Search results for: non-linear feed-back
1819 Stability Analysis of Stagnation-Point Flow past a Shrinking Sheet in a Nanofluid
Authors: Amin Noor, Roslinda Nazar, Norihan Md. Arifin
Abstract:
In this paper, a numerical and theoretical study has been performed for the stagnation-point boundary layer flow and heat transfer towards a shrinking sheet in a nanofluid. The mathematical nanofluid model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Numerical results are obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction Φ, the shrinking parameter λ and the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that solutions do not exist for larger shrinking rates and dual (upper and lower branch) solutions exist when λ < -1.0. A stability analysis has been performed to show which branch solutions are stable and physically realizable. It is also found that the upper branch solutions are stable while the lower branch solutions are unstable.Keywords: heat transfer, nanofluid, shrinking sheet, stability analysis, stagnation-point flow
Procedia PDF Downloads 3811818 Nonlinear Porous Diffusion Modeling of Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach
Authors: Eloise C. Tredenick, Troy W. Farrell, W. Alison Forster, Steven T. P. Psaltis
Abstract:
The agriculture industry requires improved efficacy of sprays being applied to crops. More efficacious sprays provide many environmental and financial benefits. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The importance of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted, as the results of each uptake experiments are specific to each formulation of active ingredient and plant species. In this work we develop a mathematical model and numerical simulation for the uptake of ionic agrochemicals through aqueous pores in plant cuticles. We propose a nonlinear porous diffusion model of ionic agrochemicals in isolated cuticles, which provides additions to a simple diffusion model through the incorporation of parameters capable of simulating plant species' variations, evaporation of surface droplet solutions and swelling of the aqueous pores with water. The model could feasibly be adapted to other ionic active ingredients diffusing through other plant species' cuticles. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms.Keywords: aqueous pores, ionic active ingredient, mathematical model, plant cuticle, porous diffusion
Procedia PDF Downloads 2621817 Design of RF Generator and Its Testing in Heating of Nickel Ferrite Nanoparticles
Authors: D. Suman, M. Venkateshwara Rao
Abstract:
Cancer is a disease caused by an uncontrolled division of abnormal cells in a part of the body, which is affecting millions of people leading to death. Even though there have been tremendous developments taken place over the last few decades the effective therapy for cancer is still not a reality. The existing techniques of cancer therapy are chemotherapy and radio therapy which are having their limitations in terms of the side effects, patient discomfort, radiation hazards and the localization of treatment. This paper describes a novel method for cancer therapy by using RF-hyperthermia application of nanoparticles. We have synthesized ferromagnetic nanoparticles and characterized by using XRD and TEM. These nanoparticles after the biocompatibility studies will be injected in to the body with a suitable tracer element having affinity to the specific tumor site. When RF energy is applied to the nanoparticles at the tumor site it produces heat of excess room temperature and nearly 41-45°C is sufficient to kill the tumor cells. We have designed a RF source generator provided with a temperature feedback controller to control the radiation induced temperature of the tumor site. The temperature control is achieved through a negative feedback mechanism of the thermocouple and a relay connected to the power source of the RF generator. This method has advantages in terms of its effect like localized therapy, less radiation, and no side effects. It has several challenges in designing the RF source provided with coils suitable for the tumour site, biocompatibility of the nanomaterials, cooling system design for the RF coil. If we can overcome these challenges this method will be a huge benefit for the society.Keywords: hyperthermia, cancer therapy, RF source generator, nanoparticles
Procedia PDF Downloads 4601816 Loving and Letting Go: Bounded Attachment in Creative Work
Authors: Greg Fetzer
Abstract:
