Search results for: data driven diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27380

Search results for: data driven diagnosis

26660 Utility of CT Perfusion Imaging for Diagnosis and Management of Delayed Cerebral Ischaemia Following Subarachnoid Haemorrhage

Authors: Abdalla Mansour, Dan Brown, Adel Helmy, Rikin Trivedi, Mathew Guilfoyle

Abstract:

Introduction: Diagnosing delayed cerebral ischaemia (DCI) following aneurysmal subarachnoid haemorrhage (SAH) can be challenging, particularly in poor-grade patients. Objectives: This study sought to assess the value of routine CTP in identifying (or excluding) DCI and in guiding management. Methods: Eight-year retrospective neuroimaging study at a large UK neurosurgical centre. Subjects included a random sample of adult patients with confirmed aneurysmal SAH that had a CTP scan during their inpatient stay, over a 8-year period (May 2014 - May 2022). Data collected through electronic patient record and PACS. Variables included age, WFNS scale, aneurysm site, treatment, the timing of CTP, radiologist report, and DCI management. Results: Over eight years, 916 patients were treated for aneurysmal SAH; this study focused on 466 patients that were randomly selected. Of this sample, 181 (38.84%) had one or more CTP scans following brain aneurysm treatment (Total 318). The first CTP scan in each patient was performed at 1-20 days following ictus (median 4 days). There was radiological evidence of DCI in 83, and no reversible ischaemia was found in 80. Findings were equivocal in the remaining 18. Of the 103 patients treated with clipping, 49 had DCI radiological evidence, in comparison to 31 of 69 patients treated with endovascular embolization. The remaining 9 patients are either unsecured aneurysms or non-aneurysmal SAH. Of the patients with radiological evidence of DCI, 65 had a treatment change following the CTP directed at improving cerebral perfusion. In contrast, treatment was not changed for (61) patients without radiological evidence of DCI. Conclusion: CTP is a useful adjunct to clinical assessment in the diagnosis of DCI and is helpful in identifying patients that may benefit from intensive therapy and those in whom it is unlikely to be effective.

Keywords: SAH, vasospasm, aneurysm, delayed cerebral ischemia

Procedia PDF Downloads 68
26659 Treatment of Drug-Induced Oral Ulceration with Hyaluronic Acid Gel: A Case Report

Authors: Meltem Koray, Arda Ozgon, Duygu Ofluoglu, Mehmet Yaltirik

Abstract:

Oral ulcerations can be seen as a side effect of different drugs. These ulcers usually appear within a few weeks following drug treatment. In most of cases, these ulcers resist to conventional treatments, such as anesthetics, antiseptics, anti-inflammatory agents, cauterization, topical tetracycline and corticosteroid treatment. The diagnosis is usually difficult, especially in patients receiving multiple drug therapies. Hyaluronan or hyaluronic acid (HA) is a biomaterial that has been introduced as an alternative approach to enhance wound healing and also used for oral ulcer treatment. The aim of this report is to present the treatment of drug-induced oral ulceration on maxillary mucosa with HA gel. 60-year-old male patient was referred to Department of Oral and Maxillofacial Surgery complaining of oral ulcerations during few weeks. He had received chemotherapy and radiotherapy in 2014 with the diagnosis of nasopharyngeal carcinoma, and he has accompanying systemic diseases such as; cardiological, neurological diseases and gout. He is medicated with Escitalopram (Cipralex® 20mg), Quetiapine (Seroquel® 100mg), Mirtazapine (Zestat® 15mg), Acetylsalicylic acid (Coraspin® 100mg), Ramipril-hydrochlorothiazide (Delix® 2.5mg), Theophylline anhydrous (Teokap Sr® 200mg), Colchicine (Colchicum Dispert® 0.5mg), Spironolactone (Aldactone® 100mg), Levothyroxine sodium (Levotiron® 50mg). He had painful oral ulceration on the right side of maxillary mucosa. The diagnosis was 'drug-induced oral ulceration' and HA oral gel (Aftamed® Oral gel) was prescribed 3 times a day for 2 weeks. Complete healing was achieved within 3 weeks without any side effect and discomfort. We suggest that HA oral gel is a potentially useful local drug which can be an alternative for management of drug-induced oral ulcerations.

