Search results for: forest disturbance
531 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals
Authors: Ying-chang Yu, Yuan-lung Lo
Abstract:
More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss
Procedia PDF Downloads 133530 Spatiotemporal Changes in Drought Sensitivity Captured by Multiple Tree-Ring Parameters of Central European Conifers
Authors: Krešimir Begović, Miloš Rydval, Jan Tumajer, Kristyna Svobodová, Thomas Langbehn, Yumei Jiang, Vojtech Čada, Vaclav Treml, Ryszard Kaczka, Miroslav Svoboda
Abstract:
Environmental changes have increased the frequency and intensity of climatic extremes, particularly hotter droughts, leading to altered tree growth patterns and multi-year lags in tree recovery. The effects of shifting climatic conditions on tree growth are inhomogeneous across species’ natural distribution ranges, with large spatial heterogeneity and inter-population variability, but generally have significant consequences for contemporary forest dynamics and future ecosystem functioning. Despite numerous studies on the impacts of regional drought effects, large uncertainties remain regarding the mechanistic basis of drought legacy effects on wood formation and the ability of individual species to cope with increasingly drier growing conditions and rising year-to-year climatic variability. To unravel the complexity of climate-growth interactions and assess species-specific responses to severe droughts, we combined forward modeling of tree growth (VS-lite model) with correlation analyses against climate (temperature, precipitation, and the SPEI-3 moisture index) and growth responses to extreme drought events from multiple tree-ring parameters (tree-width and blue intensity parameters). We used an extensive dataset with over 1000 tree-ring samples from 23 nature forest reserves across an altitudinal range in Czechia and Slovakia. Our results revealed substantial spatiotemporal variability in growth responses to summer season temperature and moisture availability across species and tree-ring parameters. However, a general trend of increasing spring moisture-growth sensitivity in recent decades was observed in the Scots pine mountain forests and lowland forests of both species. The VS-lite model effectively captured nonstationary climate-growth relationships and accurately estimated high-frequency growth variability, indicating a significant incidence of regional drought events and growth reductions. Notably, growth reductions during extreme drought years and discrete legacy effects identified in individual wood components were most pronounced in the lowland forests. Together with the observed growth declines in recent decades, these findings suggest an increasing vulnerability of Norway spruce and Scots pine in dry lowlands under intensifying climatic constraints.Keywords: dendroclimatology, Vaganova–Shashkin lite, conifers, central Europe, drought, blue intensity
Procedia PDF Downloads 59529 Medicinal Plant Resources and Conservation of Nallamalais, Forest Range, Eastern Ghats, India
Authors: S. K. M. Basha
Abstract:
Nallamalas one of the centres of Plant Diversity (CPD) (WWF&IUCN,1995) is located in the central eastern Ghats between latitudes 15.20’-16.30’N and Longitude 78.30-80.10E in Andhra Pradesh, extended to an area of 7640 Sq.Km. No Comprehensive work available for RET Plants in the study area, therefore the objective of the present paper is to document the RET Medicinal Plants of Nallamalias and their uses by the local people of the area. In India, one of the major resources to know about the number of plant species and their medicinal values is the groups who are habituated in near and deep forests. The most common groups in south Indian forests are Yanadis and Yerukulas. These two groups of people are residing in the forest, which is located very far from the modern society, towns and cities. They are following traditional methods obtained from their forefathers in all respects, including medication. They are the only source to know many medicinal plants in the areas where they reside and are also important to record the medicinal properties of various plant species which are not reported. The new reports may help in drug industry in order to develop pharmaceutical herbal medicine for human health. In the present study, nearly 150 rare species have been found to be used for various ailments. Out of these 23 species are critically endangered, over 25 are vulnerable and around 22 comes under the category of near threatened. Some important species like Christella dentate, Careya arborea are used for curing cough and cold. Piper attnuatum, piper nigrum are used for curing skin disease. Ipomoea mauritiana is used against male impotency.Glycosmis cochinensis, Entada perseatha are used as contraceptives. The roots of Andrographis nallamalayana and Acrocephalus indicus are used for leucorrhoea. While