Search results for: motor intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2487

Search results for: motor intelligence

1767 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 417
1766 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
1765 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 43
1764 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust

Procedia PDF Downloads 127
1763 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 89
1762 Human Resource Management Challenges in Age of Artificial Intelligence: Methodology of Case Analysis

Authors: Olga Leontjeva

Abstract:

In the age of Artificial Intelligence (AI), some organization management approaches need to be adapted or changed. Human Resource Management (HRM) is a part of organization management that is under the managers' focus nowadays, because AI integration into organization activities brings some HRM-connected challenges. The topic became more significant during the crises of many organizations in the world caused by the coronavirus pandemic (COVID-19). The paper presents an approach, which will be used for the study that is going to be focused on the various case analysis. The author of the future study will analyze the cases of the organizations from Latvia and Spain that are grouped by the size, type of activity and area of business. The information for the cases will be collected through structured interviews and online surveys. The main result presented is the questionnaire developed that will be used for the study as well as the definition and description of sampling. The first round of the survey will be based on convenience sampling that is the main limitation of the study. To conclude, the approach developed will help to collect valid data if the organizations participating in the survey are ready to share their cases in depth, so the researchers could draw the right conclusions and generalize compared organizations’ cases. The questionnaire developed for the survey is applicable for both written online data collection as well as for the interviews. The case analysis will help to identify some HRM challenges that are connected to AI integration into organization activities such as management of different generation employees and their training peculiarities.

Keywords: age of artificial intelligence, case analysis, generation Y and Z employees, human resource management

Procedia PDF Downloads 169
1761 Spirituality in Education (Enhance the Human Mind Competencies)

Authors: Kshama Sharma

Abstract:

Education is one of the most powerful tools to transform the world into a just, sustainable, and more peaceful place for existing lives across the globe. However, its recent objective approach focused on materialistic, factual, and existing knowledge, has a constraint of human experiences that is limited to certain dimensions only. And leads to a materialistic world which is deprived of spiritual approaches and makes it less compassionate, and more grades oriented. To make it more comprehensive, education should explore the subjective approaches towards spiritualism to connect lives with the greater self and consciousness of cosmic intelligence. This approach will bring a major shift in the orientation of pedagogical processes, assessment strategies, and administrative management of the present education system. Spirituality often related to the religious aspect of human civilization and development, however, when universal consciousness /cosmic intelligence (which is often claimed as dark energy) and the human mind competencies works in coherence and coordination then the efficiency of human mind reaches to a different dimension and achieve extraordinary level of human understanding. Quantitative analysis of the existing secondary data from the different agencies working in the field of meditation had been analyzed to conclude its implications on human mind and further how it can effectively use in education to bring the desired and expected results. Any kind of meditation practice affects the cognitive, mental, physical, emotional, and conscious state of mind. If aligned with the teaching and learning methodology will lead to conscious learner and peaceful world.

Keywords: spirituality, cosmic intelligence, consciousness, mind competencies

Procedia PDF Downloads 54
1760 Concepts of Instrumentation Scheme for Thought Transfer

Authors: Rai Sachindra Prasad

Abstract:

Thought is physical force. This has been well recognized but hardly translated visually or otherwise in the sense of its transfer from one individual to another. In the present world of chaos and disorder with yawning gaps between right and wrong thinking individuals, if it is possible to transfer the right thoughts to replace the wrong ones it would indeed be a great achievement in the present situation of the world which is torn with violence with dangerous thoughts of individuals. Moreover, such a possibility would completely remove the barrier of language between two persons, which at times proves to be a great obstacle in realizing a desired purpose. If a proper instrumentation scheme containing appropriate transducers and electronics is designed and implemented to realize this thought ransfer phenomenon, this would prove to be extremely useful when properly used. Considering the advancements already made in recording the nerve impulses in the brain, which are electrical events of very short durations that move along the axon, it is conceivable that this may be used to good effect in implementing the scheme. In such a proposition one shoud consider the roles played by pineal body, pituitary gland and ‘association’ areas. Pioneer students of brain have thought that associations or connections between sensory input and motor output were made in these areas. It is currently believed that rather than being regions of simple sensory-motor connections, the association areas process and integrate sensory information relayed to them from the primary sensory areas of the cortex and from the thalamus, after the information has been processed, it may be sent to motor areas to be acted upon. Again, even though the role played by pineal body is not known fully to neurologists its interconnection with pituitary gland is a matter of great significance to the ‘Rishis’ and; Seers’ s described in Vedas and Puranas- the ancient Holy books of Hindus. If the pineal body is activated through meditation it would control the pituitary gland thereby the individual’s thoughts and acts. Thus, if thoughts can be picked up by special transducers, these can be connected to suitable electronics circuitry to amplify the signals. These signals in the form of electromagnetic waves can then be transmitted using modems for long distance transmission and eventually received by or passed on to a subject of interest through another set of electronics circuit and devices.

