Search results for: genetic algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3423

Search results for: genetic algorithms

2703 Comparative Study on Manet Using Soft Computing Techniques

Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri

Abstract:

Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.

Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network

Procedia PDF Downloads 349
2702 Distribution System Planning with Distributed Generation and Capacitor Placements

Authors: Nattachote Rugthaicharoencheep

Abstract:

This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.

Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm

Procedia PDF Downloads 176
2701 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness

Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio

Abstract:

A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.

Keywords: deafness, psychological support, family, adaptation to disability

Procedia PDF Downloads 424
2700 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm

Procedia PDF Downloads 410
2699 Educational Experience, Record Keeping, Genetic Selection and Herd Management Effects on Monthly Milk Yield and Revenues of Dairy Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

A study was conducted to estimate the record keeping, genetic selection, educational experience, and farm management effect on monthly milk yield per farm, average milk yield per cow, monthly milk revenue per farm, and monthly milk revenue per cow of dairy farms in the Southern region of Vietnam. The dataset contained 5448 monthly record collected from January 2013 to May 2015. Results showed that longer experience increased (P < 0.001) monthly milk yields and revenues. Better educated farmers produced more monthly milk per farm and monthly milk per cow and revenues (P < 0.001) than lower educated farmers. Farm that kept records on individual animals had higher (P < 0.001) for monthly milk yields and revenues than farms that did not. Farms that used hired people produced the highest (p < 0.05) monthly milk yield per farm, milk yield per cow and revenues, followed by farms that used both hire and family members, and lowest values were for farms that used family members only. Farms that used crosses Holstein in herd were higher performance (p < 0.001) for all traits than farms that used purebred Holstein and other breeds. Farms that used genetic information and phenotypes when selecting sires were higher (p < 0.05) for all traits than farms that used only phenotypes and personal option. Farms that received help from Vet, organization staff, or government officials had higher monthly milk yield and revenues than those that decided by owner. These findings suggest that dairy farmers should be training in systematic, must be considered and continuous support to improve farm milk production and revenues, to increase the likelihood of adoption on a sustainable way.

Keywords: dairy farming, education, milk yield, Southern Vietnam

Procedia PDF Downloads 331
2698 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms

Authors: Mohammad Besharatloo

Abstract:

Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.

Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree

Procedia PDF Downloads 91
2697 Searching k-Nearest Neighbors to be Appropriate under Gaming Environments

Authors: Jae Moon Lee

Abstract:

In general, algorithms to find continuous k-nearest neighbors have been researched on the location based services, monitoring periodically the moving objects such as vehicles and mobile phone. Those researches assume the environment that the number of query points is much less than that of moving objects and the query points are not moved but fixed. In gaming environments, this problem is when computing the next movement considering the neighbors such as flocking, crowd and robot simulations. In this case, every moving object becomes a query point so that the number of query point is same to that of moving objects and the query points are also moving. In this paper, we analyze the performance of the existing algorithms focused on location based services how they operate under gaming environments.

Keywords: flocking behavior, heterogeneous agents, similarity, simulation

Procedia PDF Downloads 302
2696 Aerodynamic Design an UAV with Application on the Spraying Agricola with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

Agriculture in the world falls within the main sources of economic and global needs, so care of crop is extremely important for owners and workers; one of the major causes of loss of product is the pest infection of different types of organisms. We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB"," ANSYS FLUENT"," XFoil " package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi- objective problems can be helpful for future developments. The program has 10 functions developed in MATLAB, these functions are related to each other to enable the development of design, and all these functions are controlled by the principal code "Master.m".

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, stability, vortex

Procedia PDF Downloads 532
2695 Decision Support System for Diagnosis of Breast Cancer

Authors: Oluwaponmile D. Alao

Abstract:

In this paper, two models have been developed to ascertain the best network needed for diagnosis of breast cancer. Breast cancer has been a disease that required the attention of the medical practitioner. Experience has shown that misdiagnose of the disease has been a major challenge in the medical field. Therefore, designing a system with adequate performance for will help in making diagnosis of the disease faster and accurate. In this paper, two models: backpropagation neural network and support vector machine has been developed. The performance obtained is also compared with other previously obtained algorithms to ascertain the best algorithms.

Keywords: breast cancer, data mining, neural network, support vector machine

Procedia PDF Downloads 347
2694 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 143
2693 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints

Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam

Abstract:

Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.