the stem barks of Gyrocarpus americanus is given orally for spider bite. Piper hymenophyllum leaves mixed with turmeric and gingerly oil is used externally for mouth ulcers in cattle. Piper nigrum fruits are used for skin diseases. Vernonia anthelmentica seeds are used for indigestion. It was widely distributed in this hills. Due to over exploitation this species was in declined condition. Sterculia urens which is a sorce of gum for tribal, due to over exploitation this species declaimed in these hills. Hence, there is an urgent need to conserve the medicinal plants and prevent their exploitation and extinction with the help of tribals. There is a need to adopt sustainable utilization, cultivation and micro propagation techniques. Medicinal plants are as potent and effective today as they were thousands of years ago. They are natures wonderful gift to mankind and are involved in India as a very rich ancient heritage of traditional systems medicine i.e., ayurveda, siddha and unani. Unfortunately, these traditions have been largely eroded because of lack of support and recognition as well as rapid destruction of natural habitats which has led to shrinkage of medicinal plants therefore the conservation of medicinal plants and the revitalization of local health traditions has been taken up on priority basis.Keywords: RET plants CPD, IUCN, nallamalas, yanadis, yerukulas
Procedia PDF Downloads 251528 Issues and Challenges of Tribals in India: A Case of Andhra Pradesh
Authors: P. Lalitha
Abstract:
Economic and social empowerment and educational upliftment of socially disadvantaged groups and marginalized sections of society is necessary for achieving faster and more inclusive development. Programmes are being implemented through states, government’s apex corporations, and NGOs for the up-liftment of disadvantaged and marginalized sections of society. As per the primary data collected, a majority of tribal land holdings (60%) are below 2 hectare and only 5% are above 10 hectares. However, the ownership of large holdings does not give a distinct advantage unless the land is of good quality. There are areas in which even large holdings beyond 5 hectares are not sufficient to meet the food necessity of the tribal families all-round the year. Some initiatives e.g. grain-golas, jhum cultivation, wadi project, Joint Forest Management(JFM), enhancing Livelihood and Health through Traditional Knowledge Management, Associating Individual Rural Volunteers (IRVs) in SHG Bank Linkage Programme have been taken in various tribal areas of the country.Keywords: tribals, unemployment, health, food
Procedia PDF Downloads 290527 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network
Authors: Thomas E. Portegys
Abstract:
An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation
Procedia PDF Downloads 59526 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor
Authors: Chiraz Ben Jabeur, Hassene Seddik
Abstract:
In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance
Procedia PDF Downloads 138525 Health and Safety Risk Assesment with Electromagnetic Field Exposure for Call Center Workers
Authors: Dilsad Akal
Abstract:
Aim: Companies communicate with each other and with their costumers via call centers. Call centers are defined as stressful because of their uncertain working hours, inadequate relief time, performance based system and heavy workload. In literature, this sector is defined as risky as mining sector by means of health and safety. The aim of this research is to enlight the relatively dark area. Subject and Methods: The collection of data for this study completed during April-May 2015 for the two selected call centers in different parts of Turkey. The applied question mostly investigated the health conditions of call center workers. Electromagnetic field measurements were completed at the same time with applying the question poll. The ratio of employee accessibility noted as 73% for the first call center and 87% for the second. Results: The results of electromagnetic field measurements were as between 371 V/m-32 V/m for the first location and between 370 V/m-61 V/m for the second. The general complaints of the employees for both workplaces can be counted as; inadequate relief time, inadequate air conditioning, disturbance, poor thermal conditions, inadequate or extreme lighting. Furthermore, musculoskeletal discomfort, stress, ear and eye discomfort are main health problems of employees. Conclusion: The measured values and the responses to the question poll were found parallel with the other similar research results in literature. At the end of this survey, a risk map of workplace was prepared in terms of safety and health at work in general and some suggestions for resolution were provided.Keywords: call center, health and safety, electromagnetic field, risk map
Procedia PDF Downloads 181524 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems
Procedia PDF Downloads 251523 Temporal Changes Analysis (1960-2019) of a Greek Rural Landscape
Authors: Stamatia Nasiakou, Dimitrios Chouvardas, Michael Vrahnakis, Vassiliki Kleftoyanni
Abstract:
Recent research in the mountainous and semi-mountainous rural landscapes of Greece shows that they have been significantly changed over the last 80 years. These changes have the form of structural modification of land cover/use patterns, with the main characteristic being the extensive expansion of dense forests and shrubs at the expense of grasslands and extensive agricultural areas. The aim of this research was to study the 60-year changes (1960-2019) of land cover/ use units in the rural landscape of Mouzaki (Karditsa Prefecture, central Greece). Relevant cartographic material such as forest land use maps, digital maps (Corine Land Cover -2018), 1960 aerial photos from Hellenic Military Geographical Service, and satellite imagery (Google Earth Pro 2014, 2016, 2017 and 2019) was collected and processed in order to study landscape evolution. ArcGIS v 10.2.2 software was used to process the cartographic material and to produce several sets of data. Main product of the analysis was a digitized photo-mosaic of the 1960 aerial photographs, a digitized photo-mosaic of recent satellite images (2014, 2016, 2017 and 2019), and diagrams and maps of temporal transformation of the rural landscape (1960 – 2019). Maps and diagrams were produced by applying photointerpretation techniques and a suitable land cover/ use classification system on the two photo-mosaics. Demographic and socioeconomic inventory data was also collected mainly from diachronic census reports of the Hellenic Statistical Authority and local sources. Data analysis of the temporal transformation of land cover/ use units showed that they are mainly located in the central and south-eastern part of the study area, which mainly includes the mountainous part of the landscape. The most significant change is the expansion of the dense forests that currently dominate the southern and eastern part of the landscape. In conclusion, the produced diagrams and maps of the land cover/ use evolution suggest that woody vegetation in the rural landscape of Mouzaki has significantly increased over the past 60 years at the expense of the open areas, especially grasslands and agricultural areas. Demographic changes, land abandonment and the transformation of traditional farming practices (e.g. agroforestry) were recognized as the main cause of the landscape change. This study is part of a broader research project entitled “Perspective of Agroforestry in Thessaly region: A research on social, environmental and economic aspects to enhance farmer participation”. The project is funded by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI).Keywords: Agroforestry, Forest expansion, Land cover/ use changes, Mountainous and semi-mountainous areas
Procedia PDF Downloads 108522 A Challenge to Conserve Moklen Ethnic House: Case Study in Tubpla Village, Phang Nga Province, Southern Thailand
Authors: M. Attavanich, H. Kobayashi
Abstract:
Moklen is a sub-group of ethnic minority in Thailand. In the past, they were vagabonds of the sea. Their livelihood relied on the sea but they built temporary shelters to avoid strong wind and waves during monsoon season. Recently, they have permanently settled on land along coastal area and mangrove forest in Phang Nga and Phuket Province, Southern Thailand. Moklen people have their own housing culture: the Moklen ethnic house was built from local natural materials, indicating a unique structure and design. Its wooden structure is joined by rattan ropes. The construction process is very unique because of using body-based unit of measurement for design and construction. However, there are several threats for those unique structures. One of the most important threats on Moklen ethnic house is tsunami. Especially the 2004 Indian Ocean Tsunami caused widely damage to Southern Thailand and Phang Nga province was the most affected area. In that time, Moklen villages which are located along the coastal area also affected calamitously. In order to recover the damage in affected villages, mostly new modern style houses were provided by aid agencies. This process has caused a significant impact on Moklen housing culture. Not only tsunami, but also modernization has an influence on the changing appearance of the Moklen houses and the effect of modernization has been started to experience before the tsunami. As a result, local construction knowledge is very limited nowadays because the number of elderly people in Moklen has been decreasing drastically. Last but not the least, restrictions of construction materials which are originally provided from accessible mangroves, create limitations in building a Moklen house. In particular, after the