Keywords: drug-induced, hyaluronic acid, oral ulceration, maxillary mucosa

Procedia PDF Downloads 270
26658 An Analysis of the Strategic Pathway to Building a Successful Mobile Advertising Business in Nigeria: From Strategic Intent to Competitive Advantage

Authors: Pius A. Onobhayedo, Eugene A. Ohu

Abstract:

Nigeria has one of the fastest growing mobile telecommunications industry in the world. In the absence of fixed connection access to the Internet, access to the Internet is primarily via mobile devices. It, therefore, provides a test case for how to penetrate the mobile market in an emerging economy. We also hope to contribute to a sparse literature on strategies employed in building successful data-driven mobile businesses in emerging economies. We, therefore, sought to identify and analyse the strategic approach taken in a successful locally born mobile data-driven business in Nigeria. The analysis was carried out through the framework of strategic intent and competitive advantages developed from the conception of the company to date. This study is based on an exploratory investigation of an innovative digital company based in Nigeria specializing in the mobile advertising business. The projected growth and high adoption of mobile in this African country, coinciding with the smartphone revolution triggered by the launch of iPhone in 2007 opened a new entrepreneurial horizon for the founder of the company, who reached the conclusion that ‘the future is mobile’. This dream led to the establishment of three digital businesses, designed for convergence and complementarity of medium and content. The mobile Ad subsidiary soon grew to become a truly African network with operations and campaigns across West, East and South Africa, successfully delivering campaigns in several African countries including Nigeria, Kenya, South Africa, Ghana, Uganda, Zimbabwe, and Zambia amongst others. The company recently declared a 40% year-end profit which was nine times that of the previous financial year. This study drew from an in-depth interview with the company’s founder, analysis of primary and secondary data from and about the business, as well as case studies of digital marketing campaigns. We hinge our analysis on the strategic intent concept which has been proposed to be an engine that drives the quest for sustainable strategic advantage in the global marketplace. Our goal was specifically to identify the strategic intents of the founder and how these were transformed creatively into processes that may have led to some distinct competitive advantages. Along with the strategic intents, we sought to identify the respective absorptive capacities that constituted favourable antecedents to the creation of such competitive advantages. Our recommendations and findings will be pivotal information for anybody wishing to invest in the world’s fastest technology business space - Africa.

Keywords: Africa, competitive advantage, competitive strategy, digital, mobile business, marketing, strategic intent

Procedia PDF Downloads 436
26657 MicroRNA Profiling Reveals Novel Circulating Biomarkers in Acute Phase of Myocardial Infarction

Authors: A. Maciejak, M. Kiliszek, G. Opolski, D. Tulacz, A. Segiet, K. Matlak, S. Dobrzycki, G. Sygitowicz, B. Burzynska, M. Gora

Abstract:

Introduction and aims: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases affecting millions of patients each year worldwide. An early and accurate diagnosis of AMI is essential for optimal treatment. Therefore, new approaches that can complement and improve current strategies for AMI diagnosis are urgently needed. Recent studies have revealed the presence of stable circulating myocardial-derived microRNAs (miRNAs) in human peripheral blood, suggesting that such miRNAs could serve as potential biomarkers of infarction. The present study aimed to identify differentially expressed circulating miRNAs in ST-segment elevation myocardial infarction (STEMI) patients. Materials and methods: miRNA expression profile analysis was performed using Exiqon Serum/Plasma Focus microRNA PCR panel in plasma samples of n=16 patients on the first day of AMI (admission) and in samples from the same patients collected six months after AMI. Selected miRNAs were validated by RT-qPCR using serum samples from an independent set of n=14 AMI patients. Results: The profiling study identified 46 species of plasma miRNAs that were differentially expressed (p < 0.05) on admission compared to six months after AMI. The validation in the independent group of patients confirmed that miR-133b and miR-22-5p were significantly up-regulated upon AMI. Conclusions: Our results suggest that miRNA expression profiling provides better understanding of the changes that occur in the acute phase of MI in the myocardium and could be useful in determination of the potential role of extracellular miRNAs as paracrine signaling molecules. miR-22-5p represents a novel promising biomarker for the diagnosis of acute myocardial infarction.

Keywords: acute myocardial infarction, circulating microRNAs, microRNA expression profiling, miR-22-5p

Procedia PDF Downloads 330
26656 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample

Authors: Suwimon Saneewong Na Ayuttaya

Abstract:

This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.

