilization; many plant species remain largely unexplored. Therefore, the purpose of the present study is to investigate the antioxidant activity of twenty-five selected medicinal and aromatic plant species. The antioxidant activity of the ethanol extracts was evaluated with in vitro assays: 2,2’-diphenyl-1-pycryl-hydrazyl (DPPH), ferric reducing antioxidant power (FRAP), non-site-specific- (NSSOH) and site-specific hydroxyl radical-2-deoxy-D-ribose degradation (SSOH) assays. The Folin-Ciocalteu method and AlCl3 method were performed to determine total phenolic content (TPC) and total flavonoid content (TFC). All examined plant extracts manifested antioxidant activity to a different extent. Cinnamomum verum J.Presl bark and Ocimum basilicum L. Herba demonstrated strong radical scavenging activity and reducing power with the DPPH and FRAP assay, respectively. Additionally, significant hydroxyl scavenging potential and metal chelating properties were observed using the NSSOH and SSOH assays. Furthermore, significant variations were determined in the total polyphenolic content (TPC) and total flavonoid content (TFC), with Cinnamomum verum and Ocimum basilicum showing the highest amount of total polyphenols. The considerably strong radical scavenging activity, hydroxyl scavenging potential and reducing power for the species mentioned above suggest of a presence of highly bioactive phytochemical compounds, predominantly polyphenols. Since flavonoids are the most abundant group of polyphenols that possess a large number of available reactive OH groups in their structure, it is considered that they are the main contributors to the radical scavenging properties of the examined plant extracts. This observation is supported by the positive correlation between the radical scavenging activity and the total polyphenolic and flavonoid content obtained in the current research. The observations from the current research nominate Cinnamomum verum bark and Ocimum basilicum herba as potential sources of bioactive compounds that could be utilized as antioxidative additives in the food and pharmaceutical industries. Moreover, the present study will help the researchers as basic data for future research in exploiting the hidden potential of these important plants that have not been explored so far.Keywords: ethanol extracts, radical scavenging activity, reducing power, total polyphenols.
Procedia PDF Downloads 1991170 Estimated Heat Production, Blood Parameters and Mitochondrial DNA Copy Number of Nellore Bulls with High and Low Residual Feed Intake
Authors: Welder A. Baldassini, Jon J. Ramsey, Marcos R. Chiaratti, Amália S. Chaves, Renata H. Branco, Sarah F. M. Bonilha, Dante P. D. Lanna
Abstract:
With increased production costs there is a need for animals that are more efficient in terms of meat production. In this context, the role of mitochondrial DNA (mtDNA) on physiological processes in liver, muscle and adipose tissues may account for inter-animal variation in energy expenditures and heat production. The purpose this study was to investigate if the amounts of mtDNA in liver, muscle and adipose tissue (subcutaneous and visceral depots) of Nellore bulls are associated with residual feed intake (RFI) and estimated heat production (EHP). Eighteen animals were individually fed in a feedlot for 90 days. RFI values were obtained by regression of dry matter intake (DMI) in relation to average daily gain (ADG) and mid-test metabolic body weight (BW). The animals were classified into low (more efficient) and high (less efficient) RFI groups. The bulls were then randomly distributed in individual pens where they were given excess feed twice daily to result in 5 to 10% orts for 90 d with diet containing 15% crude protein and 2.7 Mcal ME/kg DM. The heart rate (HR) of bulls was monitored for 4 consecutive days and used for calculation of EHP. Electrodes were fitted to bulls with stretch belts (POLAR RS400; Kempele, Finland). To calculate oxygen pulse (O2P), oxygen consumption was obtained using a facemask connected to the gas analyzer (EXHALYZER, ECOMedics, Zurich, Switzerland) and HR were simultaneously measured for 15 minutes period. Daily oxygen (O2) consumption was calculated by multiplying the volume of O2 per beat by total daily beats. EHP was calculated multiplying O2P by the average HR obtained during the 4 days, assuming 4.89 kcal/L of O2 to measure daily EHP that was expressed in kilocalories/day/kilogram metabolic BW (kcal/day/kg BW0.75). Blood samples were collected between days 45 and 90th after the beginning of the trial period in order to measure the concentration of hemoglobin and hematocrit. The bulls were slaughtered in an experimental slaughter house in accordance with current guidelines. Immediately after slaughter, a section of liver, a portion of longissimus thoracis (LT) muscle, plus a portion of subcutaneous