Keywords: association rules, FP-growth, multiple minimum supports, Weka tool

Procedia PDF Downloads 485
2692 Asparagus racemosus Willd for Enhanced Medicinal Properties

Authors: Ashok Kumar, Parveen Parveen

Abstract:

India is bestowed with an extremely high population of plant species with medicinal value and even has two biodiversity hotspots. Indian systems of medicine including Ayurveda, Siddha and Unani have historically been serving humankind across the world since time immemorial. About 1500 plant species have well been documented in Ayurvedic Nighantus as official medicinal plants. Additionally, several hundred species of plants are being routinely used as medicines by local people especially tribes living in and around forests. The natural resources for medicinal plants have unscientifically been over-exploited forcing rapid depletion in their genetic diversity. Moreover, renewed global interest in herbal medicines may even lead to additional depletion of medicinal plant wealth of the country, as about 95% collection of medicinal plants for pharmaceutical preparation is being carried out from natural forests. On the other hand, huge export market of medicinal and aromatic plants needs to be seriously tapped for enhancing inflow of foreign currency. Asparagus racemosus Willd., a member of family Liliaceae, is one of thirty-two plant species that have been identified as priority species for cultivation and conservation by the National Medicinal Plant Board (NMPB), Government of India. Though attention is being focused on standardization of agro-techniques and extraction methods, little has been designed on genetic improvement and selection of desired types with higher root production and saponin content, a basic ingredient of medicinal value. The saponin not only improves defense mechanisms and controls diabetes but the roots of this species promote secretion of breast milk, improved lost body weight and considered as an aphrodisiac. There is ample scope for genetic improvement of this species for enhancing productivity substantially, qualitatively and quantitatively. It is emphasized to select desired genotypes with sufficient genetic diversity for important economic traits. Hybridization between two genetically divergent genotypes could result in the synthesis of new F1 hybrids consisting of useful traits of both the parents. The evaluation of twenty seed sources of Asparagus racemosus assembled different geographical locations of India revelled high degree of variability for traits of economic importance. The maximum genotypic and phenotypic variance was observed for shoot height among shoot related traits and for root length among root related traits. The shoot height, genotypic variance, phenotypic variance, genotypic coefficient of variance, the phenotypic coefficient of variance was recorded to be 231.80, 3924.80, 61.26 and 1037.32, respectively, where those of the root length were 9.55, 16.80, 23.46 and 41.27, respectively. The maximum genetic advance and genetic gain were obtained for shoot height among shoot-related traits and root length among root-related traits. Index values were developed for all seed sources based on the four most important traits, and Panthnagar (Uttrakhand), Jodhpur (Rajasthan), Dehradun (Uttarakhand), Chandigarh (Punjab), Jammu (Jammu & Kashmir) and Solan (Himachal Pradesh) were found to be promising seed sources.

Keywords: asparagus, genetic, genotypes, variance

Procedia PDF Downloads 134
2691 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens

Authors: Qingfang Guo

Abstract:

Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.

Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9

Procedia PDF Downloads 29
2690 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach

Authors: Mukesh Kumar Shah, Tushar Gupta

Abstract:

An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.

Keywords: economic dispatch, gaussian selection operator, prohibited operating zones, ramp rate limits

Procedia PDF Downloads 130
2689 Hybridization Potential of Oreochromis Niloticus (Nile Tilapia) with Oreochromis Jipe (Tilapia Jipe) in View of Lake Jipe Fishery Genetic Conservation

Authors: Mercy Chepkirui, Paul Orina, Priscilla Boera, Judith Achoki

Abstract:

Oreochromis jipe is a tropical freshwater bentho-pelagic fish belonging to the Cichlid family that is endemic to the Pangani River basin and Lake Jipe in Kenya and northern Tanzania, while Oreochromis niloticus inhabits the Lake Victoria basin with reported cases in Lake jipe too. Unlike O. jipe, Oreochromis niloticus is spreading across the globe due to its cultural potential. This, however, could cause genetic purity concerns in the event of cross-breeding among the tilapiines, which is already taking place in the wild. The study envisaged establishing the possibility of hybridization among the two species under aquaculture conditions and phenotypically informing the difference between pure and cross lines. Two hundred sixteen mature brooders weighing 100-120g were selected randomly, 108 of Oreochromis Jipe and 108 of Oreochromis niloticus; for each trial, 72 males and 144 females were distributed into 3 crosses, each grouped in triplicates (Oreochromis niloticus (♀) X Oreochromis niloticus(♂);Oreochromis niloticus (♂) X Oreochromis jipe ( ♀); Oreochromis jipe (♂) X Oreochromis niloticus (♀); Oreochromis jipe (♂) X Oreochromis jipe (♀). All trials had the F1 generation, which is currently undergoing growth trials and assessing its viability for the 2nd generation. The results indicated that Oreochromis niloticus has better growth, followed by crosses (Oreochromis niloticus X Oreochromis jipe) and, finally, pure line Oreochromis jipe. Further, pure Oreochromis jipe F1 demonstrated potential for aquaculture adoption despite its recent introduction into aquaculture; thus, this will help towards the conservation of indigenous fish species of Lake Jipe fishery, which is currently under the Internationa Union for Conservation of Nature Red List of endangered fish species. However, there is a need to inform the purity of existing Oreochromis jipe wild stocks to inform genetic material conservation.

