Search results for: light microscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5238

Search results for: light microscopy

4518 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making

Authors: Mohammad Sadeghi, Mahdieh Saniee

Abstract:

Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.

Keywords: rationality, decision-making process, policymaking, development

Procedia PDF Downloads 90
4517 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 46
4516 Optimal Construction Using Multi-Criteria Decision-Making Methods

Authors: Masood Karamoozian, Zhang Hong

Abstract:

The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Prefabricated Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts, university centers, and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the Prefabricated Concrete System (PRCS) was in the first rank, and the Light Steel Frame (LSF) system ranked second. Also, the Prefabricated Concrete System (PRCS), in terms of performance standards and economics, was ranked first, and the Light Steel Frame (LSF) system was allocated the first rank in terms of environmental standards.

Keywords: multi-criteria decision making, AHP, SAW, TOPSIS

Procedia PDF Downloads 78
4515 Facile Synthesis of Potassium Vanadium Fluorophosphate: Semiconducting Properties and Its Photocatalytic Performance for Dye Degradation under Visible Light

Authors: S. Tartaya, R. Bagtache, A. M. Djaballah, M. Trari

Abstract:

Due to the increase in the trade of colored products and their applications in various fields such as cosmetic, food, textile, pharmaceutical industries, etc. Dyes constitute a large part of the contaminants in wastewater and cause serious damage in the environment and the aquatic system. Photocatalytic systems are highly efficient processes for treating wastewater in the presence of semiconductor photocatalysts. In this field, we report our contribution by synthesizing a potassium vanadium fluorophosphate compound KVPO4F (which is abbreviated KVPOF) by a simplified hydrothermal method at 180°C for 5 days. The as synthesized product has been characterized physically and photoelectrochemically. The indirect optical transition of 1.88 eV, determined from the diffuse reflectance, was assigned to the charge transfer. Moreover, the curve (C-2–E) of the KVPOF displayed n-type character of the semiconductor. Even more, interestingly, the photocatalytic performance was evaluated through the photo-degradation of cationic dye Methyl Violet (MV). An abatement of 61% was obtained after 6 h of irradiation under visible light.

Keywords: KVPO4F, photocatalysis, semiconductor, wastewater, environment

Procedia PDF Downloads 53
4514 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar

Abstract:

The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property

Procedia PDF Downloads 147
4513 Physiological Responses of Dominant Grassland Species to Different Grazing Intensity in Inner Mongolia, China

Authors: Min Liu, Jirui Gong, Qinpu Luo, Lili Yang, Bo Yang, Zihe Zhang, Yan Pan, Zhanwei Zhai

Abstract:

Grazing disturbance is one of the important land-use types that affect plant growth and ecosystem processes. In order to study the responses of dominant species to grazing in the semiarid temperate grassland of Inner Mongolia, we set five grazing intensity plots: a control and four levels of grazing (light (LG), moderate (MG), heavy (HG) and extreme heavy grazing (EHG)) to test the morphological and physiological responses of Stipa grandis, Leymus chinensis at the individual levels. With the increase of grazing intensity, Stipa grandis and Leymus chinensis both exhibited reduced plant height, leaf area, stem length and aboveground biomass, showing a significant dwarf phenomenon especially in HG and EHG plots. The photosynthetic capacity decreased along the grazing gradient. Especially in the MG plot, the two dominant species have lowest net photosynthetic rate (Pn) and water use efficiency (WUE). However, in the HG and EHG plots, the two species had high light saturation point (LSP) and low light compensation point (LCP), indicating they have high light-use efficiency. They showed a stimulation of compensatory photosynthesis to the remnant leaves as compared with grasses in MG plot. For Leymus chinensis, the lipid peroxidation level did not increase with the low malondialdehyde (MDA) content even in the EHG plot. It may be due to the high enzymes activity of superoxide dismutase (SOD) and peroxidase (POD) to reduce the damage of reactive oxygen species. Meanwhile, more carbohydrate was stored in the leaf of Leymus chinensis to provide energy to the plant regrowth. On the contrary, Stipa grandis showed the high level of lipid peroxidation especially in the HG and EHG plots with decreased antioxidant enzymes activity. The soluble protein content did not change significantly in the different plots. Therefore, with the increase of grazing intensity, plants changed morphological and physiological traits to defend themselves effectively to herbivores. Leymus chinensis is more resistant to grazing than Stipa grandis in terms of tolerance traits, particularly under heavy grazing pressure.