Keywords: electrohydrodynamics (EHD), swirling flow, convective heat transfer, solid sample

Procedia PDF Downloads 293
26655 Constructability Driven Engineering in Oil and Gas Projects

Authors: Srikanth Nagarajan, P. Parthasarathy, Frits Lagers

Abstract:

Lower crude oil prices increased the pressure on oil and gas projects. Being competitive becomes very important and critical for the success in any industry. Increase in size of the project multiplies the magnitude of the issue. Timely completion of projects within the budget and schedule is very important for any project to succeed. A simple idea makes a larger impact on the total cost of the plant. In this robust world, the phases of engineering right from licensing technology, feed, different phases of detail engineering, procurement and construction has been so much compressed that they overlap with each other. Hence constructability techniques have become very important. Here in this paper, the focus will be on how these techniques can be implemented and reduce cost with the help of a case study. Constructability is a process driven by the need to impact project’s construction phase resulting in improved project delivery, costs and schedule. In construction phase of one of our fast-track mega project, it was noticed that there was an opportunity to reduce significant amount of cost and schedule by implementing Constructability study processes. In this case study, the actual methodology adopted during engineering and construction and the way for doing it better by implementing Constructability techniques with collaborative engineering efforts will be explained.

Keywords: being competitive, collaborative engineering, constructability, cost reduction

Procedia PDF Downloads 421
26654 Impacts on Atmospheric Mercury from Changes in Climate, Land Use, Land Cover, and Wildfires

Authors: Shiliang Wu, Huanxin Zhang, Aditya Kumar

Abstract:

There have been increasing concerns on atmospheric mercury as a toxic and bioaccumulative pollutant in the global environment. Global change, including changes in climate change, land use, land cover and wildfires activities can all have significant impacts on atmospheric mercury. In this study, we use a global chemical transport model (GEOS-Chem) to examine the potential impacts from global change on atmospheric mercury. All of these factors in the context of global change are found to have significant impacts on the long-term evolution of atmospheric mercury and can substantially alter the global source-receptor relationships for mercury. We also estimate the global Hg emissions from wildfires for present-day and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Present global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions both globally (+28%) and regionally. Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

Keywords: climate change, land use, land cover, wildfires

Procedia PDF Downloads 326
26653 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 103
26652 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 143
26651 Cognition in Crisis: Unravelling the Link Between COVID-19 and Cognitive-Linguistic Impairments

Authors: Celine Davis

Abstract:

The novel coronavirus 2019 (COVID-19) is an infectious disease caused by the virus SARS-CoV-2, which has detrimental respiratory, cardiovascular, and neurological effects impacting over one million lives in the United States. New researches has emerged indicating long-term neurologic consequences in those who survive COVID-19 infections, including more than seven million Americans and another 27 million people worldwide. These consequences include attentional deficits, memory impairments, executive function deficits and aphasia-like symptoms which fall within the purview of speech-language pathology. The National Health Interview Survey (NHIS) is a comprehensive annual survey conducted by the National Center for Health Statistics (NCHS), a branch of the Centers for Disease Control and Prevention (CDC) in the United States. The NHIS is one of the most significant sources of health-related data in the country and has been conducted since 1957. The longitudinal nature of the study allows for analysis of trends in various variables over the years, which can be essential for understanding societal changes and making treatment recommendations. This current study will utilize NHIS data from 2020-2022 which contained interview questions specifically related to COVID-19. Adult cases of individuals between the ages of 18-50 diagnosed with COVID-19 in the United States during 2020-2022 will be identified using the National Health Interview Survey (NHIS). Multiple regression analysis of self-reported data confirming COVID-19 infection status and challenges with concentration, communication, and memory will be performed. Latent class analysis will be utilized to identify subgroups in the population to indicate whether certain demographic groups have higher susceptibility to cognitive-linguistic deficits associated with COVID-19. Completion of this study will reveal whether there is an association between confirmed COVID-19 diagnosis and heightened incidence of cognitive deficits and subsequent implications, if any, on activities of daily living. This study is distinct in its aim to utilize national survey data to explore the relationship between confirmed COVID-19 diagnosis and the prevalence of cognitive-communication deficits with a secondary focus on resulting activity limitations. To the best of the author’s knowledge, this will be the first large-scale epidemiological study investigating the associations between cognitive-linguistic deficits, COVID-19 and implications on activities of daily living in the United States population. These findings will highlight the need for targeted interventions and support services to address the cognitive-communication needs of individuals recovering from COVID-19, thereby enhancing their overall well-being and functional outcomes.