Keywords: modems, pituitary gland, pineal body, thought transfer

Procedia PDF Downloads 372
1759 Performance Prediction Methodology of Slow Aging Assets

Authors: M. Ben Slimene, M.-S. Ouali

Abstract:

Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.

Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation

Procedia PDF Downloads 112
1758 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 169
1757 The Experience of Applying Multi-Sensory Stimulation ICU for Arousing a Patient with Traumatic Brain Injury in Intensive Care

Authors: Hsiao-Wen Tsai

Abstract:

Motor vehicle accident is the first cause of head injury in the world; severe head injury cases may cause conscious disturbance and death. This is a report about a case of a young adult patient suffering from motor vehicle accident leading to severe head injury who passed through three time surgical procedures, and his mother (who is the informal caregiver). This case was followed from 28th January to 15th February 2011 by using Gordon’s 11 functional health patterns. Patient’s cognitive-perceptual and self-perception-self-concept patterns were altered. Anxiety was also noted on his informal caregiver due to patients’ condition. During the intensive care period, maintaining patient’s vital signs and cerebral perfusion pressure were essential to avoid secondary neuronal injury. Multi-sensory stimulation, caring accompanying, supporting, listening and encouraging patient’s family involved in patient care were very important to reduce informal caregiver anxiety. Finally, the patient consciousness improved from GCS 4 to GCS 11 before discharging from ICU. Patient’s primary informal caregiver, his mother, also showed anxiety improvement. This is was successful case with traumatic brain injury recovered from coma.

Keywords: anxiety, multi-sensory stimulation, reduce intracranial adaptive capacity, traumatic brain injury

Procedia PDF Downloads 267
1756 Efficiency of Virtual Reality Exercises with Nintendo Wii System on Balance and Independence in Motor Functions in Hemiparetic Patients: A Randomized Controlled Study

Authors: Ayça Utkan Karasu, Elif Balevi Batur, Gülçin Kaymak Karataş

Abstract:

The aim of this study was to examine the efficiency of virtual reality exercises with Nintendo Wii system on balance and independence in motor functions. This randomized controlled assessor-blinded study included 23 stroke inpatients with hemiparesis all within 12 months poststroke. Patients were randomly assigned to control group (n=11) or experimental group (n=12) via block randomization method. Control group participated in a conventional balance rehabilitation programme. Study group received a four-week balance training programme five times per week with a session duration of 20 minutes in addition to the conventional balance rehabilitation programme. Balance was assessed by the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index. Also, displacement of centre of pressure sway and centre of pressure displacement during weight shifting was calculated by Emed-SX system. Independence in motor functions was assessed by The Functional Independence Measure (FIM) ambulation and FIM transfer subscales. The outcome measures were evaluated at baseline, 4th week (posttreatment), 8th week (follow-up). Repeated measures analysis of variance was performed for each of the outcome measure. Significant group time interaction was detected in the scores of the Berg’s balance scale, the functional reach test, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed anteroposterior center of pressure sway distance, center of pressure displacement during weight shifting to effected side, unaffected side and total centre of pressure displacement during weight shifting (p < 0.05). Time effect was statistically significant in the scores of the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed mediolateral center of pressure sway distance, the center of pressure displacement during weight shifting to effected side, the functional independence measure ambulation and transfer scores (p < 0.05). Virtual reality exercises with Nintendo Wii system combined with a conventional balance rehabilitation programme enhances balance performance and independence in motor functions in stroke patients.