Keywords: antioxidant enzymes activity, grazing density, morphological responses, photosynthesis

Procedia PDF Downloads 338
4512 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 431
4511 Water-Repellent Coating Based on Thermoplastic Polyurethane, Silica Nanoparticles and Graphene Nanoplatelets

Authors: S. Naderizadeh, A. Athanassiou, I. S. Bayer

Abstract:

This work describes a layer-by-layer spraying method to produce a non-wetting coating, based on thermoplastic polyurethane (TPU) and silica nanoparticles (Si-NPs). The main purpose of this work was to transform a hydrophilic polymer to superhydrophobic coating. The contact angle of pure TPU was measured about 77˚ ± 2, and water droplets did not roll away upon tilting even at 90°. But after applying a layer of Si-NPs on top of this, not only the contact angle increased to 165˚ ± 2, but also water droplets can roll away even below 5˚ tilting. The most important restriction in this study was the weak interfacial adhesion between polymer and nanoparticles, which had a bad effect on durability of the coatings. To overcome this problem, we used a very thin layer of graphene nanoplatelets (GNPs) as an interlayer between TPU and Si-NPs layers, followed by thermal treatment at 150˚C. The sample’s morphology and topography were characterized by scanning electron microscopy (SEM), EDX analysis and atomic force microscopy (AFM). It was observed that Si-NPs embedded into the polymer phase in the presence of GNPs layer. It is probably because of the high surface area and considerable thermal conductivity of the graphene platelets. The contact angle value for the sample containing graphene decreased a little bit respected to the coating without graphene and reached to 156.4˚ ± 2, due to the depletion of the surface roughness. The durability of the coatings against abrasion was evaluated by Taber® abrasion test, and it was observed that superhydrophobicity of the coatings remains for a longer time, in the presence of GNPs layer. Due to the simple fabrication method and good durability of the coating, this coating can be used as a durable superhydrophobic coating for metals and can be produced in large scale.

Keywords: graphene, silica nanoparticles, superhydrophobicity, thermoplastic polyurethane

Procedia PDF Downloads 163
4510 Advanced Real-Time Fluorescence Imaging System for Rat's Femoral Vein Thrombosis Monitoring

Authors: Sang Hun Park, Chul Gyu Song

Abstract:

Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased.

Keywords: thrombus, fluorescence, femoral, arteries

Procedia PDF Downloads 319
4509 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure

Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With

Abstract:

Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.

Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs

Procedia PDF Downloads 346
4508 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 329
4507 Effect of UV-B Light Treatment on Nutraceutical Potential of an Indigenous Mushroom Calocybe Indica

Authors: Himanshi Rathore, Shalinee Prasad, Satyawati Sharma, Ajay Singh Yadav

Abstract:

Medicinal mushrooms are acceptable all over the world not only because they have a unique flavour and texture but also due to the presence of great nutritional, nutraceutical and functional properties. High content of physiologically active substances like ergosterol, vitamin D, phenolic compounds, triterpenoids and steroids make these medicinal mushrooms a key source of nutraceuticals. Calocybe indica is a popular medicinal mushroom of India which is known to possess high amount of secondary metabolites including ergosterol (vitamin D2). The ergosterol gets converted to vitamin D in the presence of UV rays by a photochemical reaction. In lieu of the above facts the present study was undertaken to investigate the effect of UV-B light treatment on the vitamin D2 concentration, phenolic content and non volatile compounds in Calocybe indica. For this study, UV-B light source of intensity 5.3w/m2 was used to expose mushrooms for the time period of 0min, 30min, 60min and 90 min. It was found that the vitamin D2 concentration increased with the time duration i.e. 85±0.15 (0 min), 182±1.6 (30 min), 187±0.4 (60 min) and 182 ±0.8 (90 min) μg/g (dry weight). Highest concentration of vitamin D2 was found at 60 min duration. No discoloration in sliced mushrooms was observed during the exposure time. The results revealed that the exposure of mushrooms for a minimum of 30 min duration under UVB source can be a novel, convenient and cheapest way to increase the vitamin D content in mushrooms. This can be one of richest source to fulfil the recommended dietary allowances of vitamin D in our daily diets. The paper provides information on the enhancement of vitamin D content by UV lights and its effects on the non volatile (soluble sugars, free amino acids, 5′-nucleotides and phenolics) compounds will also be presented.