Keywords: cognition, COVID-19, language, limitations, memory, NHIS

Procedia PDF Downloads 53
26650 Clinical and Radiological Features of Adenomyosis and Its Histopathological Correlation

Authors: Surabhi Agrawal Kohli, Sunita Gupta, Esha Khanuja, Parul Garg, P. Gupta

Abstract:

Background: Adenomyosis is a common gynaecological condition that affects the menstruating women. Uterine enlargement, dysmenorrhoea, and menorrhagia are regarded as the cardinal clinical symptoms of adenomyosis. Classically it was thought, compared with ultrasonography, when adenomyosis is suspected, MRI enables more accurate diagnosis of the disease. Materials and Methods: 172 subjects were enrolled after an informed consent that had complaints of HMB, dyspareunia, dysmenorrhea, and chronic pelvic pain. Detailed history of the enrolled subjects was taken, followed by a clinical examination. These patients were then subjected to TVS where myometrial echo texture, presence of myometrial cysts, blurring of endomyometrial junction was noted. MRI was followed which noted the presence of junctional zone thickness and myometrial cysts. After hysterectomy, histopathological diagnosis was obtained. Results: 78 participants were analysed. The mean age was 44.2 years. 43.5% had parity of 4 or more. heavy menstrual bleeding (HMB) was present in 97.8% and dysmenorrhea in 93.48 % of HPE positive patient. Transvaginal sonography (TVS) and MRI had a sensitivity of 89.13% and 80.43%, specificity of 90.62% and 84.37%, positive likelihood ratio of 9.51 and 5.15, negative likelihood ratio of 0.12 and 0.23, positive predictive value of 93.18% and 88.1%, negative predictive value of 85.29% and 75% and a diagnostic accuracy of 89.74% and 82.5%. Comparison of sensitivity (p=0.289) and specificity (p=0.625) showed no statistically significant difference between TVS and MRI. Conclusion: Prevalence of 30.23%. HMB with dysmenorrhoea and chronic pelvic pain helps in diagnosis. TVS (Endomyometrial junction blurring) is both sensitive and specific in diagnosing adenomyosis without need for additional diagnostic tool. Both TVS and MRI are equally efficient, however because of certain additional advantages of TVS over MRI, it may be used as the first choice of imaging. MRI may be used additionally in difficult cases as well as in patients with existing co-pathologies.

Keywords: adenomyosis, heavy menstrual bleeding, MRI, TVS

Procedia PDF Downloads 498
26649 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet

Authors: Azene Zenebe

Abstract:

Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.

Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science

Procedia PDF Downloads 154
26648 Iterative Method for Lung Tumor Localization in 4D CT

Authors: Sarah K. Hagi, Majdi Alnowaimi

Abstract:

In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.

Keywords: automated algorithm , computed tomography, lung tumor, tumor localization

Procedia PDF Downloads 602
26647 An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved

Authors: Tiexin Wang, Sebastien Truptil, Frederick Benaben

Abstract:

Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way.

Keywords: automatic model transformation, granularity issue, model-driven engineering, semantic and syntactic comparisons

Procedia PDF Downloads 395
26646 A QoE-driven Cross-layer Resource Allocation Scheme for High Traffic Service over Open Wireless Network Downlink

Authors: Liya Shan, Qing Liao, Qinyue Hu, Shantao Jiang, Tao Wang

Abstract:

In this paper, a Quality of Experience (QoE)-driven cross-layer resource allocation scheme for high traffic service over Open Wireless Network (OWN) downlink is proposed, and the related problem about the users in the whole cell including the users in overlap region of different cells has been solved.A method, in which assess models of the BestEffort service and the no-reference assess algorithm for video service are adopted, to calculate the Mean Opinion Score (MOS) value for high traffic service has been introduced. The cross-layer architecture considers the parameters in application layer, media access control layer and physical layer jointly. Based on this architecture and the MOS value, the Binary Constrained Particle Swarm Optimization (B_CPSO) algorithm is used to solve the cross-layer resource allocation problem. In addition,simulationresults show that the proposed scheme significantly outperforms other schemes in terms of maximizing average users’ MOS value for the whole system as well as maintaining fairness among users.