fat (surrounding LT muscle) and portions of visceral fat (kidney, pelvis and inguinal fat) were collected. Samples of liver, muscle and adipose tissues were used to quantify mtDNA copy number per cell. The number of mtDNA copies was determined by normalization of mtDNA amount against a single copy nuclear gene (B2M). Mean of EHP, hemoglobin and hematocrit of high and low RFI bulls were compared using two-sample t-tests. Additionally, the one-way ANOVA was used to compare mtDNA quantification considering the mains effects of RFI groups. We found lower EHP (83.047 vs. 97.590 kcal/day/kgBW0.75; P < 0.10), hemoglobin concentration (13.533 vs. 15.108 g/dL; P < 0.10) and hematocrit percentage (39.3 vs. 43.6 %; P < 0.05) in low compared to high RFI bulls, respectively, which may be useful traits to identify efficient animals. However, no differences were observed between the mtDNA content in liver, muscle and adipose tissue of Nellore bulls with high and low RFI.Keywords: bioenergetics, Bos indicus, feed efficiency, mitochondria
Procedia PDF Downloads 2461169 Influence of [Emim][OAc] and Water on Gelatinization Process and Interactions with Starch
Authors: Shajaratuldur Ismail, Nurlidia Mansor, Zakaria Man
Abstract:
Thermoplastic starch (TPS) plasticized by 1-ethyl-3-methylimidazolium acetate [Emim][OAc] were obtained through gelatinization process. The gelatinization process occurred in the presence of water and [Emim][OAc] as plasticizer at high temperature (90˚C). The influence of [Emim][OAc] and water on the gelatinization and interactions with starch have been studied over a range of compositions. The homogenous mass was obtained for the samples containing 35, 40 and 43.5 % of water contents which showed that water plays important role in gelatinization process. Detailed IR spectroscopy analysis showed decrease in hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups in the presence of [Emim][OAc]. Starch-[Emim][OAc]-water mixture at 10-3-8.7 presented homogenous mass, less hydrogen bonding intensity and strong interaction between acetate anion in [Emim][OAc] and starch hydroxyl groups.Keywords: starch, ionic liquid, 1-ethyl-3-methylimidazolium acetate, plasticizer, gelatinization, IR spectroscopy
Procedia PDF Downloads 2291168 Volatile Organic Compounds (VOCS) Destruction by Catalytic Oxidation for Environmental Applications
Authors: Mohammed Nasir Kajama, Ngozi Claribelle Nwogu, Edward Gobina
Abstract:
Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ-Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.Keywords: VOC combustion, flow-through membrane reactor, platinum supported alumina catalysts
Procedia PDF Downloads 5441167 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company
Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez
Abstract:
Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation
Procedia PDF Downloads 1591166 Investigate the Effects of Anionic Surfactant on THF Hydrate
Authors: Salah A. Al-Garyani, Yousef Swesi
Abstract:
Gas hydrates can be hazardous to upstream operations. On the other hand, the high gas storage capacity of hydrate may be utilized for natural gas storage and transport. Research on the promotion of hydrate formation, as related to natural gas storage and transport, has received relatively little attention. The primary objective of this study is to gain a better understanding of the effects of ionic surfactants, particularly their molecular structures and concentration, on the formation of tetrahydrofuran (THF) hydrate, which is often used as a model hydrate former for screening hydrate promoters or inhibitors. The surfactants studied were sodium n-dodecyl sulfate (SDS), sodium n-hexadecyl sulfate (SHS). Our results show that, at concentrations below the solubility limit, the induction time decreases with increasing surfactant concentration. At concentrations near or above the solubility, however, the surfactant concentration no longer has any effect on the induction time. These observations suggest that the effect of surfactant on THF hydrate formation is associated with surfactant monomers, not the formation of micelle as previously reported. The lowest induction time (141.25 ± 21 s, n = 4) was observed in a solution containing 7.5 mM SDS. The induction time decreases by a factor of three at concentrations near or above the solubility, compared to that without surfactant.Keywords: tetrahydrofuran, hydrate, surfactant, induction time, monomers, micelle
Procedia PDF Downloads 4101165 Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification
Authors: Bendjelloul Meriem, Elandaloussi El Hadj
Abstract:
In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions.Keywords: adsorption, cadmium, isotherms, lignocellulosic, regenerability
Procedia PDF Downloads 3311164 Structural Fluxionality of Luminescent Coordination Compounds with Lanthanide Ions