Reserved Forest Act, wood chopping without any permission has become illegal. These are some of the most important reasons for Moklen ethnic houses to disappear. Nevertheless, according to the results of field surveys done in 2013 in Phang Nga province, it is found out that some Moklen ethnic houses are still available in Tubpla Village, but only a few. Next survey in the same area in 2014 showed that number of Moklen houses in the village has been started to increase significantly. That proves that there is a high potential to conserve Moklen houses. Also the project of our research team in February 2014 contributed to continuation of Moklen ethnic house. With the cooperation of the village leader and our team, it was aimed to construct a Moklen house with the help of local participants. For the project, villagers revealed the building knowledge and techniques, and in the end, project helped community to understand the value of their houses. Also, it was a good opportunity for Moklen children to learn about their culture. In addition, NGOs recently have started to support ecotourism projects in the village. It not only helps to preserve a way of life, but also contributes to preserve indigenous knowledge and techniques of Moklen ethnic house. This kind of supporting activities are important for the conservation of Moklen ethnic houses.Keywords: conservation, construction project, Moklen Ethnic House, 2004 Indian Ocean tsunami
Procedia PDF Downloads 310521 Distribution of Epiphytic Lichen Biodiversity and Comparision with Their Preferred Tree Species around the Şeker Canyon, Karabük, Turkey
Authors: Hatice Esra Akgül, Celaleddin Öztürk
Abstract:
Lichen biodiversity in forests is controlled by environmental conditions. Epiphytic lichens have some degree of substrate specificity. Diversity and distribution of epiphytic lichens are affected by humidity, light, altitude, temperature, bark pH of the trees.This study describes the epiphytic lichen communities with comparing their preferred tree species. 34 epiphytic lichen taxa are reported on Pinus sp. L., Quercus sp. L., Fagus sp. L., Carpinus sp. L., Abies sp. Mill., Fraxinus sp. Tourn. ex L. from different altitudes around the Şeker Canyon (Karabük, Turkey). 11 of these taxa are growing on Quercus sp., 10 of them are growing on Fagus sp., 7 of them are growing on Pinus sp., 4 of them are on Carpinus sp., 2 of them are on Abies sp. and one of them is on Fraxinus sp. Evernia prunastri (L.) Ach. is growing on both of Fagus sp. and Quercus sp. Lecanora pulicaris (Pers.) Ach. is growing on both of Abies sp. and Quercus sp.Keywords: biodiversity, epiphytic lichen, forest, Turkey
Procedia PDF Downloads 338520 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area
Authors: Bernard Kumi-Boateng, Kofi Bonsu
Abstract:
The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.Keywords: degradation, GIS, land, mining
Procedia PDF Downloads 356519 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.Keywords: computer-aided system, detection, image segmentation, morphology
Procedia PDF Downloads 151518 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 85517 Fighting for Equality in Early Buddhism
Authors: Kenneth Lee
Abstract:
During Buddha’s time in the 5th century BCE, the Indian society was organized by a social stratification system called “the caste system” (Skt. varna), which still exists today. The origination of the caste system can be traced back to 1500 BCE within the ancient Vedic texts of the Aryans, the Indo-European nomadic people who migrated and settled in the Indus Valley region. However, the four-tiered hierarchical nature of the caste system created inequality, privilege, and discrimination based on hereditary transmission. After renouncing his royal status as a prince, Siddhartha Gautama spent six years in the forest, practiced austerities, mastered meditation, and eventually realized enlightenment. Thereupon, now referred to as “Shakyamuni Buddha” or “sage from the tribe of Shakya who has become awake,” the Buddha founded the Sangha, a community of monks, nuns, and lay followers, where everyone was equal and treated equally. After providing a brief overview of Buddha’s time, this talk will examine Buddha’s Dharma or teachings on equality and his creation of the Sangha as “society within a society, which had a dissolving effect on society.Keywords: equality, women, buddhism, discrimination
Procedia PDF Downloads 112516 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods
Authors: Juan Heredia, Naci Dilekli
Abstract:
The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing
Procedia PDF Downloads 164515 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 59514 Specific Biomarker Level and Function Outcome Changes in Treatment of Patients with Frozen Shoulder Using Dextrose Prolotherapy Injection
Authors: Nuralam Sam, Irawan Yusuf, Irfan Idris, Endi Adnan