One of the fundamental tensions of creative work is between the need to be passionate and persistent in advancing novel and risky ideas and the need to be flexible, revising, or even abandoning ideas in favor of others. The tension becomes fraught in part because of the attachment that creators have toward their ideas. Idea attachment is defined here as a multifaceted concept referring to affection, passion, and connection toward a target—in this case, one’s projects or ideas. Yet feeling attached can make creators resistant to feedback, making them less flexible and leading them to escalate commitment. Despite a growing understanding of how attachment develops and evolves in response to project changes, feedback, and creative jolts, we still know relatively little about the organizational dynamics that may shape idea attachment. Through a qualitative, inductive study of early-stage R&D scientists in the pharmaceutical industry, this research finds that scientists develop bounded attachment, a mindset that limits emotional attachment to ideas while still fostering engagement in idea development. This research develops a process model of how bounded attachment is developed and enacted across three stages of the creative process, idea generation, idea evaluation, and outcome assessment, as well as the role that organizational practices and professional identity play in shaping this process: these collective practices provided structures to ensure ideas were evaluated in a rational (i.e. non-emotional way) while also providing socioemotional support in the face of setbacks. Together, this process led to continued creative engagement across ideas in a portfolio and helped scientists construct a sense of meaningful work despite a high likelihood (and frequency) of failure.Keywords: creativity, innovation, organizational practices, qualitative, attachment
Procedia PDF Downloads 591815 Piping Fragility Composed of Different Materials by Using OpenSees Software
Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju
Abstract:
A failure of the non-structural component can cause significant damages in critical facilities such as nuclear power plants and hospitals. Historically, it was reported that the damage from the leakage of sprinkler systems, resulted in the shutdown of hospitals for several weeks by the 1971 San Fernando and 1994 North Ridge earthquakes. In most cases, water leakages were observed at the cross joints, sprinkler heads, and T-joint connections in piping systems during and after the seismic events. Hence, the primary objective of this study was to understand the seismic performance of T-joint connections and to develop an analytical Finite Element (FE) model for the T-joint systems of 2-inch fire protection piping system in hospitals subjected to seismic ground motions. In order to evaluate the FE models of the piping systems using OpenSees, two types of materials were used: 1) Steel 02 materials and 2) Pinching 4 materials. Results of the current study revealed that the nonlinear moment-rotation FE models for the threaded T-joint reconciled well with the experimental results in both FE material models. However, the system-level fragility determined from multiple nonlinear time history analyses at the threaded T-joint was slightly different. The system-level fragility at the T-joint, determined by Pinching 4 material was more conservative than that of using Steel 02 material in the piping system.Keywords: fragility, t-joint, piping, leakage, sprinkler
Procedia PDF Downloads 3031814 Simplified Modeling of Post-Soil Interaction for Roadside Safety Barriers
Authors: Charly Julien Nyobe, Eric Jacquelin, Denis Brizard, Alexy Mercier
Abstract:
The performance of road side safety barriers depends largely on the dynamic interactions between post and soil. These interactions play a key role in the response of barriers to crash testing. In the literature, soil-post interaction is modeled in crash test simulations using three approaches. Many researchers have initially used the finite element approach, in which the post is embedded in a continuum soil modelled by solid finite elements. This method represents a more comprehensive and detailed approach, employing a mesh-based continuum to model the soil’s behavior and its interaction with the post. Although this method takes all soil properties into account, it is nevertheless very costly in terms of simulation time. In the second approach, all the points of the post located at a predefined depth are fixed. Although this approach reduces CPU computing time, it overestimates soil-post stiffness. The third approach involves modeling the post as a beam supported by a set of nonlinear springs in the horizontal directions. For support in the vertical direction, the posts were constrained at a node at ground level. This approach is less costly, but the literature does not provide a simple procedure to determine the constitutive law of the springs The aim of this study is to propose a simple and low-cost procedure to obtain the constitutive law of nonlinear springs that model the soil-post interaction. To achieve this objective, we will first present a procedure to obtain the constitutive law of nonlinear springs thanks to the simulation of a soil compression test. The test consists in compressing the soil contained in the tank by a rigid solid, up to a vertical displacement of 200 mm. The resultant force exerted by the ground on the rigid solid and its vertical displacement are extracted and, a force-displacement curve was determined. The proposed procedure for replacing the soil with springs must be tested against a reference model. The reference model consists of a