Authors: Juliana A. B. Silva, Caio H. T. L. Albuquerque, Leonardo L. dos Santos, Cristiane K. Oliveira, Ivani Malvestiti, Fernando Hallwass, Ricardo L. Longo
Abstract:
Complexes with lanthanide ions have been extensively studied due to their applications as luminescent, magnetic and catalytic materials as molecular or extended crystals, thin films, glasses, polymeric matrices, ionic liquids, and in solution. NMR chemical shift data in solution have been reported and suggest fluxional structures in a wide range of coordination compounds with rare earth ions. However, the fluxional mechanisms for these compounds are still not established. This structural fluxionality may affect the photophysical, catalytic and magnetic properties in solution. Thus, understanding the structural interconversion mechanisms may aid the design of coordination compounds with, for instance, improved (electro)luminescence, catalytic and magnetic behaviors. The [Eu(btfa)₃bipy] complex, where btfa= 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and bipy= 2,2’-bipiridyl, has a well-defined X-ray crystallographic structure and preliminary 1H NMR data suggested a structural fluxionality. Thus, we have investigated a series of coordination compounds with lanthanide ions [Ln(btfa)₃L], where Ln = La, Eu, Gd or Yb and L= bipy or phen (phen=1,10-phenanthroline) using a combined theoretical-experimental approach. These complexes were synthesized and fully characterized, and detailed NMR measurements were obtained. They were also studied by quantum chemical computational methods (DFT-PBE0). The aim was to determine the relevant factors in the structure of these compounds that favor or not the fluxional behavior. Measurements of the 1H NMR signals at variable temperature in CD₂Cl₂ of the [Eu(btfa)₃L] complexes suggest that these compounds have a fluxional structure, because the crystal structure has non-equivalent btfa ligands that should lead to non-equivalent hydrogen atoms and thus to more signals in the NMR spectra than those obtained at room temperature, where all hydrogen atoms of the btfa ligands are equivalent, and phen ligand has an effective vertical symmetry plane. For the [Eu(btfa)₃bipy] complex, the broadening of the signals at –70°C provides a lower bound for the coalescence temperature, which indicates the energy barriers involved in the structural interconversion mechanisms are quite small. These barriers and, consequently, the coalescence temperature are dependent upon the radii of the lanthanide ion as well as to their paramagnetic effects. The PBE0 calculated structures are in very good agreement with the crystallographic data and, for the [Eu(btfa)₃bipy] complex, this method provided several distinct structures with almost the same energy. However, the energy barrier for structural interconversion via dissociative pathways were found to be quite high and could not explain the experimental observations. Whereas the pseudo-rotation pathways, involving the btfa and bipy ligands, have very small activation barriers, in excellent agreement with the NMR data. The results also showed an increase in the activation barrier along the lanthanide series due to the decrease of the ionic radii and consequent increase of the steric effects. TD-DFT calculations showed a dependence of the ligand donor state energy with different structures of the complex [Eu(btfa)₃phen], which can affect the energy transfer rates and the luminescence. The energy required to promote the structural fluxionality may also enhance the luminescence quenching in solution. These results can aid in the design of more luminescent compounds and more efficient devices.Keywords: computational chemistry, lanthanide-based compounds, NMR, structural fluxionality
Procedia PDF Downloads 1991163 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.Keywords: equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, linear oscillating generator
Procedia PDF Downloads 1951162 Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine
Authors: Antonio Montes, Antonio Cozar, Clara Pereyra, Diego Valor, Enrique Martinez de la Ossa
Abstract:
Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term.Keywords: scaffold, foaming, supercritical, PVA, polypyrrole, gallic acid
Procedia PDF Downloads 1821161 Removal of Chloro-Compounds from Pulp and Paper Industry Wastewater Using Electrocoagulation
Authors: Chhaya Sharma, Dushyant Kumar
Abstract:
The present work deals with the treatment of wastewater generated by paper industry by using aluminium as anode material. The quantitative and qualitative analyses of chloropenolics have been carried out by using primary clarifier effluent with the help of gas chromatography mass spectrometry. Sixteen chlorophenolics compounds have been identified and estimated. Results indicated that among 16 identified compounds, 7 are 100% removed and overall 66% reduction in chorophenolics compounds have been detected. Moreover, during the treatment, the biodegradability index of wastewater significantly increases, along with 70 % reduction in chemical oxygen demand and 99 % in color.Keywords: aluminium anode, chlorophenolics, electrocoagulation, pollution load, wastewater