Keywords: high traffic service, cross-layer resource allocation, QoE, B_CPSO, OWN

Procedia PDF Downloads 541
26645 Kocuria Keratitis: A Rare and Diagnostically Challenging Infection of the Cornea

Authors: Sarah Jacqueline Saram, Diya Baker, Jaishree Gandhewar

Abstract:

Named after the Slovakian microbiologist, Miroslav Kocur, the Kocuria spp. are an emerging cause of significant human infections. Their predilection for immunocompromised states, such as malignancy and metabolic disorders, is highlighted in the literature. The coagulase-negative, gram-positive cocci are commensals found in the skin and oropharynx of humans, and their growing presence as responsible organisms in ocular infections cannot be ignored. The severe, rapid, and unrelenting disease course associated with Kocuria keratitis is underlined in the literature. However, the clinical features are variable, which may impede making a diagnosis. Here, we describe a first account of an initial misdiagnosis due to reliance on subjective analysis features on a confocal microscope, which ultimately led to a delay in commencing the correct treatment. In documenting this, we hope to underline to clinicians the difficulties in recognising a Kocuria Rhizophilia keratitis due to its similar clinical presentation to an Acanthamoeba Keratitis, thus emphasizing the need for early investigations such as corneal scrapes to secure the correct diagnosis and prevent further harm and vision loss for the patient.

Keywords: keratitis, cornea, infection, rare, Kocuria

Procedia PDF Downloads 54
26644 Applying Program Theory-Driven Approach to Design and Evaluate a Teacher Professional Development Program

Authors: S. C. Lin, M. S. Wu

Abstract:

Japanese Scholar Manabu Sato has been advocating the Learning Community, which changed Japanese fundamental education during the last three decades. It was also called a “Quiet Revolution.” Manabu Sato criticized that traditional education only focused on individual competition, exams, teacher-centered instruction, and memorization. The students lacked leaning motivation. Therefore, Manabu Sato proclaimed that learning should be a sustainable process of “constantly weaving the relationship and the meanings” by having dialogues with learning materials, with peers, and with oneself. For a long time, secondary school education in Taiwan has been focused on exams and emphasized reciting and memorizing. The incident of “giving up learning” happened to some students. Manabu Sato’s learning community program has been implemented very successfully in Japan. It is worth exploring if learning community can resolve the issue of “Escape from learning” phenomenon among secondary school students in Taiwan. This study was the first year of a two-year project. This project applied a program theory-driven approach to evaluating the impact of teachers’ professional development interventions on students’ learning by using a mix of methods, qualitative inquiry, and quasi-experimental design. The current study was to show the results of using the method of theory-driven approach to program planning to design and evaluate a teachers’ professional development program (TPDP). The Manabu Sato’s learning community theory was applied to structure all components of a 54-hour workshop. The participants consisted of seven secondary school science teachers from two schools. The research procedure was comprised of: 1) Defining the problem and assessing participants’ needs; 2) Selecting the Theoretical Framework; 3) Determining theory-based goals and objectives; 4) Designing the TPDP intervention; 5) Implementing the TPDP intervention; 6) Evaluating the TPDP intervention. Data was collected from a number of different sources, including TPDP checklist, activity responses of workshop, LC subject matter test, teachers’ e-portfolio, course design documents, and teachers’ belief survey. The major findings indicated that program design was suitable to participants. More than 70% of the participants were satisfied with program implementation. They revealed that TPDP was beneficial to their instruction and promoted their professional capacities. However, due to heavy teaching loadings during the project some participants were unable to attend all workshops. To resolve this problem, the author provided options to them by watching DVD or reading articles offered by the research team. This study also established a communication platform for participants to share their thoughts and learning experiences. The TPDP had marked impacts on participants’ teaching beliefs. They believe that learning should be a sustainable process of “constantly weaving the relationship and the meanings” by having dialogues with learning materials, with peers, and with oneself. Having learned from TPDP, they applied a “learner-centered” approach and instructional strategies to design their courses, such as learning by doing, collaborative learning, and reflective learning. To conclude, participants’ beliefs, knowledge, and skills were promoted by the program instructions.