wooden post embedded into the ground and impacted with an impactor. Two simplified models with springs are studied. In the first model, called Kh-Kv model, the springs are attached to the post in the horizontal and vertical directions. The second Kh model is the one described in the literature. The two simplified models are compared with the reference model according to several criteria: the displacement of a node located at the top of the post in vertical and horizontal directions; displacement of the post's center of rotation and impactor velocity. The results given by both simplified models are very close to the reference model results. It is noticeable that the Kh-Kv model is slightly better than the Kh model. Further, the former model is more interesting than the latter as it involves less arbitrary conditions. The simplified models also reduce the simulation time by a factor 4. The Kh-Kv model can therefore be used as a reliable tool to represent the soil-post interaction in a future research and development of road safety barriers.Keywords: crash tests, nonlinear springs, soil-post interaction modeling, constitutive law
Procedia PDF Downloads 301813 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 701812 DNA Nano Wires: A Charge Transfer Approach
Authors: S. Behnia, S. Fathizadeh, A. Akhshani
Abstract:
In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.Keywords: DNA conductivity, Landauer resistance, negative dierential resistance, Chaos theory, mean Lyapunov exponent
Procedia PDF Downloads 4251811 Social Work in Rehabilitation: Improving Practice Through Action Research
Authors: Poglajen Andrej, Malečihar Špela
Abstract:
Social work in rehabilitation needs constant development and embetterment of its practitioners. This became even more evident during the covid pandemic at times when outside sources of help, care and support were non-existent, or the access to such sources was severely limited. Social workers are, at our core, researchers of the rehabilitated world – from a personal and intrapersonal to a systematic perspective. This is also why a method of research was used in order to see if clinical social work practice can be further improved. The first stage of research showcased how action research and social work practice share many of the core values, whereas the Implementation of the new behaviour principle was severely lacking and thus became the main focus of the follow-up research. Twenty randomly selected case files of clinical social work practice in rehabilitation were qualitatively analyzed and potential benefits of action research on practice were assessed in the process of intervention while also getting feedback of the usefulness by the patients themselves using pre and post evaluation forms where a mixed-method approach was used. Implementation of new behaviour principle was recognized as a potential, improving factor of clinical social work practice in most analyzed cases, while it wasn’t deemed necessary in all of them. Potential improvements of newly implemented behaviour span across different areas of life and were also noted in the feedback from the rehabilitates. Despite the benefits of practice embetterment, the inclusion and focus on Implementation of new behaviour principle also caused additional workload, lack of time and stressful situations for the practitioners, which showcased the need to address certain systemic obstacles in the context of social work in healthcare in Slovenia.Keywords: action research, practice, rehabilitation, social work
Procedia PDF Downloads 1601810 A Study of Using Multiple Subproblems in Dantzig-Wolfe Decomposition of Linear Programming
Authors: William Chung
Abstract:
This paper is to study the use of multiple subproblems in Dantzig-Wolfe decomposition of linear programming (DW-LP). Traditionally, the decomposed LP consists of one LP master problem and one LP subproblem. The master problem and the subproblem is solved alternatively by exchanging the dual prices of the master problem and the proposals of the subproblem until the LP is solved. It is well known that convergence is slow with a long tail of near-optimal solutions (asymptotic convergence). Hence, the performance of DW-LP highly depends upon the number of decomposition steps. If the decomposition steps can be greatly reduced, the performance of DW-LP can be improved significantly. To reduce the number of decomposition steps, one of the methods is to increase the number of proposals from the subproblem to the master problem. To do so, we propose to add a quadratic approximation function to the LP subproblem in order to develop a set of approximate-LP subproblems (multiple subproblems). Consequently, in each decomposition step, multiple subproblems are solved for providing multiple proposals to the master problem. The number of decomposition steps can be reduced greatly. Note that each approximate-LP subproblem is nonlinear programming, and solving the LP subproblem must faster than solving the nonlinear multiple subproblems. Hence, using multiple subproblems in DW-LP is the tradeoff between the number of approximate-LP subproblems being formed and the decomposition steps. In this paper, we derive the corresponding algorithms and provide some simple computational results. Some properties of the resulting algorithms are also given.Keywords: approximate subproblem, Dantzig-Wolfe decomposition, large-scale models, multiple subproblems