Keywords: balance, hemiplegia, stroke rehabilitation, virtual reality

Procedia PDF Downloads 221
1755 A New Perspective in Cervical Dystonia: Neurocognitive Impairment

Authors: Yesim Sucullu Karadag, Pinar Kurt, Sule Bilen, Nese Subutay Oztekin, Fikri Ak

Abstract:

Background: Primary cervical dystonia is thought to be a purely motor disorder. But recent studies revealed that patients with dystonia had additional non-motor features. Sensory and psychiatric disturbances could be included into the non-motor spectrum of dystonia. The Basal Ganglia receive inputs from all cortical areas and throughout the thalamus project to several cortical areas, thus participating to circuits that have been linked to motor as well as sensory, emotional and cognitive functions. However, there are limited studies indicating cognitive impairment in patients with cervical dystonia. More evidence is required regarding neurocognitive functioning in these patients. Objective: This study is aimed to investigate neurocognitive profile of cervical dystonia patients in comparison to healthy controls (HC) by employing a detailed set of neuropsychological tests in addition to self-reported instruments. Methods: Totally 29 (M/F: 7/22) cervical dystonia patients and 30 HC (M/F: 10/20) were included into the study. Exclusion criteria were depression and not given informed consent. Standard demographic, educational data and clinical reports (disease duration, disability index) were recorded for all patients. After a careful neurological evaluation, all subjects were given a comprehensive battery of neuropsychological tests: Self report of neuropsychological condition (by visual analogue scale-VAS, 0-100), RAVLT, STROOP, PASAT, TMT, SDMT, JLOT, DST, COWAT, ACTT, and FST. Patients and HC were compared regarding demographic, clinical features and neurocognitive tests. Also correlation between disease duration, disability index and self report -VAS were assessed. Results: There was no difference between patients and HCs regarding socio-demographic variables such as age, gender and years of education (p levels were 0.36, 0.436, 0.869; respectively). All of the patients were assessed at the peak of botulinum toxine effect and they were not taking an anticholinergic agent or benzodiazepine. Dystonia patients had significantly impaired verbal learning and memory (RAVLT, p<0.001), divided attention and working memory (ACTT, p<0.001), attention speed (TMT-A and B, p=0.008, 0.050), executive functions (PASAT, p<0.001; SDMT, p= 0.001; FST, p<0.001), verbal attention (DST, p=0.001), verbal fluency (COWAT, p<0.001), visio-spatial processing (JLOT, p<0.001) in comparison to healthy controls. But focused attention (STROOP-spontaneous correction) was not different between two groups (p>0.05). No relationship was found regarding disease duration and disability index with any neurocognitive tests. Conclusions: Our study showed that neurocognitive functions of dystonia patients were worse than control group with the similar age, sex, and education independently clinical expression like disease duration and disability index. This situation may be the result of possible cortical and subcortical changes in dystonia patients. Advanced neuroimaging techniques might be helpful to explain these changes in cervical dystonia patients.

Keywords: cervical dystonia, neurocognitive impairment, neuropsychological test, dystonia disability index

Procedia PDF Downloads 420
1754 Dual Active Bridge Converter with Photovoltaic Arrays for DC Microgrids: Design and Analysis

Authors: Ahmed Atef, Mohamed Alhasheem, Eman Beshr

Abstract:

In this paper, an enhanced DC microgrid design is proposed using the DAB converter as a conversion unit in order to harvest the maximum power from the PV array. Each connected DAB converter is controlled with an enhanced control strategy. The controller is based on the artificial intelligence (AI) technique to regulate the terminal PV voltage through the phase shift angle of each DAB converter. In this manner, no need for a Maximum Power Point Tracking (MPPT) unit to set the reference of the PV terminal voltage. This strategy overcomes the stability issues of the DC microgrid as the response of converters is superior compared to the conventional strategies. The proposed PV interface system is modelled and simulated using MATLAB/SIMULINK. The simulation results reveal an accurate and fast response of the proposed design in case of irradiance changes.

Keywords: DC microgrid, DAB converter, parallel operation, artificial intelligence, fast response

Procedia PDF Downloads 790
1753 Intellectual Property in Digital Environment

Authors: Balamurugan L.

Abstract:

Artificial intelligence (AI) and its applications in Intellectual Property Rights (IPR) has been significantly growing in recent years. In last couple of years, AI tools for Patent Research and Patent Analytics have been well-stabilized in terms of accuracy of references and representation of identified patent insights. However, AI tools for Patent Prosecution and Patent Litigation are still in the nascent stage and there may be a significant potential if such market is explored further. Our research is primarily focused on identifying potential whitespaces and schematic algorithms to automate the Patent Prosecution and Patent Litigation Process of the Intellectual Property. The schematic algorithms may assist leading AI tool developers, to explore such opportunities in the field of Intellectual Property. Our research is also focused on identification of pitfalls of the AI. For example, Information Security and its impact in IPR, and Potential remediations to sustain the IPR in the digital environment.