Keywords: program theory-driven approach, learning community, teacher professional development program, program evaluation

Procedia PDF Downloads 308
26643 Manifestations of Tuberculosis in Otorhinolaryngology Practice: A Retrospective Study Conducted in a Coastal City of South India

Authors: Rithika Sriram, Kiran M. Bhojwani

Abstract:

Introduction : Tuberculosis of the head and neck has proved to be a diagnostic challenge for otorhinolarynologists around the world. These lesions are often misdiagnosed as cancer. So in order to contribute to a better understanding of these lesions, we have conducted our study among patients affected by TB in the head and neck region with the objective of assessing the various manifestations, presentations, diagnostic techniques, risk factors such as smoking and alcohol consumption, coexisting illnesses and treatment modalities. Materials and Methods: This was a retrospective study conducted over a three year period (2012-2014) in 2 hospitals affliated to Kasturba Medical College in Mangalore, South India. A semi structured proforma was used to capture information from the medical records pertaining to the various objectives of the study such as clinical features and history of smoking. Data was analysed using SPSS version 16.0 and results obtained were depicted as percentages. Chi square test was used to find association between the variables and p<0.05 was considered statistically significant. Results: 104 patients were found to have TB of the head and neck and among them,the most common manifestation was found to be Tubercular Lymphadenitis (86.53%), followed by laryngeal TB (4.8%), submandibular gland TB (3.8%), deep neck space abscess(3.8%) and adenotonsillar TB. FNAC was found to be the gold standard for the diagnosis of TB disease of the lymph node.26% of the patients had coexisting HIV infection and 16.3% of the patients had associated pulmonary TB. More than 20% of the patients were smokers. Most patients were treated using ATT. Conclusion: Tuberculosis affecting regions of head and neck is no longer uncommon. Sufficient knowledge and appropriate diagnostic means is required while dealing with these lesions and must be included in the differential diagnosis of pathological lesions of head and neck.

Keywords: FNAC, Mangalore, smoking, tuberculosis

Procedia PDF Downloads 278
26642 Novel Ultrasensitive Point of Care Device for Diagnosis of Human Schistosomiasis Mansoni

Authors: Ibrahim Aly, Waleed Elawamy, Hanan Taher, Amira Matar

Abstract:

Schistosomiasis is infection with blood flukes of the genus Schistosoma, which are acquired trans-cutaneously by swimming or wading in contaminated freshwater. The present study was proposed to produce ultra-sensitive, field-friendly high-throughput rapid immunochromatography diagnostic device for accurate detection of asymptomatic parasite carriers in schistosomiasis pre-elimination settings.For assessing diagnostic potential of rapid device, 50 blood samples from patients with schistosomiasis mansoni, 29 other proven parasitic diseases and 25 blood samples as negative control were from healthy individuals were used. The sensitivity of Quantitative antigen-capture nano-ELISAwas 82 %, and specificity was 87.1 %, where the sensitivity of Nano Dot- ELISA was 86 % and specificity was 90.7 %. The sensitivity of diagnostic device was 78 % and specificity was 85.2 %, with PPV and NPV of 86.2 % and 83.1 %, respectively.The Point of care device resulted in a good performance for the diagnosis of low-intensity infections, it was able to identify 19 out of 25 (76 %) individuals with ⩽7 eggs, 10 out of 14 individuals (71.4 %) with 11–99 eggs and 100 % of individuals with 100–399 eggs.

Keywords: schistosomiasis, immunochromatography, naon-dot-ELISa, diagnostis device

Procedia PDF Downloads 76
26641 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 123
26640 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration

Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang

Abstract:

To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.

Keywords: medical decision, medical ontologies, ontologies integration, linked data, knowledge engineering, e-health system

Procedia PDF Downloads 198
26639 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 20
26638 Long-Term Cohort of Patients with Beta Thalassemia; Prevailing Role of Serum Ferritin Levels in Hypocalcemia and Growth Retardation

Authors: Shervin Rashidinia, Sara Shahmoradi, Seyyed Shahin Eftekhari, Mohsen Talebizadeh, Mohammad Saleh Sadeghi

Abstract:

Background: Beta-thalassemia Major (BTM) is a kind of hereditary hemolytic anemia which depended on regular monthly blood transfusion. However, iron deposition into the organs leads to multi-organ damage. The present study is the first study which aimed to evaluate the average of five-years serum ferritin level and compared by the prevalence of short stature and hypocalcemia. Materials/Methods: A cross-sectional retrospective study which a total of 140 patients with beta-thalassemia who were referred to Qom Thalassemia Clinic between February 2011 and July 2016 were enrolled to be reviewed. The exclusion criteria were consisting of incomplete medical records, diagnosis less than 2-years-ago and the blood transfusion less than every 4 weeks. The data including age, gender, weight, height, age of initial blood transfusion, age of initial chelation therapy, ferritin, and calcium were collected and analysis by SPSS version 24. Results: A total of 140 patients were enrolled. Of them, 75 (53.4%) were female. The mean age of the patients was 13.4±4.6 years.The mean age of initial diagnosis was 20.2±7.4 months. Hypocalcemia and short stature were occurred in 41 (29.3%) and 37 (26.4%) patients, respectively. The mean five-years serum ferritin level was significantly higher in the patients with short stature and hypocalcemia (P<0.0001). However, rise in serum ferritin level significantly increases the risk of short-stature and hypocalcemia (1.0004- and 1.0029 fold, respectively). Conclusion: We demonstrated that prevalence of short stature and hypocalcemia were significantly higher in the BTM.However, ferritin significantly increases the risk of short stature and hypocalcemia.

Keywords: beta-thalassemia, ferritin, growth retardation, hypocalcemia

Procedia PDF Downloads 328
26637 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education

Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke

Abstract:

This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.

Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education

Procedia PDF Downloads 17
26636 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography

Authors: Y. Laib Dit Leksir, S. Bouhouche

Abstract:

Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.

Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment

Procedia PDF Downloads 476
26635 Assertion-Driven Test Repair Based on Priority Criteria

Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang

Abstract:

Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well.

Keywords: test repair, test intent, software test, test case evolution

Procedia PDF Downloads 129
26634 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study

Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas

Abstract:

The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.

Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions

Procedia PDF Downloads 241
26633 The Effect of Data Integration to the Smart City

Authors: Richard Byrne, Emma Mulliner

Abstract:

Smart cities are a vision for the future that is increasingly becoming a reality. While a key concept of the smart city is the ability to capture, communicate, and process data that has long been produced through day-to-day activities of the city, much of the assessment models in place neglect this fact to focus on ‘smartness’ concepts. Although it is true technology often provides the opportunity to capture and communicate data in more effective ways, there are also human processes involved that are just as important. The growing importance with regards to the use and ownership of data in society can be seen by all with companies such as Facebook and Google increasingly coming under the microscope, however, why is the same scrutiny not applied to cities? The research area is therefore of great importance to the future of our cities here and now, while the findings will be of just as great importance to our children in the future. This research aims to understand the influence data is having on organisations operating throughout the smart cities sector and employs a mixed-method research approach in order to best answer the following question: Would a data-based evaluation model for smart cities be more appropriate than a smart-based model in assessing the development of the smart city? A fully comprehensive literature review concluded that there was a requirement for a data-driven assessment model for smart cities. This was followed by a documentary analysis to understand the root source of data integration to the smart city. A content analysis of city data platforms enquired as to the alternative approaches employed by cities throughout the UK and draws on best practice from New York to compare and contrast. Grounded in theory, the research findings to this point formulated a qualitative analysis framework comprised of: the changing environment influenced by data, the value of data in the smart city, the data ecosystem of the smart city and organisational response to the data orientated environment. The framework was applied to analyse primary data collected through the form of interviews with both public and private organisations operating throughout the smart cities sector. The work to date represents the first stage of data collection that will be built upon by a quantitative research investigation into the feasibility of data network effects in the smart city. An analysis into the benefits of data interoperability supporting services to the smart city in the areas of health and transport will conclude the research to achieve the aim of inductively forming a framework that can be applied to future smart city policy. To conclude, the research recognises the influence of technological perspectives in the development of smart cities to date and highlights this as a challenge to introduce theory applied with a planning dimension. The primary researcher has utilised their experience working in the public sector throughout the investigation to reflect upon what is perceived as a gap in practice of where we are today, to where we need to be tomorrow.

Keywords: data, planning, policy development, smart cities

Procedia PDF Downloads 310
26632 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening

Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu

Abstract:

Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.

Keywords: breast cancer screening, radiology, thermalytix, artificial intelligence, thermography

Procedia PDF Downloads 291
26631 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 118