Procedia PDF Downloads 1661809 Geometrically Nonlinear Analysis of Initially Stressed Hybrid Laminated Composite Structures
Authors: Moumita Sit, Chaitali Ray
Abstract:
The present article deals with the free vibration analysis of hybrid laminated composite structures with initial stresses developed in the laminates. Generally initial stresses may be developed in the laminates by temperature and moisture effect. In this study, an eight noded isoparametric plate bending element has been used for the finite element analysis of composite plates. A numerical model has been developed to assess the geometric nonlinear response of composite plates based on higher order shear deformation theory (HSDT) considering the Green–Lagrange type nonlinearity. A computer code based on finite element method (FEM) has also been developed in MATLAB to perform the numerical calculations. To validate the accuracy of the proposed numerical model, the results obtained from the present study are compared with those available in published literature. Effects of the side to thickness ratio, different boundary conditions and initial stresses on the natural frequency of composite plates have been studied. The free vibration analysis of a hollow stiffened hybrid laminated panel has also been carried out considering initial stresses and presented as case study.Keywords: geometric nonlinearity, higher order shear deformation theory (HSDT), hybrid composite laminate, the initial stress
Procedia PDF Downloads 1501808 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1221807 Modeling and Minimizing the Effects of Ferroresonance for Medium Voltage Transformers
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Arian Amirnia, Atena Taheri, Mohammadreza Arabi, Mahmud Fotuhi-Firuzabad
Abstract:
Ferroresonance effects cause overvoltage in medium voltage transformers and isolators used in electrical networks. Ferroresonance effects are nonlinear and occur between the network capacitor and the nonlinear inductance of the voltage transformer during saturation. This phenomenon is unwanted for transformers since it causes overheating, introduction of high dynamic forces in primary coils, and rise of voltage in primary coils for the voltage transformer. Furthermore, it results in electrical and thermal failure of the transformer. Expansion of distribution lines, design of the transformer in smaller sizes, and the increase of harmonics in distribution networks result in an increase of ferroresonance. There is limited literature available to improve the effects of ferroresonance; therefore, optimizing its effects for voltage transformers is of great importance. In this study, comprehensive modeling of a medium voltage block-type voltage transformer is performed. In addition, a recent model is proposed to improve the performance of voltage transformers during the occurrence of ferroresonance using damping oscillations. Also, transformer design optimization is presented in this study to show further improvements in the performance of the voltage transformer. The recently proposed model is experimentally tested and verified on a medium voltage transformer in the laboratory, and simulation results show a large reduction of the effects of ferroresonance.Keywords: optimization, voltage transformer, ferroresonance, modeling, damper
Procedia PDF Downloads 1011806 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai
Abstract:
Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities
Procedia PDF Downloads 3171805 Algerian EFL Students' Perceptions towards the Development of Writing through Weblog Storytelling
Authors: Nawel Mansouri
Abstract:
Weblog as a form of internet-based resources has become popular as an authentic and constructive learning tool, especially in the language classroom. This research explores the use of weblog storytelling as a pedagogical tool to develop Algerian EFL students’ creative writing. This study aims to investigate the effectiveness of weblog- writing and the attitudes of both Algerian EFL students and teachers towards weblog storytelling. It also seeks to explore the potential benefits and problems that may affect the use of weblog and investigate the possible solutions to overcome the problems encountered. The research work relies on a mixed-method approach which combines both qualitative and quantitative methods. A questionnaire will be applied to both EFL teachers and students as a means to obtain preliminary data. Interviews will be integrated in accordance with the primary data that will be gathered from the questionnaire with the aim of validating its accuracy or as a strategy to follow up any unexpected results. An intervention will take place on the integration of weblog- writing among 