Keywords: Calocybe indica, ergosterol, nutraceutical, phenolics

Procedia PDF Downloads 448
4506 Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye

Authors: S. V. Prabhakar Vattikuti, Chan Byon

Abstract:

In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite.

Keywords: photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods

Procedia PDF Downloads 271
4505 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye

Authors: Vishakha Parihar

Abstract:

This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.

Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process

Procedia PDF Downloads 151
4504 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 62
4503 Natural Regeneration Dynamics in Different Microsites within Gaps of Different Sizes

Authors: M. E. Hammond, R. Pokorny

Abstract:

Not much research has gone into the dynamics of natural regeneration of trees species in tropical forest regions. This study seeks to investigate the impact of gap sizes and light distribution in forest floors on the regeneration of Celtis mildbraedii (CEM), Nesogordonia papaverine (NES) and Terminalia superba (TES). These are selected economically important tree species with different shade tolerance attributes. The spatial distribution patterns and the potential regeneration competition index (RCI) among species using height to diameter ratio (HDR) have been assessed. Gap sizes ranging between 287 – 971 m² were selected at the Bia Tano forest reserve, a tropical moist semi-deciduous forest in Ghana. Four (4) transects in the cardinal directions were constructed from the center of each gap. Along each transect, ten 1 m² sampling zones at 2 m spacing were established. Then, three gap microsites (labeled ecozones I, II, III) were delineated within these sampling zones based on the varying temporal light distribution on the forest floor. Data on height (H), root collar diameter (RCD) and regeneration census were gathered from each of the ten sampling zones. CEM and NES seedlings (≤ 50 cm) and saplings (≥ 51 cm) were present in all ecozones of the large gaps. Seedlings of TES were observed in all ecozones of large and small gaps. Regression analysis showed a significant negative linear relationship between independent RCD and H growth variables on dependent HDR index in ecozones II and III of both large and small gaps. There was a correlation between RCD and H in both large and small gaps. A strong regeneration competition was observed among species in ecozone II in large (df 2, F=3.6, p=0.035) and small (df 2, F=17.9, p=0.000) gaps. These results contribute to the understanding of the natural regeneration of different species with regards to light regimes in forest floors.

Keywords: Celtis mildbraedii, ecozones, gaps, Nesogordonia papaverifera, regeneration, Terminalia superba

Procedia PDF Downloads 115
4502 Assessment of Pollution of the Rustavi City’s Atmosphere with Microaerosols

Authors: Natia Gigauri, Aleksandre Surmava

Abstract:

According to observational data, experimental measurements, and numerical modeling, is assessed pollution of one of the industrial centers of Georgia, Rustavi city’s atmosphere with microaerosols. Monthly, daily and hourly changes of the concentrations of PM2.5 and PM10 in the city atmosphere are analyzed. It is accepted that PM2.5 concentrations are always lower than PM10 concentrations, but their change curve is the same. In addition, it has been noted that the maximum concentrations of particles in the atmosphere of Rustavi city will be reached at any part of the day, which is determined by the total impact of the traffic flow and industrial facilities. By numerical modeling has calculated the influence of background western light air and gentle and fresh breeze on the distribution of PM particles in the atmosphere. Calculations showed that background light air and gentle breeze lead to an increase the concentrations of microaerosols in the city's atmosphere, while fresh breeze contribute to the dispersion of dusty clouds. As a result, the level of dust in the city is decreasing, but the distribution area is expanding.