Abstract:
The most case in the shoulder in the the adult is the frozen shoulder. It make an uncomfortable sensation which disturbance daily activity. The studies of frozen shoulder are still limited. This study used a true experimental pre and post test design with a group design. The participant underwent dextrose prolotherapy injection in the rotator cuff, intraarticular glenohumeral joint, long head tendon biceps, and acromioclavicular joint injections with 15% dextrose, respectively, at week 2, week 4, and week 6. Participants were followed for 12 weeks. The specific biomarker MMP and TIMP, ROM, DASH score were measured at baseline, at week 6, and week 12. The data were analyzed by multivariate analysis (repeated measurement ANOVA, Paired T-Test, and Wilcoxon) to determine the effect of the intervention. The result showed a significant decrease in The Disability of the Arm, Shoulder, and Hand (DASH) score in prolo injection patients in each measurement week (p < 0.05). While the measurement of Range of Motion (ROM), each direction of shoulder motion showed a significant difference in average each week, from week 0 to week 6 (p <0.05).Dextrose prolotherapy injection results give a significant improvement in functional outcome of the shoulder joint, and ROMand did not show significant results in assessing the specific biomarker, MMP-1, and TIMP-1 in tissue repair. This study suggestion an alternative to the use of injection prolotherapy in Frozen shoulder patients, which has fewer side effects and better effectiveness than the use of corticosteroid injections.Keywords: frozen shoulder, ROM, DASH score, prolotherapy, MMP-1, TIMP-1
Procedia PDF Downloads 118513 Ethnobotanical Study of Traditional Medicinal Plants Used by Indigenous Tribal People of Kodagu District, Central Western Ghats, Karnataka, India
Authors: Anush Patric, M. Jadeyegowda, M. N. Ramesh, M. Ravikumar, C. R. Ajay
Abstract:
Kodagu district which is situated in Central Western Ghats regions falls in one of the hottest of hot spots of biodiversity which is recognised by UNESCO. The district has one of the highest densities of community managed sacred forests in the world with rich floral and faunal diversity. It is a habitat for more than ten different types of Ethnic Indigenous tribal groups commonly called ‘Girijanas’ (Soligas, Yarvas, Jenukuruba, Bettakuruba etc.), who are having the rich knowledge of medicinal value of the plants that are commonly available in the forest. The tribal men of this region are the treasure house of the traditional plant knowledge and health care practices. An ethnobotanical survey was undertaken in tribal areas of the district to collect information about some of the indigenous medicinal plant knowledge of tribal people by semi-structured interviews, ranking exercises and field observations on their native habitat in order to evaluate the potential medicinal uses of local plants. The study revealed that, the ethnobotanical information of 83 plant species belonging to 45 families, of the total 83 species documented, most plants used in the treatment were trees (11 species), shrubs (41 species), herbs (22 species) and rarely climbers (9 species) which are used in the treatment of Hyperacidity, Respiratory disorders, Snake bite Abortifacient, Anthelmintic, Paralysis, Antiseptic, Fever, Chest pain, Stomachic, Jaundice, Piles, Asthma, Malaria, Renal disorders, Malaria and many other diseases. Maximum of 6 plant species each of Acanthaceae, Apiaceae and were used for drug preparation, followed by Asclepiadaceae, Liliaceae, Fabaceae, Verbenaceae, Caesalpinaceae, Bombaceae, Papilonaceae, Solanaceae, Rubiaceae, Myrtaceae, Amaranthaceae, Asteraceae, Ascelepidaceae, Cucurbitaceae, Apocyanaceae, and Solanaceae etc. In our present study, only medicinal plants and their local medicinal uses are recorded and presented. Information was obtained by local informants having the knowledge about medicinal plants. About 23 local tribes were interviewed. For each plant, necessary information like botanical name, family of plant species, local name and uses are given. Recent trend shows a decline in the number of traditional herbal healers in the tribal areas since the younger generation is not interested to continue this tradition. Hence, there is an urgent need to record and preserve all information on plants used by different ethnic/tribal communities for various purposes before it reaches to verge of extinction. In addition, several wild medicinal plants are declining in numbers due to deforestation and forest fires. There is need for phytochemical analysis and conservation measures to be taken for conserving medicinal plant species which is far better than allopathic medicines and these do not cause any side effects as they are the natural disease healers. So, conservation strategies have to be practiced in all levels and sectors by creating awareness about the value of such medicinal plants, and it is necessary to save the disappearing plants to strengthen the document and to conserve them for future generation.Keywords: diseases, ethnic groups, folk medicine, Kodagu, medicinal plants