15 Algerian EFL students for a period of two months where students are required to write five narrative essays about their personal experiences, give feedback through the use of a rubric to two or three of their peers, and edit their work based on the feedback. After completion, questionnaires and interviews will also take place as a medium to obtain both the students’ perspectives towards the use of weblog as an innovative teaching approach. This study is interesting because weblog storytelling has recently been emerged as a new form of digital communication and it is a new concept within Algerian context. Furthermore, the students will not just develop their writing skill through weblog storytelling but it can also serve as a tool to develop students’ critical thinking, creativity, and autonomy.Keywords: Weblog writing, EFL writing, EFL learners' attitudes, EFL teachers' views
Procedia PDF Downloads 1741804 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 1981803 A Survey of 2nd Year Students' Frequent Writing Error and the Effects of Participatory Error Correction Process
Authors: Chaiwat Tantarangsee
Abstract:
The purposes of this study are 1) to study the effects of participatory error correction process and 2) to find out the students’ satisfaction of such error correction process. This study is a Quasi Experimental Research with single group, in which data is collected 5 times preceding and following 4 experimental studies of participatory error correction process including providing coded indirect corrective feedback in the students’ texts with error treatment activities. Samples include 28 2nd year English Major students, Faculty of Humanities and Social Sciences, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tools for data collection include 5 writing tests of short texts and a questionnaire. Based on formative evaluation of the students’ writing ability prior to and after each of the 4 experiments, the research findings disclose the students’ higher scores with statistical difference at 0.05. Moreover, in terms of the effect size of such process, it is found that for mean of the students’ scores prior to and after the 4 experiments; d equals 1.0046, 1.1374, 1.297, and 1.0065 respectively. It can be concluded that participatory error correction process enables all of the students to learn equally well and there is improvement in their ability to write short texts. Finally, the students’ overall satisfaction of the participatory error correction process is in high level (Mean=4.32, S.D.=0.92).Keywords: coded indirect corrective feedback, participatory error correction process, error treatment, humanities and social sciences
Procedia PDF Downloads 5231802 Use of WhatsApp Messenger for Optimal Healthcare Operational Communication during the COVID-19 Pandemic
Authors: Josiah O. Carter, Charlotte Hayden, Elizabeth Arthurs
Abstract:
Background: During the COVID-19 pandemic, hospital management policies have changed frequently and rapidly. This has created novel challenges in keeping the workforce abreast of these changes to enable them to deliver safe and effective care. Traditional communication methods, e.g. email, do not keep pace with the rapidly changing environment in the hospital, resulting in inaccurate, irrelevant, or outdated information being communicated, resulting in inefficiencies in patient care. Methods: The creation of a WhatsApp messaging group within the medical division at the Bristol Royal Infirmary has enabled senior clinicians and the hospital management team to update the medical workforce in real-time. It has two primary functions: (1) To enable dissemination of a concise, important operational summary. This comprises information on bed status and infection control procedural changes. It is fed directly from a daily critical incident briefing (2) To facilitate a monthly scheduled question and answer (Q&A) session for junior doctors to clarify issues with clinical directors, rota, and management staff. Additional ad-hoc updates are sent out for time-critical information; otherwise, it mainly functions as a broadcast-only group to prevent important information from being lost amongst other communication. All junior doctors within the medical division were invited to join the group. At present, the group comprises 131 participants, of which 10 are administrative staff (rota coordinators, management staff & clinical directors); the remaining 121 are junior clinicians working within the medical division. An electronic survey via Microsoft forms was sent out to junior doctors via the WhatsApp group and via email to assess its utilisation and effectiveness with the aim of quality improvements. Results: Of the 121 group participants, 19 completed the questionnaire (response rate 15.7%). Of these, 16/19 (84.2%) used it regularly, and 12/19 (63.2%) rated it as the most useful source for reliable updates relating to the hospital response to the COVID-19 pandemic, whereas only 2/19 (10.5%) found the trust intranet and the trust COVID-19 operational email update most useful. Respondents rated