Keywords: artificial intelligence, patent analytics, patent drafting, patent litigation, patent prosecution, patent research

Procedia PDF Downloads 67
1752 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 374
1751 Investigating the Role of Artificial Intelligence in Developing Creativity in Architecture Education in Egypt: A Case Study of Design Studios

Authors: Ahmed Radwan, Ahmed Abdel Ghaney

Abstract:

This paper delves into the transformative potential of artificial intelligence (AI) in fostering creativity within the domain of architecture education, especially with a specific emphasis on its implications within the Design Studios; the convergence of AI and architectural pedagogy has introduced avenues for redefining the boundaries of creative expression and problem-solving. By harnessing AI-driven tools, students and educators can collaboratively explore a spectrum of design possibilities, stimulate innovative ideation, and engage in multidimensional design processes. This paper investigates the ways in which AI contributes to architectural creativity by facilitating generative design, pattern recognition, virtual reality experiences, and sustainable design optimization. Furthermore, the study examines the balance between AI-enhanced creativity and the preservation of core principles of architectural design/education, ensuring that technology is harnessed to augment rather than replace foundational design skills. Through an exploration of Egypt's architectural heritage and contemporary challenges, this research underscores how AI can synergize with cultural context and historical insights to inspire cutting-edge architectural solutions. By analyzing AI's impact on nurturing creativity among Egyptian architecture students, this paper seeks to contribute to the ongoing discourse on the integration of technology within global architectural education paradigms. It is hoped that this research will guide the thoughtful incorporation of AI in fostering creativity while preserving the authenticity and richness of architectural design education in Egypt and beyond.

Keywords: architecture, artificial intelligence, architecture education, Egypt

Procedia PDF Downloads 79
1750 Exploring the Impact of Artificial Intelligence (AI) in the Context of English as a Foreign Language (EFL): A Comprehensive Bibliometric Study

Authors: Kate Benedicta Amenador, Dianjian Wang, Bright Nkrumah

Abstract:

This extensive bibliometric study explores the dynamic influence of artificial intelligence in the field of English as a Foreign Language (EFL) between 2012 and 2024. The study, which examined 4,500 articles from Google Scholar, Modern Language Association Linguistics Abstracts, Web of Science, Scopus, Researchgate, and library genesis databases, indicates that AI integration in EFL is on the rise. This notable increase is ascribed to a variety of transformative events, including increased academic funding for higher education and the COVID-19 epidemic. The results of the study identify leading contributors, prominent authors, publishers and sources, with the United States, China and the United Kingdom emerging as key contributors. The co-occurrence analysis of key terms reveals five clusters highlighting patterns in AI-enhanced language instruction and learning, including evaluation strategies, educational technology, learning motivation, EFL teaching aspects, and learner feedback. The study also discusses the impact of various AIs in enhancing EFL writing skills with software such as Grammarly, Quilbot, and Chatgpt. The current study recognizes limitations in database selection and linguistic constraints. Nevertheless, the results provide useful insights for educators, researchers and policymakers, inspiring and guiding a cross-disciplinary collaboration and creative pedagogical techniques and approaches to teaching and learning in the future.

Keywords: artificial intelligence, bibliometrics study, VOSviewer visualization, English as a foreign language

Procedia PDF Downloads 32
1749 Cognitive and Environmental Factors Affecting Graduate Student Perception of Mathematics

Authors: Juanita Morris

Abstract:

The purpose of this study will examine the mediating relationships between the theories of intelligence, mathematics anxiety, gender stereotype threat, meta-cognition and math performance through the use of eye tracking technology, affecting student perception and problem-solving abilities. The participants will consist of (N=80) female graduate students. Test administered were the Abbreviated Math Anxiety Scale, Tobii Eye Tracking software, gender stereotype threat through Google images, and they will be asked to describe their problem-solving approach allowed to measure metacognition. Participants will be administered mathematics problems while having gender stereotype threat shown to them through online images while being directed to look at the eye tracking software Tobii. We will explore this by asking ‘Is mathematics anxiety associated with the theories of intelligence and gender stereotype threat and how does metacognition and math performance place a role in mediating those perspectives?’. It is hypothesized that math-anxious students are more likely affected by the gender stereotype threat and that may play a role in their performance? Furthermore, we also want to explore whether math anxious students are more likely to be an entity theorist than incremental theorist and whether those who are math anxious will be more likely to be fixated on variables associated with coefficients? Path analysis and independent samples t-test will be used to generate results for this study. We hope to conclude that both the theories of intelligence and metacognition mediate the relationship between mathematics anxiety and gender stereotype threat.