Procedia PDF Downloads 3471160 Teaching the Temperature Dependence of Electrical Resistance of Materials through Arduino Investigation
Authors: Vinit Srivastava, Abhay Singh Thakur, Shivam Dubey, Rahul Vaish, Bharat Singh Rajpurohit
Abstract:
This study examines the problem of students' poor comprehension of the thermal dependence of resistance by investigating this idea using an evidence-based inquiry approach. It suggests a practical exercise to improve secondary school students' comprehension of how materials' resistance to temperature changes. The suggested exercise uses an Arduino and Peltier device to test the resistance of aluminum and graphite at various temperatures. The study attempts to close the knowledge gap between the theoretical and practical facets of the subject, which students frequently find difficult to grasp. With the help of a variety of resistors made of various materials and pencils of varying grades, the Arduino experiment investigates the resistance of a metallic conductor (aluminum) and a semiconductor (graphite) at various temperatures. The purpose of the research is to clarify for students the relationship between temperature and resistance and to emphasize the importance of resistor material choice and measurement methods in obtaining precise and stable resistance values over dynamic temperature variations. The findings show that while the resistance of graphite decreases with temperature, the resistance of metallic conductors rises with temperature. The results also show that as softer lead pencils or pencils of a lower quality are used, the resistance values of the resistors drop. In addition, resistors showed greater stability at lower temperatures when their temperature coefficients of resistance (TCR) were smaller. Overall, the results of this article show that the suggested experiment is a useful and practical method for teaching students about resistance's relationship to temperature. It emphasizes how crucial it is to take into account the resistor material selection and the resistance measurement technique when designing and picking out resistors for various uses. The results of the study are anticipated to guide the creation of more efficient teaching methods to close the gap between science education's theoretical and practical components.Keywords: electrical resistance, temperature dependence, science education, inquiry-based activity, resistor stability
Procedia PDF Downloads 761159 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications
Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken
Abstract:
High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state
Procedia PDF Downloads 3381158 Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode
Authors: Rovina Kobun, Shafiquzzaman Siddiquee
Abstract:
A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples.Keywords: melamine, gold electrode, zinc oxide nanoparticles, cyclic voltammetries, differential pulse voltammetries
Procedia PDF Downloads 4181157 Phytoremediation of Heavy Metals by Phragmites Australis at Oeud Meboudja Annaba Algeria
Authors: Kleche Myriam, Ziane Nadia, Berrebbah Houria, Djebar Mohammed Reda
Abstract:
The Phytoremediation has now become a necessity. Thus, in our work, we are interested in the biological wastewater treatment of Oued Meboudja. The physicochemical analysis of water after treatment showed a significant reduction of suspended matter, COD and BOD5 and rate of metals in roots for example iron and zinc. We also highlighted some significant changes in biometric and physiological parameters such as increasing the number of roots and increased respiratory metabolism through the oxygen consumption in isolated roots of Phragmites australis, placed in a polluted environment.Keywords: phragmites australis, roots, phytoremediation, iron, zinc
Procedia PDF Downloads 4971156 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography
Authors: Sh. Najari Moghadam, M. Qomi, F. Raofie, J. Khadiv
Abstract:
In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then, it was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME, some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.Keywords: biological samples, cyproheptadine, hollow fiber, liquid phase microextraction
Procedia PDF Downloads 2871155 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 3141154 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation
Procedia PDF Downloads 4711153 Novel Nickel Complex Compound Reactivates the Apoptotic Network, Cell Cycle Arrest and Cytoskeletal Rearrangement in Human Colon and Breast Cancer Cells