the WhatsApp group more useful as an information source (mean score 7.7/10) than as a means of providing feedback to management staff (mean score 6.3/10). Qualitative feedback suggested information around ward closures and changes to COVID cohorting, along with updates on staffing issues, were most useful. Respondents also noted the Q&A sessions were an efficient way of relaying feedback about management decisions but that it would be preferable if these sessions could be delivered more frequently. Discussion: During the current global COVID-19 pandemic, there is an increased need for rapid dissemination of critical information within NHS trusts; this includes communication between junior doctors, managers, and senior clinicians. The versatility of WhatsApp permits a variety of functions allowing for regular updates, the dissemination of time-critical information, and enables conversing and feedback. The project has demonstrated that reserved and well-managed use of a WhatsApp group is a welcome, efficient and practical means of communication between the senior management team and the junior medical workforce.Keywords: communication, COVID-19, hospital management, WhatsApp
Procedia PDF Downloads 1121801 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.Keywords: concrete beam, FRP bars, spacing effect, thermal deformation
Procedia PDF Downloads 2031800 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice
Authors: Zhenxiang Zhou
Abstract:
The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa
Procedia PDF Downloads 901799 Social Identification among Employees: A System Dynamic Approach
Authors: Muhammad Abdullah, Salman Iqbal, Mamoona Rasheed
Abstract:
Social identity among people is an important source of pride and self-esteem, consequently, people struggle to preserve a positive perception of their groups and collectives. The purpose of this paper is to explain the process of social identification and to highlight the underlying causal factors of social identity among employees. There is a little research about how the social identity of employees is shaped in Pakistan’s organizational culture. This study is based on social identity theory. This study uses Systems’ approach as a research methodology. The feedback loop approach is applied to explain the underlying key elements of employee behavior that collectively form social identity among social groups in corporate arena. The findings of this study reveal that effective, evaluative and cognitive components of an individual’s personality are associated with the social identification. The system dynamic feedback loop approach has revealed the underlying structure that is associated with social identity, social group formation, and effective component proved to be the most associated factor. This may also enable to understand how social groups become stable and individuals act according to the group requirements. The value of this paper lies in the understanding gained about the underlying key factors that play a crucial role in social group formation in organizations. It may help to understand the rationale behind how employees socially categorize themselves within organizations. It may also help to design effective and more cohesive teams for better operations and long-term results. This may help to share knowledge among employees as well. The underlying structure behind the social identification is highlighted with the help of system modeling.Keywords: affective commitment, cognitive commitment, evaluated commitment, system thinking
Procedia PDF Downloads 1371798 WhatsApp as a Public Health Management Tool in India
Authors: Drishti Sharma, Mona Duggal
Abstract:
Background: WhatsApp can serve as a cost-effective, scalable, convenient, and popular medium for public health management related communication in the developing world where the existing system of communication is top-down and slow. The product supports sending and receiving a variety of media: text, photos, videos, documents, and location, as well as voice/video calls. With growing number of users of smartphones and improving access and penetration of internet, the scope of information technology remains immense in resolving the hurdles faced by traditional public health system. Poor infrastructure, gap in digital literacy, faulty documentation, strict organizational hierarchy and slow movement of information across desks and offices- all these, make WhatsApp an efficient prospect to complement the existing system for communication, feedback and leadership for public health system in India. Objective: This study investigates the benefits, challenges and limitations associated with WhatsApp usage as a public health management tool. Methods: The study was conducted within the Chandigarh Union Territory. We used a qualitative approach and conducted individual semi-structured interviews and group interviews (n = 10). Participants included medical officers (n 20), Program managers (n = 4), academicians (n=2) and administrators (n=2). Thematic and content qualitative analyses were conducted. Message