Keywords: math anxiety, emotions, affective domains fo learning, cognitive underlinings

Procedia PDF Downloads 269
1748 Cognition Technique for Developing a World Music

Authors: Haider Javed Uppal, Javed Yunas Uppal

Abstract:

In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.

Keywords: cognition, world music, artificial intelligence, Thayer’s matrix

Procedia PDF Downloads 81
1747 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: criminal digital evidence, social media, ontologies, reasoning

Procedia PDF Downloads 388
1746 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence

Authors: Weber-Lewerenz Bianca

Abstract:

Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.

Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation

Procedia PDF Downloads 250
1745 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services

Authors: Roberto Feltrero, Sara Osuna-Acedo

Abstract:

Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.

Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation

Procedia PDF Downloads 90
1744 Internet Economy: Enhancing Information Communication Technology Adaptation, Service Delivery, Content and Digital Skills for Small Holder Farmers in Uganda

Authors: Baker Ssekitto, Ambrose Mbogo

Abstract:

The study reveals that indeed agriculture employs over 70% of Uganda’s population, of which majority are youth and women. The study further reveals that over 70% of the farmers are smallholder farmers based in rural areas, whose operations are greatly affected by; climate change, weak digital skills, limited access to productivity knowledge along value chains, limited access to quality farm inputs, weak logistics systems, limited access to quality extension services, weak business intelligence, limited access to quality markets among others. It finds that the emerging 4th industrial revolution powered by artificial intelligence, 5G and data science will provide possibilities of addressing some of these challenges. Furthermore, the study finds that despite rapid development of ICT4Agric Innovation, their uptake is constrained by a number of factors including; limited awareness of these innovations, low internet and smart phone penetration especially in rural areas, lack of appropriate digital skills, inappropriate programmes implementation models which are project and donor driven, limited articulation of value addition to various stakeholders among others. Majority of farmers and other value chain actors lacked knowledge and skills to harness the power of ICTs, especially their application of ICTs in monitoring and evaluation on quality of service in the extension system and farm level processes.

Keywords: artificial intelligence, productivity, ICT4agriculture, value chain, logistics

Procedia PDF Downloads 78
1743 The Comparison of the Effect of the Russian Company’s Female and Male Employees’ Self-Efficacy on the Career Success in Their Professional Activity

Authors: Julia Yalalova, Dilawar Khan Durrani

Abstract:

Subjective and objective career success is one of the vital aims that the employees of any organization want to achieve. However, career success is affected by numerous factors. This study aims to identify few of such key factors that affect career success of individual employees. To achieve this objective, this study aims at empirically analyzing that weather or not self-efficacy of employees impacts their career success. Furthermore, this study also aims to analyze whether or not work effort mediates the relationship between self-efficacy and career success. The study will also test weather emotional intelligence moderate the relationship between self-efficacy and work effort. Furthermore, gender based differences related to all the variables are also the focus of this study. The data will be analyzed using SPSS software and the results, recommendations and future implications will be discussed.

Keywords: career success, emotional intelligence, self-efficacy, work effort

Procedia PDF Downloads 287
1742 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 81
1741 The Effect of Prior Characteristic on Perceived Prosocial Content in Media

Authors: Pawit Monkolprasit, Proud Arunrangsiwed

Abstract:

It was important to understand the impact of media in young adolescents. The animated film, Khun Tong Dang the Inspirations (2015), was purposefully created for teaching young children to have a positive personal trait. The current study used this film as the case study. The objective is to understand the relationship between the good characteristic of movie audiences and their perception of the good characteristic of a movie character. One-hundred students from various age ranges responded to quantitative questionnaires. The questions included their age, gender, perception about their own personal traits, perception about their experiences with others, and perception about the bravery, intelligence, and gratefulness of the character. It was found that a good personal trait has a strong relationship with the perception of bravery, intelligence, and gratefulness of the character.