Authors: Nima Samie, Batoul Sadat Haerian, Sekaran Muniandy, M. S. Kanthimathi
Abstract:
Colon and breast cancers are categorized as the most prevalent types of cancer worldwide. Recently, the broad clinical application of metal complex compounds has led to the discovery of potential therapeutic drugs. The aim of this study was to evaluate the cytotoxic action of a selected nickel complex compound (NCC) against human colon and breast cancer cells. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, MCF-7 and Hs 190.T cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content , measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results showed that our nickel complex compound displayed a potent suppressive effect on HT-29, WiDr, MCF-7 and Hs 190.T after 24 h of treatment with IC50 value of 2.02±0.54, 2.13±0.65, 3.76±015 and 3.14±0.45 µM respectively. This cytotoxic effect on normal cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the nickel complex compound. Activation of this pathway was further evidenced by significant activation of caspase 9 and 3/7.The nickel complex compound (NCC) was also shown activate the extrinsic pathways of apoptosis by activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. The results of this study suggest that the nickel complex compound is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways as well as cell cycle arrest in colon and breast cancer cells.Keywords: nickel complex, apoptosis, cytoskeletal rearrangement, colon cancer, breast cancer
Procedia PDF Downloads 3131152 Study of the Transport of Multivalent Metal Cations Through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy
Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón
Abstract:
In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.Keywords: ion-exchange membranes, Electrochemical Impedance Spectrocopy, multivalent metal cations, membrane system
Procedia PDF Downloads 5291151 Alcoxysilanes Production from Silica and Dimethylcarbonate Promoted by Alkali Bases: A DFT Investigation of the Reaction Mechanism
Authors: Valeria Butera, Norihisa Fukaya, Jun-Chu Choi, Kazuhiko Sato, Yoong-Kee Choe
Abstract:
Several silicon dioxide sources can react with dimethyl carbonate (DMC) in presence of alkali bases catalysts to ultimately produce tetramethoxysilane (TMOS). Experimental findings suggested that the reaction proceeds through several steps in which the first molecule of DMC is converted to dimethylsilyloxide (DMOS) and CO₂. Following the same mechanistic steps, a second molecule of DMC reacts with the DMOS to afford the final product TMOS. Using a cluster model approach, a quantum-mechanical investigation of the first part of the reaction leading to DMOS formation is reported with a twofold purpose: (1) verify the viability of the reaction mechanism proposed on the basis of experimental evidences .(2) compare the behaviors of three different alkali hydroxides MOH, where M=Li, K and Cs, to determine whether diverse ionic radius and charge density can be considered responsible for the observed differences in reactivity. Our findings confirm the observed experimental trend and furnish important information about the effective role of the alkali hydroxides giving an explanation of the different catalytic activity of the three metal cations.Keywords: Alcoxysilanes production, cluster model approach, DFT, DMC conversion
Procedia PDF Downloads 2741150 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 1081149 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 4461148 Dimensionally Stable Anode as a Bipolar Plate for Vanadium Redox Flow Battery
Authors: Jaejin Han, Jinsub Choi
Abstract:
Vanadium redox flow battery (VRFB) is a type of redox flow battery which uses vanadium ionic solution as electrolyte. Inside the VRFB, 2.5mm thickness of graphite is generally used as bipolar plate for anti-corrosion of current collector. In this research, thick graphite bipolar plate was substituted by 0.126mm thickness of dimensionally stable anode which was coated with IrO2 on an anodic nanotubular TiO2 substrate. It can provide dimensional advantage over the conventional graphite when the VRFB is used as multi-stack. Ir was coated by using spray coating method in order to enhance electric conductivity. In this study, various electrochemical characterizations were carried out. Cyclic voltammetry data showed activation of Ir in the positive electrode of VRFB. In addition, polarization measurements showed Ir-coated DSA had low overpotential in the positive electrode of VRFB. In cell test results, the DSA-used VRFB showed better efficiency than graphite-used VRFB in voltage and overall efficiency.Keywords: bipolar plate, DSA (dimensionally stable anode), iridium oxide coating, TiO2 nanotubes, VRFB (vanadium redox flow battery)