log of the WhatsApp group of one of the health program was assessed. Results: Medical Officers said that WhatsApp helped them remain in touch with the program officer. They could easily give feedback and highlight those challenges which needed immediate intervention from the program managers, hence they felt supported. Also, the application helped them share pictures of their activities (meetings and field activities) with the group which they thought inspired others and gave themselves immense satisfaction. Also, it helped build stronger relationships and better coordination among themselves, the same being important in team events. For program managers, it had become a portal for coordinating large scale campaigns. Its reach and the fact that the feedback is real-time make WhatsApp ideal for district level events. Though the easy informal connectivity made them answerable to their staff but it also provided them with flexibility in operations. It turned out to be an important portal for sharing outcome and goals related feedback (both positive and negative) to the team. To be sure, using WhatsApp for the purpose of public health program presents considerable challenges, including technological barriers, organizational challenges, gender issues, confidentiality concerns and unplanned aftereffects. Nevertheless, its advantages in a low-cost setting make it an efficient alternative. Conclusion: WhatsApp has become an integral part of our lives. Use of this app for public health program management within closed groups looks promising and useful. At the same time, addressing the challenges involved would make its usage safer.Keywords: communication, mobile technology, public health management, WhatsApp
Procedia PDF Downloads 1771797 Chatbots as Language Teaching Tools for L2 English Learners
Authors: Feiying Wu
Abstract:
Chatbots are computer programs that attempt to engage a human in a dialogue, which originated in the 1960s with MIT's Eliza. However, they have become widespread more recently as advances in language technology have produced chatbots with increasing linguistic quality and sophistication, leading to their potential to serve as a tool for Computer-Assisted Language Learning(CALL). The aim of this article is to assess the feasibility of using two chatbots, Mitsuku and CleverBot, as pedagogical tools for learning English as a second language by stimulating L2 learners with distinct English proficiencies. Speaking of the input of stimulated learners, they are measured by AntWordProfiler to match the user's expected vocabulary proficiency. Totally, there are four chat sessions as each chatbot will converse with both beginners and advanced learners. For evaluation, it focuses on chatbots' responses from a linguistic standpoint, encompassing vocabulary and sentence levels. The vocabulary level is determined by the vocabulary range and the reaction to misspelled words. Grammatical accuracy and responsiveness to poorly formed sentences are assessed for the sentence level. In addition, the assessment of this essay sets 25% lexical and grammatical incorrect input to determine chatbots' corrective ability towards different linguistic forms. Based on statistical evidence and illustration of examples, despite the small sample size, neither Mitsuku nor CleverBot is ideal as educational tools based on their performance through word range, grammatical accuracy, topic range, and corrective feedback for incorrect words and sentences, but rather as a conversational tool for beginners of L2 English.Keywords: chatbots, CALL, L2, corrective feedback
Procedia PDF Downloads 781796 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism
Authors: Bin Bian, Liang Wang
Abstract:
A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking
Procedia PDF Downloads 1051795 Nonlinear Evolution on Graphs
Authors: Benniche Omar
Abstract:
We are concerned with abstract fully nonlinear differential equations having the form y’(t)=Ay(t)+f(t,y(t)) where A is an m—dissipative operator (possibly multi—valued) defined on a subset D(A) of a Banach space X with values in X and f is a given function defined on I×X with values in X. We consider a graph K in I×X. We recall that K is said to be viable with respect to the above abstract differential equation if for each initial data in K there exists at least one trajectory starting from that initial data and remaining in K at least for a short time. The viability problem has been studied by many authors by using various techniques and frames. If K is closed, it is shown that a tangency condition, which is mainly linked to the dynamic, is crucial for viability. In the case when X is infinite dimensional, compactness and convexity assumptions are needed. In this paper, we are concerned with the notion of near viability for a given graph K with respect to y’(t)=Ay(t)+f(t,y(t)). Roughly speaking, the graph K is said to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)), if for each initial data in K there exists at least one trajectory remaining arbitrary close to K at least for short time. It is interesting to note that the near viability is equivalent to an appropriate tangency condition under mild assumptions on the dynamic. Adding natural convexity and compactness assumptions on the dynamic, we may recover the (exact) viability. Here we investigate near viability for a graph K in I×X with respect to y’(t)=Ay(t)+f(t,y(t)) where A and f are as above. We emphasis that the t—dependence on the perturbation f leads us to introduce a new tangency concept. In the base of a tangency conditions expressed in terms of that tangency concept, we formulate criteria for K to be near viable with respect to y’(t)=Ay(t)+f(t,y(t)). As application, an abstract null—controllability theorem is given.Keywords: abstract differential equation, graph, tangency condition, viability