Procedia PDF Downloads 263512 Relationships among Sleep Quality and Quality of Life in Oncology Nurses
Authors: Yi-Fung Lin, Pei-Chen Tsai
Abstract:
Background: The hospital healthcare team provides 24-hour patient care, and therefore shift-work is inevitable in the nursing field. There is an increased awareness that shift-work affecting circadian rhythms may cause various health problems, especially in poor sleep quality, which may harm the quality of life. Purposes: The purpose of this study was to investigate the influences of demographic characteristics on nurses’ sleep quality and quality of life and the relationship between these predictors of nurses’ quality of life. Methods: A cross-sectional, descriptive correlational study was conducted with purposive sampling of 520 female nurses in a medical center in north Taiwan from July to September 2014. Data were collected with structured questionnaires using Psychometric Evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (PSQI) and the World Health Organization Quality of Life (WHOQOL-BREF). Outcomes: The main results include: 1) Irregular menstruation, non-regular exercisers, and more daily caffeine consumption have negative impacts on sleep quality. 2) Younger age, fewer children, low education level, low annual income, irregular menstruation, pain during menstrual cycles, non-regular exercisers, constipation, and poor sleep quality all contribute negative impacts on the quality of life. 3) The odds ratio of sleep disturbance between 12-hour shifts and 8-hour shifts was 2.26, but there was no significant difference regarding their quality of life scores. Conclusion: This study showed that there is a strong correlation between oncology nurses’ sleep quality and quality of life. Sleep quality is a significant predictor of quality of life in oncology nurses.Keywords: oncology nurses, sleep quality, quality of life, shift-work
Procedia PDF Downloads 160511 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 481510 Population Diversity Studies in Dendrocalamus strictus Roxb. (Nees.) Through Morphological Parameters
Authors: Anugrah Tripathi, H. S. Ginwal, Charul Kainthola
Abstract:
Bamboos are considered as valuable resources which have the potential of meeting current economic, environmental and social needs. Bamboo has played a key role in humankind and its livelihood since ancient time. Distributed in diverse areas across the globe, bamboo makes an important natural resource for hundreds of millions of people across the world. In some of the Asian countries and northeast part of India, bamboo is the basis of life on many horizons. India possesses the largest bamboo-bearing area across the world and a great extent of species richness, but this rich genetic resource and its diversity have dwindled in the natural forest due to forest fire, over exploitation, lack of proper management policies, and gregarious flowering behavior. Bamboos which are well known for their peculiar, extraordinary morphology, show a lot of variation in many scales. Among the various bamboo species, Dendrocalamus strictus is the most abundant bamboo resource in India, which is a deciduous, solid, and densely tufted bamboo. This species can thrive in wide gradients of geographical as well as climatic conditions. Due to this, it exhibits a significant amount of variation among the populations of different origins for numerous morphological features. Morphological parameters are the front-line criteria for the selection and improvement of any forestry species. Study on the diversity among eight important morphological characters of D. strictus was carried out, covering 16 populations from wide geographical locations of India following INBAR standards. Among studied 16 populations, three populations viz. DS06 (Gaya, Bihar), DS15 (Mirzapur, Uttar Pradesh), and DS16 (Bhogpur, Pinjore, Haryana) were found as superior populations with higher mean values for parametric characters (clump height, no. of culms/ clump, circumference of clump, internode diameter and internode length) and with the higher sum of ranks in non-parametric characters (straightness, disease, and pest incidence and branching pattern). All of these parameters showed an ample amount of variations among the studied populations and revealed a significant difference among the populations. Variation in morphological characters is very common in a species having wide distribution and is usually evident at various levels, viz., between and within the populations. They are of paramount importance for growth, biomass, and quick production gains. Present study also gives an idea for the selection of the population on the basis of these morphological parameters. From this study on morphological parameters and their variation, we may find an overview of best-performing populations for growth and biomass accumulation. Some of the studied parameters also provide ideas to standardize mechanisms of selecting and sustainable harvesting of the clumps by applying simpler silvicultural systems so that they can be properly managed in homestead gardens for the community utilization as well as by commercial growers to meet the requirement of industries and other stakeholders.Keywords: Dendrocalamus strictus, homestead garden, gregarious flowering, stakeholders, INBAR