Keywords: biodiversity, climate change, fisheries, oreochromis jipe, conservation

Procedia PDF Downloads 126
2688 Application of the Global Optimization Techniques to the Optical Thin Film Design

Authors: D. Li

Abstract:

Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.

Keywords: optical coatings, optimization, design software, thin film design

Procedia PDF Downloads 316
2687 The Role of Polar Body in the Female Gamete

Authors: Parsa Sheikhzadeh

Abstract:

Polar bodies are cells that form by oogenesis in meiosis which differentiate and develop from oocytes. Although in many animals, these cells often die following meiotic maturation of the oocyte. Oocyte activation is during mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules. The origin recognition complex proteins 4 (ORC4) forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. One unique feature of the female gamete is that the polar bodies can provide beneficial information about the genetic background of the oocyte without potentially destroying it. Testing at the polar body (PB) stage was the least accurate, mainly due to the high incidence of post-zygotic events. On the other hand, the results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. In this article, we comprehensively examine the role of polar bodies in female human gametes.

Keywords: polar bodies, ORC4, oocyte, genetic, methylome, gamete, female

Procedia PDF Downloads 94
2686 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems

Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh

Abstract:

Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.

Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration

Procedia PDF Downloads 252
2685 Multiobjective Economic Dispatch Using Optimal Weighting Method

Authors: Mandeep Kaur, Fatehgarh Sahib

Abstract:

The purpose of economic load dispatch is to allocate the required load demand between the available generation units such that the cost of operation is minimized. It is an optimization problem to find the most economical schedule of the generating units while satisfying load demand and operational constraints. The multiobjective optimization problem in which the engineer’s goal is to maximize or minimize not a single objective function but several objective functions simultaneously. The purpose of multiobjective problems in the mathematical programming framework is to optimize the different objective functions. Many approaches and methods have been proposed in recent years to solve multiobjective optimization problems. Weighting method has been applied to convert multiobjective optimization problems into scalar optimization. MATLAB 7.10 has been used to write the code for the complete algorithm with the help of genetic algorithm (GA). The validity of the proposed method has been demonstrated on a three-unit power system.

Keywords: economic load dispatch, genetic algorithm, generating units, multiobjective optimization, weighting method

Procedia PDF Downloads 150
2684 A Unified Ghost Solid Method for the Elastic Solid-Solid Interface

Authors: Abouzar Kaboudian, Boo Cheong Khoo

Abstract:

The Ghost Solid Method (GSM) based algorithms have been extensively used for numerical calculation of wave propagation in the limit of abrupt changes in materials. In this work, we present a unified version of the GSMs that can be successfully applied to both abrupt as well as smooth changes of the material properties in a medium. The application of this method enables us to use the previously-matured numerical algorithms which were developed to be applied to homogeneous mediums, with only minor modifications. This method is developed for one-dimensional settings and its extension to multi-dimensions is briefly discussed. Various numerical experiments are presented to show the applicability of this unified GSM to wave propagation problems in sharply as well as smoothly varying mediums.

Keywords: elastic solid, functionally graded material, ghost solid method, solid-solid interaction

Procedia PDF Downloads 414
2683 Systematic Taxonomy and Phylogenetic of Commercial Fish Species of Family Nemipetridae from Malaysian Waters and Neighboring Seas

Authors: Ayesha Imtiaz, Darlina Md. Naim

Abstract:

Family Nemipteridae is among the most abundantly distributed family in Malaysian fish markets due to its high contribution to landing sites of Malaysia. Using an advanced molecular approach that used two mitochondrial (Cytochrome oxidase c I and Cytochrome oxidase b) and one nuclear gene (Recombination activating gene, RAGI) to expose cryptic diversity and phylogenetic relationships among commercially important species of family Nemipteridae. Our research covered all genera (including 31 species out total 45 species) of family Nemipteridae, distributed in Malaysia. We also found certain type of geographical barriers in the South China sea that reduces dispersal and stops a few species to intermix. Northside of the South China Sea (near Vietnam) does not allow genetic diversity to mix with the Southern side of the South China sea (Sarawak) and reduces dispersal. Straits of Malacca reduce the intermixing genetic diversity of South China Sea and the Indian Ocean.

Keywords: Nemipteridae, RAG I, south east Asia, Malaysia

Procedia PDF Downloads 143
2682 Effects of Reversible Watermarking on Iris Recognition Performance

Authors: Andrew Lock, Alastair Allen

Abstract:

Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance of investigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.

Keywords: biometrics, iris recognition, reversible watermarking, vision engineering

Procedia PDF Downloads 456
2681 A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform

Authors: Beldjilali Bilal, Benadda Belkacem, Kahlouche Salem

Abstract:

Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones.