Procedia PDF Downloads 1441794 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns
Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally
Abstract:
This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength
Procedia PDF Downloads 5101793 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 4971792 A New Family of Integration Methods for Nonlinear Dynamic Analysis
Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran
Abstract:
A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy
Procedia PDF Downloads 6391791 Study of the Diaphragm Flexibility Effect on the Inelastic Seismic Response of Thin Wall Reinforced Concrete Buildings (TWRCB): A Purpose to Reduce the Uncertainty in the Vulnerability Estimation
Authors: A. Zapata, Orlando Arroyo, R. Bonett
Abstract:
Over the last two decades, the growing demand for housing in Latin American countries has led to the development of construction projects based on low and medium-rise buildings with thin reinforced concrete walls. This system, known as Thin Walls Reinforced Concrete Buildings (TWRCB), uses walls with thicknesses from 100 to 150 millimetres, with flexural reinforcement formed by welded wire mesh (WWM) with diameters between 5 and 7 millimetres, arranged in one or two layers. These walls often have irregular structural configurations, including combinations of rectangular shapes. Experimental and numerical research conducted in regions where this structural system is commonplace indicates inherent weaknesses, such as limited ductility due to the WWM reinforcement and thin element dimensions. Because of its complexity, numerical analyses have relied on two-dimensional models that don't explicitly account for the floor system, even though it plays a crucial role in distributing seismic forces among the resilient elements. Nonetheless, the numerical analyses assume a rigid diaphragm hypothesis. For this purpose, two study cases of buildings were selected, low-rise and mid-rise characteristics of TWRCB in Colombia. The buildings were analyzed in Opensees using the MVLEM-3D for walls and shell elements to simulate the slabs to involve the effect of coupling diaphragm in the nonlinear behaviour. Three cases are considered: a) models without a slab, b) models with rigid slabs, and c) models with flexible slabs. An incremental static (pushover) and nonlinear dynamic analyses were carried out using a set of 44 far-field ground motions of the FEMA P-695, scaled to 1.0 and 1.5 factors to consider the probability of collapse for the design base earthquake (DBE) and the maximum considered earthquake (MCE) for the model, according to the location sites and hazard zone of the archetypes in the Colombian NSR-10. Shear base capacity, maximum displacement at the roof, walls shear base individual demands and probabilities of collapse were calculated, to evaluate the effect of absence, rigid and flexible slabs in the nonlinear behaviour of the archetype buildings. The pushover results show that the building exhibits an overstrength between 1.1 to 2 when the slab is considered explicitly and depends on the structural walls plan configuration; additionally, the nonlinear behaviour considering no slab is more conservative than if the slab is represented. Include the flexible slab in the analysis remarks the importance to consider the slab contribution in the shear forces distribution between structural elements according to design resistance and rigidity. The dynamic analysis revealed that including the slab reduces the collapse probability of this system due to have lower displacements and deformations, enhancing the safety of residents and the seismic performance. The strategy of including the slab in modelling is important to capture the real effect on the distribution shear forces in walls due to coupling to estimate the correct nonlinear behaviour in this system and the adequate distribution to proportionate the correct resistance and rigidity of the elements in the design to reduce the possibility of damage to the elements during an earthquake.Keywords: thin wall reinforced concrete buildings, coupling slab, rigid diaphragm, flexible diaphragm
Procedia PDF Downloads 741790 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: backstepping control, iterative control, Rehabilitation, ETS-MARSE
Procedia PDF Downloads 286