Keywords: pollution, modelling, PM2.5, PM10, experimental measurement

Procedia PDF Downloads 65
4501 Formulation of the N-Acylethanolamine, Linoleoylethanolamide into Cubosomes for Delivery across the Blood-Brain Barrier

Authors: Younus Mohammad, Anita B. Fallah, Ben J. Boyd, Shakila B. Rizwan

Abstract:

N-acylethanolamines (NAEs) are endogenous lipids, which have neuromodulatory properties. NAEs have shown neuroprotective properties in various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and ischemic stroke. However, NAEs are eliminated rapidly in vivo by enzymatic hydrolysis. We propose to encapsulate NAEs in liquid crystalline nanoparticles (cubosomes) to increase their biological half-life and explore their therapeutic potential. Recently, we have reported the co-formulation and nanostructural characterization of cubosomes containing the NAE, oleoylethanolamide and a synthetic cubosome forming lipid phytantriol. Here, we report on the formulation of cubosomes with the NAE, linoleoylethanolamide (LEA) as the core cubosome forming lipid. LEA-cubosomes were formulated in the presence of three different steric stabilisers: two brain targeting ligands, Tween 80 and Pluronic P188 and a control, Pluronic F127. Size, morphology and internal structure of formulations were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo–TEM) and small angle X–ray scattering (SAXS), respectively. Chemical stability of LEA in formulations was investigated using high-performance liquid chromatography (HPLC). Cytotoxicity of formulations towards human cerebral microvascular endothelial cell line (hCMEC/D3) was also investigated using an MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide) assay. All cubosome formulations had mean particle size of less than 250 nm and were uniformly distributed with polydispersity indices less than 0.2. Cubosomes produced had a bicontinuous cubic internal structure with an Im3m space group but different lattice parameters, indicating the different modes of interaction between the stabilisers and LEA. LEA in formulations was found to be chemically stable. At concentrations of up to 20 µg/mL LEA in the presence of all the stabilisers, greater than 80% cell viability was observed.

Keywords: blood-brain barrier, cubosomes, linoleoyl ethanolamide, N-acylethanolamines (NAEs)

Procedia PDF Downloads 182
4500 High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications

Authors: Meng-Chyi Wu, Bonn Lin, Jyun-Hao Liao, Chein-Ju Chen, Yu-Cheng Jhuang, Mau-Phon Houng, Fang-Hsing Wang, Min-Chu Liu, Cheng-Fu Yang, Cheng-Shong Hong

Abstract:

Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in.

Keywords: ultraviolet (UV) communication, light-emitting diodes (LEDs), modulation bandwidth, LED array, 370 nm

Procedia PDF Downloads 386
4499 Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-Infected Patients

Authors: Yagahira E. Castro-Sesquen, Robert H. Gilman, Carolina Mejia, Daniel E. Clark, Jeong Choi, Melissa J. Reimer-Mcatee, Rocio Castro, Jorge Flores, Edward Valencia-Ayala, Faustino Torrico, Ricardo Castillo-Neyra, Lance Liotta, Caryn Bern, Alessandra Luchini

Abstract:

Early diagnosis of reactivation of Chagas disease in HIV patients could be lifesaving; however, in Latin American the diagnosis is performed by detection of parasitemia by microscopy which lacks sensitivity. To evaluate if levels of T. cruzi antigens in urine determined by Chunap (Chagas urine nanoparticle test) are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. T. cruzi antigens in urine of HIV patients (N=55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. The percentage of Chagas positive patients determined by Chunap compared to blood microscopy, qPCR, and ELISA was 100% (6/6), 95% (18/19) and 74% (23/31), respectively. Chunap specificity was 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels (determined by qPCR) and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (6/6). Urine antigen concentration was significantly higher among patients with CD4+ lymphocyte counts below 200/mL (p=0.045). Chunap shows potential for early detection of reactivation and with appropriate adaptation can be used for monitoring Chagas disease status in T. cruzi/HIV co-infected patients.

