Search results for: optical amplification
1264 DWDM Network Implementation in the Honduran Telecommunications Company "Hondutel"
Authors: Tannia Vindel, Carlos Mejia, Damaris Araujo, Carlos Velasquez, Darlin Trejo
Abstract:
The DWDM (Dense Wavelenght Division Multiplexing) is in constant growth around the world by consumer demand to meet their needs. Since its inception in this operation arises the need for a system which enable us to expand the communication of an entire nation to improve the computing trends of their societies according to their customs and geographical location. The Honduran Company of Telecommunications (HONDUTEL), provides the internet services and data transport technology with a PDH and SDH, which represents in the Republic of Honduras C. A., the option of viability for the consumer in terms of purchase value and its ease of acquisition; but does not have the efficiency in terms of technological advance and represents an obstacle that limits the long-term socio-economic development in comparison with other countries in the region and to be able to establish a competition between telecommunications companies that are engaged in this heading. For that reason we propose to establish a new technological trend implemented in Europe and that is applied in our country that allows us to provide a data transfer in broadband as it is DWDM, in this way we will have a stable service and quality that will allow us to compete in this globalized world, and that must be replaced by one that would provide a better service and which must be in the forefront. Once implemented the DWDM is build upon the existing resources, such as the equipment used, and you will be given life to a new stage providing a business image to the Republic of Honduras C,A, as a nation, to ensure the data transport and broadband internet to a meaningful relationship. Same benefits in the first instance to existing customers and to all the institutions were bidden to these public and private need of such services.Keywords: demultiplexers, light detectors, multiplexers, optical amplifiers, optical fibers, PDH, SDH
Procedia PDF Downloads 2631263 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye
Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu
Abstract:
DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.Keywords: campanula, DNA barcoding, endemic, türkiye, artvin
Procedia PDF Downloads 681262 Genetic Diversity Analysis in Triticum Aestivum Using Microsatellite Markers
Authors: Prachi Sharma, Mukesh Kumar Rana
Abstract:
In the present study, the simple sequence repeat(SSR) markers have been used in analysis of genetic diversity of 37 genotypes of Triticum aestivum. The DNA was extracted using cTAB method. The DNA was quantified using the fluorimeter. The annealing temperatures for 27 primer pairs were standardized using gradient PCR, out of which 16 primers gave satisfactory amplification at temperature ranging from 50-62⁰ C. Out of 16 polymorphic SSR markers only 10 SSR primer pairs were used in the study generating 34 reproducible amplicons among 37 genotypes out of which 30 were polymorphic. Primer pairs Xgwm533, Xgwm 160, Xgwm 408, Xgwm 120, Xgwm 186, Xgwm 261 produced maximum percent of polymorphic bands (100%). The bands ranged on an average of 3.4 bands per primer. The genetic relationship was determined using Jaccard pair wise similarity co-efficient and UPGMA cluster analysis with NTSYS Pc.2 software. The values of similarity index range from 0-1. The similarity coefficient ranged from 0.13 to 0.97. A minimum genetic similarity (0.13) was observed between VL 804 and HPW 288, meaning they are only 13% similar. More number of available SSR markers can be useful for supporting the genetic diversity analysis in the above wheat genotypes.Keywords: wheat, genetic diversity, microsatellite, polymorphism
Procedia PDF Downloads 6141261 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells
Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai
Abstract:
The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.Keywords: silver nanoparticles, silica, cell viability, morphology
Procedia PDF Downloads 3941260 Optical Properties of Nanocrystalline Europium-Yttrium Titanate EuYTi2O7
Authors: J. Mrazek, R. Skala, S. Bysakh, Ivan Kasik
Abstract:
Lanthanide-doped yttrium titanium oxides, which crystallize in a pyrochlore structure with general formula (RExY1-x)2Ti2O7 (RE=rare earth element), have been extensively investigated in recent years for their interesting physical and chemical properties. Despite that the pure pyrochlore structure does not present luminescence ability, the presence of yttrium ions in the pyrochlore structure significantly improves the luminescence properties of the RE. Moreover, the luminescence properties of pyrochlores strongly depend on the size of formed nanocrystals. In this contribution, we present a versatile sol-gel synthesis of nanocrystalline EuYTi2O7pyrochlore. The nanocrystalline powders and thin films were prepared by the condensation of titanium(IV)butoxide with europium(III) chloride followed by the calcination. The introduced method leads to the formation of the highly-homogenous nanocrystalline EuYTi2O7 with tailored grain size ranging from 20 nm to 200 nm. The morphology and the structure of the formed nanocrystals are linked to the luminescence properties of Eu3+ ions incorporated into the pyrochlore lattice. The results of XRD and HRTEM analysis show that the Eu3+ and Y3+ ions are regularly distributed inside the lattice. The lifetime of Eu3+ ions in calcinated powders is regularly decreasing from 140 us to 68 us and the refractive index of prepared thin films regularly increases from 2.0 to 2.45 according to the calcination temperature. The shape of the luminescence spectra and the decrease of the lifetime correspond with the crystallinity of prepared powders. The results present fundamental information about the effect of the size of the nanocrystals to their luminescence properties. The promising application of prepared nanocrystals in the field of lasers and planar optical amplifiers is widely discussed in the contribution.Keywords: europium, luminescence, nanocrystals, sol-gel
Procedia PDF Downloads 2621259 Polyhedral Oligomeric Silsesquioxane in Poly Lactic Acid and Poly Butylene Adipate-Co-Terephthalate Blend
Authors: Elahe Moradi, Hoseinali A. Khonakdar
Abstract:
The escalating interest in renewable polymers is undeniable, albeit accompanied by inherent challenges. In our study, we endeavored to make a significant contribution to environmental conservation by introducing an eco-friendly structure, developed through an innovative approach. Specifically, we enhanced the compatibility between two immiscible polymers, namely poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Our strategy involved the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles, equipped with an epoxy functional group (Epoxy-POSS), to accomplish this objective with solution casting method. The incorporation of 1% nanoparticles into the PLA blend resulted in a decrease in its cold crystallization temperature. Furthermore, these nanoparticles possess the requisite capability to enhance molecular mobility, facilitated by the induction of a lubrication effect. The emergence of a PLA-CO-POSS-CO-PBAT structure at the interface between PLA and PBAT led to a significant amplification of the interactions at the interface of the matrix and the dispersed phase.Keywords: compatibilization, thermal behavior, structure-properties, nanocomposite, PLA, PBAT
Procedia PDF Downloads 531258 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs
Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou
Abstract:
We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties
Procedia PDF Downloads 4361257 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications
Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi
Abstract:
This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications
Procedia PDF Downloads 1361256 Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell
Authors: Yu-Hsi Huang, Ying-Der Tsai
Abstract:
Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell.Keywords: piezoelectric semi-spherical shell, mode shape, resonant frequency, electronic speckle pattern interferometry, radial vibration, azimuthal vibration
Procedia PDF Downloads 2341255 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors
Authors: Radhamanohar Aepuru, R. V. Mangalaraja
Abstract:
Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors
Procedia PDF Downloads 1291254 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses
Authors: Walid Tawfik
Abstract:
The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband
Procedia PDF Downloads 2241253 Statistical Optimization of Vanillin Production by Pycnoporus Cinnabarinus 1181
Authors: Swarali Hingse, Shraddha Digole, Uday Annapure
Abstract:
The present study investigates the biotransformation of ferulic acid to vanillin by Pycnoporus cinnabarinus and its optimization using one-factor-at-a-time method as well as statistical approach. Effect of various physicochemical parameters and medium components was studied using one-factor-at-a-time method. Screening of the significant factors was carried out using L25 Taguchi orthogonal array and then these selected significant factors were further optimized using response surface methodology (RSM). Significant media components obtained using Taguchi L25 orthogonal array were glucose, KH2PO4 and yeast extract. Further, a Box Behnken design was used to investigate the interactive effects of the three most significant media components. The final medium obtained after optimization using RSM containing glucose (34.89 g/L), diammonium tartrate (1 g/L), yeast extract (1.47 g/L), MgSO4•7H2O (0.5 g/L), KH2PO4 (0.15 g/L), and CaCl2•2H2O (20 mg/L) resulted in amplification of vanillin production from 30.88 mg/L to 187.63 mg/L.Keywords: ferulic acid, pycnoporus cinnabarinus, response surface methodology, vanillin