Procedia PDF Downloads 76509 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention
Authors: Ashish Kumar, Kaptan Singh, Amit Saxena
Abstract:
Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.Keywords: K-nearest neighbor, random forest, decision tree, pre-processing
Procedia PDF Downloads 94508 A Study of Spatial Resilience Strategies for Schools Based on Sustainable Development
Authors: Xiaohan Gao, Kai Liu
Abstract:
As essential components of urban areas, primary and secondary schools are extensively distributed throughout various regions of the city. During times of urban disturbances, these schools become direct carriers of complex disruptions. Therefore, fostering resilient schools becomes a pivotal driving force to promote high-quality urban development and a cornerstone of sustainable school growth. This paper adopts the theory of spatial resilience and focuses on primary and secondary schools in Chinese cities as the research subject. The study first explores the potential disturbance risks faced by schools and delves into the origin and concept of spatial resilience in the educational context. Subsequently, the paper conducts a meta-analysis to characterize the spatial resilience of primary and secondary schools and devises a spatial resilience planning mechanism. Drawing insights from exemplary cases both domestically and internationally, the research formulates spatial and planning resilience strategies for primary and secondary schools to cope with perturbations. These strategies encompass creating an overall layout that integrates harmoniously with nature, promoting organic growth in the planning structure, fostering ecological balance in the landscape system, and enabling dynamic adaptation in architectural spaces. By cultivating the capacity for "resistance-adaptation-transformation," these approaches support sustainable development within the school space. The ultimate goal of this project is to establish a cohesive and harmonious layout that advances the sustainable development of primary and secondary schools while contributing to the overall resilience of urban areas.Keywords: complex disruption, primary and secondary schools, spatial resilience, sustainable development
Procedia PDF Downloads 80507 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit
Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey
Abstract:
Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D
Procedia PDF Downloads 183506 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations
Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos
Abstract:
Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest
Procedia PDF Downloads 177505 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 40504 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies
Authors: Yuanjin Liu
Abstract:
Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model
Procedia PDF Downloads 74503 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 63502 Sustainable Energy Production from Microalgae in Queshm Island, Persian Gulf
Authors: N. Moazami, R. Ranjbar, A. Ashori
Abstract:
Out of hundreds of microalgal strains reported, only very few of them are capable for production of high content of lipid. Therefore, the key technical challenges include identifying the strains with the highest growth rates and oil contents with adequate composition, which were the main aims of this work. From 147 microalgae screened for high biomass and oil productivity, the Nannochloropsis sp. PTCC 6016, which attained 52% lipid content, was selected for large scale cultivation in Persian Gulf Knowledge Island. Nannochloropsis strain PTCC 6016 belongs to Eustigmatophyceae (Phylum heterokontophyta) isolated from Mangrove forest area of Qheshm Island and Persian Gulf (Iran) in 2008. The strain PTCC 6016 had an average biomass productivity of 2.83 g/L/day and 52% lipid content. The biomass productivity and the oil production potential could be projected to be more than 200 tons biomass and 100000 L oil per hectare per year, in an outdoor algal culture (300 day/year) in the Persian Gulf climate.Keywords: biofuels, microalgae, Nannochloropsis, raceway open pond, bio-jet
Procedia PDF Downloads 476