Keywords: antigenuria, Chagas disease, Chunap, nanoparticles, parasitemia, poly N-isopropylacrylamide (NIPAm)/trypan blue particles (polyNIPAm/TB), reactivation of Chagas disease.

Procedia PDF Downloads 351
4498 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires

Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja

Abstract:

The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.

Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources

Procedia PDF Downloads 366
4497 Analytical Study and Conservation Processes of a Wooden Coffin of Middel Kingdom, Ancient Egypt

Authors: Mohamed Ahmed Abd El Kader

Abstract:

This paper describes the conservation processes of an Ancient Egyptian wooden coffin dating back to the Middle Kingdom, ancient Egypt, using several scientific and analytical methods in order to provide a deeper understanding of the deterioration status and a greater awareness of how well preserved the object is. Visual observation and 2D Programs, as well as Optical Microscopy (OM), Environmental scanning Electron Microscopy (ESEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used in our study. The identification of wood species and the composition of the pigments and previous restoration materials were made. The coffin was previously conserved and stored in improper conditions, which led to its further deterioration; the surface of the lid dust, which obscured the decorations as well as all necessary restoration work was promptly carried out as soon as the coffin was transferred from the display hall from the Egyptian Museum to the Wood Conservation Laboratory of the Grand Egyptian Museum-Conservation Center (GEM-CC). The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which was considered when applying the conservation plan. Conservation procedures have been applied with high accuracy to conserve the coffin including cleaning, consolidation of fragile painted layers, and the wooden boards forming the sides of the coffin were reassembled in their original positions. The materials and methods that were applied were extremely effective in stability and reinforcement of the coffin without harmfulness to the original materials and the coffin was successfully conserved and ready to display in the Grand Egyptian Museum (GEM).

Keywords: coffin, middle kingdom, deterioration, 2d program

Procedia PDF Downloads 31
4496 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics

Authors: Nidhi Adhlakha, K. L. Yadav

Abstract:

Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Keywords: composite, X-ray diffraction, dielectric properties, optical properties

Procedia PDF Downloads 286
4495 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 309
4494 Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition

Authors: Li Zhang, Yuehong Su

Abstract:

Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe.

Keywords: neural network, bended lightpipe, transmittance, Photopia

Procedia PDF Downloads 128
4493 Host Range and Taxonomy of Hairy Caterpillars (Erebidae: Lepidoptera) in Different Cropping Ecosystems

Authors: Mallikarjun Warad, C. M. Kalleshwaraswamy, P. R. Shashank

Abstract:

Studies were conducted to record the occurrence of different species of hairy caterpillar on different host plants in and around Shivamogga, Karnataka, India. Twelve genera of hairy caterpillars belonging to Arctiinae and Lymantriinae were recorded on different host plants and reared to adults in laboratory on their respective hosts. The Porthesia sp. feed on castor, Creatonotus gangis on cocoa, Perina nuda on fig, Pericalia ricini on pigeon pea, Utetheisa pulchella on sunhemp and Euproctis sp. on paddy and banana. Illustrations of immature and adults were made to associate them. Along with this, light traps were also set during the rainy season, to capture adults of hairy caterpillars. An illustrated identification key was provided for easy and accurate identification of adult of hairy caterpillars based on their morphological (male genitalial) characters. The study through a light on the existence of sexual dimorphism, polyphagous nature and diapause are the major hindrance in taxonomic identification. Hence, attempts were made to address these issues in the study.

Keywords: Erebidae, hairy caterpillars, male genitalia, taxonomy

Procedia PDF Downloads 172
4492 Enhancement of Light Extraction of Luminescent Coating by Nanostructuring

Authors: Aubry Martin, Nehed Amara, Jeff Nyalosaso, Audrey Potdevin, FrançOis ReVeret, Michel Langlet, Genevieve Chadeyron

Abstract:

Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices.