Procedia PDF Downloads 4961147 Impact of Marangoni Stress and Mobile Surface Charge on Electrokinetics of Ionic Liquids Over Hydrophobic Surfaces
Authors: Somnath Bhattacharyya
Abstract:
The mobile adsorbed surface charge on hydrophobic surfaces can modify the velocity slip condition as well as create a Marangoni stress at the interface. The functionalized hydrophobic walls of micro/nanopores, e.g., graphene nanochannels, may possess physio-sorbed ions. The lateral mobility of the physisorbed absorbed ions creates a friction force as well as an electric force, leading to a modification in the velocity slip condition at the hydrophobic surface. In addition, the non-uniform distribution of these surface ions creates a surface tension gradient, leading to a Marangoni stress. The impact of the mobile surface charge on streaming potential and electrochemical energy conversion efficiency in a pressure-driven flow of ionized liquid through the nanopore is addressed. Also, enhanced electro-osmotic flow through the hydrophobic nanochannel is also analyzed. The mean-filed electrokinetic model is modified to take into account the short-range non-electrostatic steric interactions and the long-range Coulomb correlations. The steric interaction is modeled by considering the ions as charged hard spheres of finite radius suspended in the electrolyte medium. The electrochemical potential is modified by including the volume exclusion effect, which is modeled based on the BMCSL equation of state. The electrostatic correlation is accounted for in the ionic self-energy. The extremal of the self-energy leads to a fourth-order Poisson equation for the electric field. The ion transport is governed by the modified Nernst-Planck equation, which includes the ion steric interactions; born force arises due to the spatial variation of the dielectric permittivity and the dielectrophoretic force on the hydrated ions. This ion transport equation is coupled with the Navier-Stokes equation describing the flow of the ionized fluid and the 3fourth-order Poisson equation for the electric field. We numerically solve the coupled set of nonlinear governing equations along with the prescribed boundary conditions by adopting a control volume approach over a staggered grid arrangement. In the staggered grid arrangements, velocity components are stored on the midpoint of the cell faces to which they are normal, whereas the remaining scalar variables are stored at the center of each cell. The convection and electromigration terms are discretized at each interface of the control volumes using the total variation diminishing (TVD) approach to capture the strong convection resulting from the highly enhanced fluid flow due to the modified model. In order to link pressure to the continuity equation, we adopt a pressure correction-based iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, in which the discretized continuity equation is converted to a Poisson equation involving pressure correction terms. Our results show that the physisorbed ions on a hydrophobic surface create an enhanced slip velocity when streaming potential, which enhances the convection current. However, the electroosmotic flow attenuates due to the mobile surface ions.Keywords: microfluidics, electroosmosis, streaming potential, electrostatic correlation, finite sized ions
Procedia PDF Downloads 721146 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography
Authors: C. Yin, B. Zhang, Y. Liu, J. Cai
Abstract:
Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.Keywords: 3D, Airborne EM, forward modeling, topographic effect
Procedia PDF Downloads 3171145 Wastewater Treatment by Modified Bentonite
Authors: Mecabih Zohra
Abstract:
Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.Keywords: adsorption, bentonite, COD, wastewater
Procedia PDF Downloads 851144 Wastewater Treatment by Modified Bentonite
Authors: Mecabih Zohra
Abstract:
Water is such an important element of many manufacturing processes which that use a big amount of chemical substances, It is likely to cause it contamination of water returning to rivers by industrial discharged. These contaminants can be a high in suspended solid and chemical oxygen demand. In this study, urban wastewater of sidi bel abbes city (Algeria) was treated by adsorption using modified bentonite from Magnia (Algeria) by conducting batch experiments to investigate its equilibrium characteristics and kinetics. Purified bentonite is characterized by; CEC, XRF, BET, FITR, XRD, SEM and 27Al spectroscopy. The results showed the removal of suspended solids exceeds 98.47% and COD up to 99.52%, and regarding of sorption efficiencies (qm), the maximum COD sorption efficiencies (qm) calculated using the Langmuir model is 156.23, 64.47 and 17.19 mg/g respectively, for a pH range of 4 to 9.Keywords: adsorption, bentonite, COD, wastewater
Procedia PDF Downloads 83