Keywords: global positioning system, acquisition, FFT, GPS/L1, software receiver, weak signal

Procedia PDF Downloads 250
2680 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 210
2679 Genetic Diversity of Tiger Groupers (Epinephelus fuscoguttatus) Challenged with Vibrio Parahaemolyticus and Exposed to Extreme Low Salinities

Authors: Hidayah Triana, Mahir S. Gani, Asmi Citra Malina, Hamka

Abstract:

This study was conducted to determine genetic diversity of tiger groupers that are resistant to V. parahaemolyticus and tolerant to low extreme salinities. This research is useful to obtain superior broodstock of fish. Tiger grouper used were 6 to 8 cm obtained from Brackish Water Aquaculture Research Center Gondol (Bali). This study consists of four stages: preliminary stage was adaptation of fish exposed to several concentrations of V. parahaemolyticus (103, 104, 105, 106, and 107 CFU / ml); second stage was test of Lethal Concentration (LC50) of bacteria to fish; third stage was salinity tolerance test (low salinity 12, 14 and 16 ppt) and fourth stage was analysis of DNA profiles. For DNA profiles analysis, genomic DNA of fish were extracted for PCR using primers YNZ-22 and UBC-122 and visualized by electrophoresis method. The results showed that Lethal concentration of bacteria (LC50) to fish was 1,56x106 CFU/ml. Furthermore, survival rate of groupers exposed with low salinities (12, 14, 16 ppt) survival rates were found to be 54,17 %, 66,67 % and 79,16 % respectively. Average of DNA fragment (5 fragments) generated from primer UBC-122 in the group of fish resistant to V.parahaemolyticus and tolerant to low salinities was similar to group of susceptible to low salinities. Primer YNZ-22 generated more diverse of DNA fragments (8,0 and 5,8 fragments) both in the group of fish tolerant and susceptible to low salinities compared to primer UBC-122 (5,0 fragments). Size of DNA 1.5 kb resulted from primer YNZ-22. Primer YNZ-22 generated 4 (50 %) and 3 (42,8 %) polymorfic fragments in the group of fish tolerant and susceptible to low salinities, respectively. Four (4) monomorfic fragments were found both in the group of fish tolerant and susceptible to low salinities. Primer UBC-122 generated 6 (85,7 %) and 9 (90,0 %) polymorfic fragments in the fish tolerant and susceptible to low salinities, respectively.

Keywords: genetic diversity, epinephelus fuscoguttatus, V. parahaemolyticus, PCR-RAPD, low extreme salinity

Procedia PDF Downloads 298
2678 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 66
2677 A User Interface for Easiest Way Image Encryption with Chaos

Authors: D. López-Mancilla, J. M. Roblero-Villa

Abstract:

Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.

Keywords: image encryption, chaos, secure communications, user interface

Procedia PDF Downloads 489
2676 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 177
2675 Effect of CYP2B6 c.516G>T and c.983T>C Single Nucleotide Polymorphisms on Plasma Nevirapine Levels in Zimbabwean HIV/AIDS Patients

Authors: Doreen Duri, Danai Zhou, Babil Stray-Pedersen, Collet Dandara

Abstract:

Given the high prevalence of HIV/AIDS in sub-Saharan Africa, and the elusive search for a cure, understanding the pharmacogenetics of currently used drugs is critical in populations from the most affected regions. Compared to Asian and Caucasian populations, African population groups are more genetically diverse, making it difficult to extrapolate findings from one ethnic group to another. This study aimed to investigate the role of genetic variation in CYP2B6 (c.516G>T and c.983T>C) single nucleotide polymorphisms on plasma nevirapine levels among HIV-infected adult Zimbabwean patients. Using a cross-sectional study, patients on nevirapine-containing HAART, having reached steady state (more than six weeks on treatment) were recruited to participate. Blood samples were collected after patients provided consent and samples were used to extract DNA for genetic analysis or to measure plasma nevirapine levels. Genetic analysis was carried out using PCR and RFLP or Snapshot for the two single nucleotide polymorphisms; CYP2B6 c.516G>T and c.983T>C, while LC-MS/MS was used in analyzing nevirapine concentration. CYP2B6 c.516G>T and c.983T>C significantly predicted plasma nevirapine concentration with the c.516T and c.983T being associated with elevated plasma nevirapine concentrations. Comparisons of the variant allele frequencies observed in this group to those reported in some African, Caucasian and Asian populations showed significant differences. We conclude that pharmacogenetics of nevirapine can be creatively used to determine patients who are likely to develop nevirapine-associated side effects as well as too low plasma concentrations for viral suppression.

Keywords: allele frequencies, genetically diverse, nevirapine, single nucleotide polymorphism

Procedia PDF Downloads 455
2674 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 555