Keywords: phosphor coatings, nanostructuring, light extraction, ZnO nanowires, colloidal lithography, LED devices

Procedia PDF Downloads 156
4491 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid

Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus

Abstract:

Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.

Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid

Procedia PDF Downloads 231
4490 Synthesis and Characterization of Nano-Alumina Using Neem Oil as the Template for Efficient Hydrogen Generation via Photo-Hydrolysis of Sodium Borohydride

Authors: Dina M. Abd El-Aty, D. Aman, E. G. Zaki, Heba M. Salem

Abstract:

A friendly environmental source of energy as hydrogen was produced by photo-hydrolysis of hydrogen storage material as sodium borohydride (NaBH4), which is non-toxic and stores a high percentage of hydrogen. The photoreaction was produced under visible light and nano-alumina as a catalyst. In this study, we use more economical and friendly environmental oil as a template to produce a nano-catalyst. The prepared catalyst was characterized by X-Ray diffraction, N2-adsorption-desorption, Fourier Transforms Infrared, Scanning Electron microscope and X-Ray Photoelectron Spectroscopy. Different parameters such as catalyst weight, NaBH4 weight and time of irradiation were studied to obtain a highly efficient photo-hydrolysis reaction. The reaction is pseudo-first order and the hydrogen production rate was determined as 1500 ml min-1 g-1 at the optimum conditions.

Keywords: photo-reaction, nano-alumina, hydrogen production, sodium borohydride, visible light

Procedia PDF Downloads 62
4489 Diverse Sensitivity to Ultraviolet Radiation of DNA and RNA Viruses

Authors: Nickolay Nosik, Dmitry Nosik, Marina Bochkova, Nina Kondrashina, Olga Lobach

Abstract:

The bactericidal effect of UV radiation is known for long time and widely used for inactivation of pathogens but for viruses it is not so uniform. Due to a wide variety of viruses their sensitivity to UV radiation is quite different and not quite predictable. The goal of the study was to determine the inactivation kinetics of UV radiation ( 254 nm) of the viruses of social importance (HIV), as well as test-viruses (poliovirus, adenovirus) used for the evaluation of the viral inactivation efficacy of germicides. Methods: DNA viruses- adenovirus, type 5; Herpes simplex virus (HSV), type 1, and RNA viruses–human immunodeficiency virus (HIV), type 1 and poliovirus, type 1 (Sabin strain) were obtained from State collection of viruses ( The D.I. Ivanovsky Institute of Virology). The source of UV radiation was a 15-watt low-pressure mercury vapor lamp (over 60% 254nm). The samples of 5cm2 were placed direct under the UV lamp flow (h-0.3m). Log reduction value was used as a marker for the rate of virus inactivation. Results: The data obtained indicate that poliovirus (one of the viruses most resistant to chemical germicides) and HSV are rather sensitive to UV radiation ( D90 =250-311 J/m2). Adenovirus is much more resistant to UV radiation (750 J/m2 ). The kinetics of adenovirus inactivation : 0 min- 5.0 lg TCID50, 10 min - 5,0, 15 min -4,0, 30 min – 3.5, 60 min – 1,0, 75 min -0,5 lg TCID50, 90 min –virus not detectable. HIV is most resistant to UV radiation among the studied viruses. It takes more than 4 hrs to inactivate the virus on the surface. D90 = 2000 J/m2 Conclusion: The results of the study show that there is no direct dependence between sensitivity to UV light and the size of the virion or presence\absence of the envelope of the virus. Poliovirus and adenovirus are small viruses (20-30nm poliovirus and 70-90nm adenovirus) and both are non-enveloped viruses but adenovirus 3-fold more resistant to UV radiation than poliovirus. It can be expected that viruses with more complicate structure, like Herpes virus (200nm) or HIV (80-100 nm), would be more sensitive to UV light. However, the very high resistance of HIV to UV radiation needs further investigation. The diverse resistance of the different viruses to UV radiation should be taken into the account when UV light is used to inactivate infectious viruses in hospitals and other public environments.

Keywords: HIV, HSV, inhibition of viruses, UV radiation

Procedia PDF Downloads 426