Keywords: impact of media, children, personal trait, prosocial content

Procedia PDF Downloads 298
1740 The Lead Poisoning of Beethoven and Handel

Authors: Michael Stevens

Abstract:

David Hunter, a musicologist, has suggested that both Beethoven and Handel had chronic lead poisoning from the wine that they drank. These two eminent musical composers had some striking similarities. Beethoven had alcohol dependency and preferred wine, to which lead had been added to improve the taste. Handel was obese due to an eating disorder that included drinking tainted wine after large meals. They both had paresthesia of their extremities that they interpreted as rheumatism. This is a common sensory symptom from chronic lead poisoning. Their differences are marked in that Beethoven was profoundly deaf by the end of his life, whereas Handel had remarkably good hearing. Handel had paresis of three fingers of his right hand, whereas Beethoven lacked any motor symptoms. Beethoven reported recurrent abdominal pain suggestive of lead colic, whereas it can only be inferred that this symptom was present in Handel. Lead poisoning is likely in Handel because his paralysis was consistent with radial nerve involvement in the dominant hand. In addition, it was cured by hot baths, which have been shown to reduce total body lead content by exchanging with iron and calcium ions in water. Although lead produces predominantly motor symptoms in classic or subacute lead poisoning, and sensory symptoms in chronic lead poisoning, lead poisoning causes a variety of symptoms that depending on duration and level of exposure, are extremely variable from person to person. It therefore seems likely that Handel had lead poisoning, but extremely likely that Beethoven did because of the confirmatory finding of high levels of lead deep in his skull bone, which is a good measure of total body burden.

Keywords: beethoven, handel, lead, poisoning

Procedia PDF Downloads 97
1739 Multiple Intelligences as Basis for Differentiated Classroom Instruction in Technology Livelihood Education: An Impact Analysis

Authors: Sheila S. Silang

Abstract:

This research seeks to make an impact analysis on multiple intelligence as the basis for differentiated classroom instruction in TLE. It will also address the felt need of how TLE subject could be taught effectively exhausting all the possible means.This study seek the effect of giving different instruction according to the ability of the students in the following objectives: 1. student’s technological skills enhancement, 2. learning potential improvements 3. having better linkage between school and community in a need for soliciting different learning devices and materials for the learner’s academic progress. General Luna, Quezon is composed of twenty seven barangays. There are only two public high schools. We are aware that K-12 curriculum is focused on providing sufficient time for mastery of concepts and skills, develop lifelong learners, and prepare graduates for tertiary education, middle-level skills development, employment, and entrepreneurship. The challenge is with TLE offerring a vast area of specializations, how would Multiple Intelligence play its vital role as basis in classroom instruction in acquiring the requirement of the said curriculum? 1.To what extent do the respondent students manifest the following types of intelligences: Visual-Spatial, Body-Kinesthetic, Musical, Interpersonal, Intrapersonal, Verbal-Linguistic, Logical-Mathematical and Naturalistic. What media should be used appropriate to the student’s learning style? Visual, Printed Words, Sound, Motion, Color or Realia 3. What is the impact of multiple intelligence as basis for differentiated instruction in T.L.E. based on the following student’s ability? Learning Characteristic and Reading Ability and Performance 3. To what extent do the intelligences of the student relate with their academic performance? The following were the findings derived from the study: In consideration of the vast areas of study of TLE, and the importance it plays in the school curriculum coinciding with the expectation of turning students to technologically competent contributing members of the society, either in the field of Technical/Vocational Expertise or Entrepreneurial based competencies, as well as the government’s concern for it, we visualize TLE classroom teachers making use of multiple intelligence as basis for differentiated classroom instruction in teaching the subject .Somehow, multiple intelligence sample such as Linguistic, Logical-Mathematical, Bodily-Kinesthetic, Interpersonal, Intrapersonal, and Spatial abilities that an individual student may have or may not have, can be a basis for a TLE teacher’s instructional method or design.

Keywords: education, multiple, differentiated classroom instruction, impact analysis

Procedia PDF Downloads 445
1738 The Urban Stray Animal Identification Management System Based on YOLOv5

Authors: Chen Xi, Kuan Sinman, LI Haofeng, Huang Hongming, Zeng Chengyu, Tong Zhiyuan

Abstract:

Stray animals are on the rise in mainland China's cities. There are legal reasons for this, namely the lack of protection for domestic pets in mainland China, where only wildlife protection laws exist. At a social level, the ease with which families adopt pets and the lack of a social view of animal nature has led to the frequent abandonment and loss of stray animals. If left unmanaged, conflicts between humans and stray animals can also increase. This project provides an inexpensive and widely applicable management tool for urban management by collecting videos and pictures of stray animals captured by surveillance or transmitted by humans and using artificial intelligence technology (mainly using YOLOv5 recognition technology) and recording and managing them in a database.

Keywords: urban planning, urban governance, artificial intelligence, convolutional neural network

Procedia PDF Downloads 104