Procedia PDF Downloads 3831252 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation
Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira
Abstract:
The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy
Procedia PDF Downloads 1271251 Association of Leptin Gene T3469C Polymorphism on Reproductive Performance of Purebred Sows
Authors: Mariedel Autriz, Angel Lambio, Renato Vega, Severino Capitan, Rita Laude
Abstract:
The study was conducted to associate genetic polymorphism of the leptin gene T3469C with reproductive performance in purebred sows. DNA were isolated from hair follicles of 29 Landrace and 24 Large White sows. Amplification of the leptin gene was done followed by Hinf1digestion to determine the base at the T3469C site. Electrophoresis of the digestion products revealed that there were 25 Landrace and 15 Large White sows with the TT genotype while there were 3 Landrace and 6 Large White TC. There was 1 CC for Landrace and 3 for Large White. Significant genotype associations were observed for total litter size born and total born alive. Significant breed differences, on the other hand, was observed for gestation length and average birth weight. Significant breed by genotype interaction was observed in litter size total born and litter size born alive.Keywords: genetic polymorphism, leptin, swine, T3469C
Procedia PDF Downloads 4191250 Xeroderma Pigmentosum Group G: Gene Polymorphism and Risk of Breast Cancer
Authors: Malik SS, Masood N, Mubarik S, Khadim TM
Abstract:
Introduction: Xeroderma pigmentosum group G (XPG) gene plays a crucial role in the correction of UV-induced DNA damage through nucleotide excision repair pathway. Single nucleotide polymorphisms in XPG gene have been reported to be associated with different cancers. Current case-control study was designed to evaluate the relationship between one of the most frequently found XPG (rs1047768 T>C) polymorphism and breast cancer risk. Methodology: A total of 200 individuals were screened for this polymorphism including 100 pathologically confirmed breast cancer cases and age-matched 100 controls. Genotyping was carried out using Tetra amplification-refractory mutation system (ARMS) PCR and results were confirmed by gel electrophoresis. Results: Conditional logistic regression analysis showed significant association between TC genotype (OR: 8.9, CI: 2.0 – 38.7) and increased breast cancer risk. Although homozygous CC genotype was more frequent in patients as compared to controls, but it was statistically non-significant (OR: 3.9, CI: 0.4 – 35.7). Conclusion: In conclusion, XPG (rs1047768 T>C) polymorphism may contribute towards increased risk of breast cancer but other polymorphisms may also be evaluated to elucidate their role in breast cancer.Keywords: XPG, breast cancer, NER, ARMS-PCR
Procedia PDF Downloads 1881249 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes
Authors: Manasa Perikala, Asha Bhardwaj
Abstract:
Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots
Procedia PDF Downloads 1351248 Study of Phenotypic Polymorphism and Detection of Genotypic Polymorphism in Menochilus sexmaculatus (Coleoptera: Insecta) Using RAPD PCR
Authors: Huma Balouch
Abstract:
Menochilus sexmaculatus commonly known as six spotted zig zag ladybird, is an aphidophagus and the most misidentified Coccinellids due to the occurrence of numerous color variants. The correct identification of Menochilus sexmaculatus and its strains is necessary to implement the use of biological control. In the present study phenotypic and genotypic polymorphism was investigated in Menochilus sexmaculatus collected from Punjab, NWFP and Sindh provinces of Pakistan. Six different morphs of the species were distinguished by analyzing its Elytral color and spot pattern and then Polymerase Chain Reaction was used to generate random amplification of polymorphic DNA (RAPD) from six different types of Menochilus sexmaculatus. Forty primers (OPA & OPC Kit) were used to perform RAPD PCR on six different types of Menochilus sexmaculatus of which, seven primers revealed different patterns related to the Menochilus sexmaculatus types. These seven primers (OPA-04, OPA-09, OPA-18, OPC-04, OPC-12, OPC-15 and OPC-18) produced 111 clear polymorphic bands and 6 scorable strain specific markers. The cluster analysis applied to RAPD data showed high polymorphism among six types and it can be concluded that these six types are six polymorphic strains of the same species.Keywords: Menochilus sexmaculatus, aphidophagus, coccinellids, phenotypic and genotypic polymorphism, RAPD-PCR, strain specific markers
Procedia PDF Downloads 4951247 Site Effect Observations after 2016 Amatrice Earthquake, Central Italy
Authors: Giovanni Forte, Melania De Falco, Antonio Santo
Abstract:
On 24th August 2016, central Italy was affected by a Mw 6.0 earthquake, representing the main shock of a long seismic sequence, which had a second shock Mw 6.6 on 26th October and lasts still nowadays. After the event, several field survey were carried out in the affected areas, which is made of historical masonry buildings. The post event reconnaissance missions were aimed at collecting information on the damage states of the buildings, the triggering of the landslides and the relationships with site effects. In this paper, the data collected after the event are analyzed considering the role of the geological and geomorphological setting and the ground motion scenario. The buildings displayed an uneven damage distribution, which was affected by both topographic and stratigraphic amplification. As pertains the landslides, which were the most recurrent among the ground failures, consisted mainly of rock falls and subordinately of translational slides. Finally, the collected knowledge showed a strong contribution of the local geological and geomorphological site condition on the resulting damage.Keywords: Amatrice earthquake, damage states, landslides, site effects
Procedia PDF Downloads 3231246 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram
Procedia PDF Downloads 1361245 Photo-Degradation Black 19 Dye with Synthesized Nano-Sized ZnS
Authors: M. Tabatabaee, R. Mohebat, M. Baranian
Abstract:
Textile industries produce large volumes of colored dye effluents which are toxic and non-biodegradable. Earlier studies have shown that a wide range of organic substrates can be completely photo mineralized in the presence of photocatalysts and oxidant agents. ZnO and TiO2 are important photocatalysts with high catalytic activity that have attracted much research attention. Zinc sulfide is one of the semiconductor nanomaterials that can be used for the production of optical sensitizers, photocatalysts, electroluminescent materials, optical sensors and for solar energy conversion. The synthesis of ZnS nanoparticles has been tried by various methods and sulfide sources. Elementary sulfur powder, H2S or Na2S are used as sulfide sources for synthesis of ZnS nano particles. Recently, solar energy is has been successfully used for photocatalytic degradation of dye pollutant. Studies have shown that the use of metal oxides or sulfides with ZnO or TiO2 can significantly enhance the photocatalytic activity of them. In this research, Nano-sized zinc sulfide was synthesized successfully by a simple method using thioasetamide as sulfide source in the presence of polyethylene glycol (PEG 2000). X-ray diffraction (XRD) spectroscopy scanning electron microscope (SEM) was used to characterize the structure and morphology synthesized powder. The effect of photocatalytic activity of prepared ZnS and ZnS/ZnO, on degradation of direct Black19 under UV and sunlight irradiation was investigated. The effects of various parameters such as amount of photocatalyst, pH, initial dye concentration and irradiation time on decolorization rate were systematically investigated. Results show that more than 80% of 500 mgL-1 of dye decolorized in 60-min reaction time under UV and solar irradiation in the presence of ZnS nanoparticles. Whereas, mixed ZnS/ZnO (50%) can decolorize more than 80% of dye in the same conditions.Keywords: zinc sulfide, nano articles, photodegradation, solar light
Procedia PDF Downloads 4041244 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties
Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa
Abstract:
Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensingKeywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing
Procedia PDF Downloads 1221243 Landslide Hazard Zonation and Risk Studies Using Multi-Criteria Decision-Making and Slope Stability Analysis
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
In India, landslides are the most frequently occurring disaster in the regions of the Himalayas and the Western Ghats. The steep slopes and land use in these areas are quite apprehensive. In the recent past, many landslide hazard zonation (LHZ) works have been carried out in the Himalayas. However, the preparation of LHZ maps considering temporal factors such as seismic ground shaking, seismic amplification at surface level, and rainfall are limited. Hence this study presents a comprehensive use of the multi-criteria decision-making (MCDM) method in landslide risk assessment. In this research, we conducted both geospatial and geotechnical analysis to minimize the danger of landslides. Geospatial analysis is performed using high-resolution satellite data to produce landslide causative factors which were given weightage using the MCDM method. The geotechnical analysis includes a slope stability check, which was done to determine the potential landslide slope. The landslide risk map can provide useful information which helps people to understand the risk of living in an area.Keywords: landslide hazard zonation, PHA, AHP, GIS
Procedia PDF Downloads 1921242 High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics
Authors: J. Hidalgo de Quintana, I. Stoner, M. Tackett, G. Doran, C. Rafferty, A. Windemuth, J. Tytell, D. Pregibon
Abstract:
We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particlebased multiplexing, using patented Firefly hydrogel particles, with single step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens.Keywords: biomarkers, biofluids, miRNA, photolithography, flowcytometry
Procedia PDF Downloads 3691241 Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures
Authors: L. Mentar, O. Baka, M. R. Khelladi, A. Azizi
Abstract:
Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV.Keywords: Cl-, electro-deposition, FESEM, Mott-Schottky, XRD, ZnO
Procedia PDF Downloads 2891240 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis
Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han
Abstract:
Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.Keywords: nanoparticles, catalysis, multicomponent, quinoline
Procedia PDF Downloads 1281239 Enhancement of Light Extraction of Luminescent Coating by Nanostructuring
Authors: Aubry Martin, Nehed Amara, Jeff Nyalosaso, Audrey Potdevin, FrançOis ReVeret, Michel Langlet, Genevieve Chadeyron
Abstract:
Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices.Keywords: phosphor coatings, nanostructuring, light extraction, ZnO nanowires, colloidal lithography, LED devices
Procedia PDF Downloads 1761238 Synthesis, Growth, Characterization and Quantum Chemical Investigations of an Organic Single Crystal: 2-Amino- 4-Methylpyridinium Quinoline- 2-Carboxylate
Authors: Anitha Kandasamy, Thirumurugan Ramaiah
Abstract:
Interestingly, organic materials exhibit large optical nonlinearity with quick responses and having the flexibility of molecular tailoring using computational modelling and favourable synthetic methodologies. Pyridine based organic compounds and carboxylic acid contained aromatic compounds play a crucial role in crystal engineering of NCS complexes that displays admirable optical nonlinearity with fast response and favourable physicochemical properties such as low dielectric constant, wide optical transparency and large laser damage threshold value requires for optoelectronics device applications. Based on these facts, it was projected to form an acentric molecule of π-conjugated system interaction with appropriately replaced electron donor and acceptor groups for achieving higher SHG activity in which quinoline-2-carboyxlic acid is chosen as an electron acceptor and capable of acting as an acid as well as a base molecule, while 2-amino-4-methylpyridine is used as an electron donor and previously employed in numerous proton transfer complexes for synthesis of NLO materials for optoelectronic applications. 2-amino-4-mehtylpyridinium quinoline-2-carboxylate molecular complex (2AQ) is having π-donor-acceptor groups in which 2-amino-4-methylpyridine donates one of its electron to quinoline -2-carboxylic acid thereby forming a protonated 2-amino-4-methyl pyridinium moiety and mono ionized quinoline-2-carboxylate moiety which are connected via N-H…O intermolecular interactions with non-centrosymmetric crystal packing arrangement at microscopic scale is accountable to the enhancement of macroscopic second order NLO activity. The 2AQ crystal was successfully grown by a slow evaporation solution growth technique and its structure was determined in orthorhombic crystal system with acentric, P212121, space group. Hirshfeld surface analysis reveals that O…H intermolecular interactions primarily contributed with 31.0 % to the structural stabilization of 2AQ. The molecular structure of title compound has been confirmed by 1H and 13C NMR spectral studies. The vibrational modes of functional groups present in 2AQ have been assigned by using FTIR and FT-Raman spectroscopy. The grown 2AQ crystal exhibits high optical transparency with lower cut-off wavelength (275 nm) within the region of 275-1500 nm. The laser study confirmed that 2AQ exhibits high SHG efficiency of 12.6 times greater than that of KDP. TGA-DTA analysis revealed that 2AQ crystal had a thermal stability of 223 °C. The low dielectric constant and low dielectric loss at higher frequencies confirmed good crystalline nature with fewer defects of grown 2AQ crystal. The grown crystal exhibits soft material and positive photoconduction behaviour. Mulliken atomic distribution and FMOs analysis suggested that the strong intermolecular hydrogen bonding which lead to the enhancement of NLO activity. These properties suggest that 2AQ crystal is a suitable material for optoelectronic and laser frequency conversion applications.Keywords: crystal growth, NLO activity, proton transfer complex, quantum chemical investigation
Procedia PDF Downloads 1221237 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes
Authors: Sofia Lazareva, Artem Smolentsev
Abstract:
Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state
Procedia PDF Downloads 6791236 Preparation of Nano-Scaled linbo3 by Polyol Method
Authors: Gabriella Dravecz, László Péter, Zsolt Kis
Abstract:
Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.Keywords: lithium-niobate, nanoparticles, polyol, SEM
Procedia PDF Downloads 1341235 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 109