Search results for: comprehensive feature extraction
5350 Measuring How Brightness Mediates Auditory Salience
Authors: Baptiste Bouvier
Abstract:
While we are constantly flooded with stimuli in daily life, attention allows us to select the ones we specifically process and ignore the others. Some salient stimuli may sometimes pass this filter independently of our will, in a "bottom-up" way. The role of the acoustic properties of the timbre of a sound on its salience, i.e., its ability to capture the attention of a listener, is still not well understood. We implemented a paradigm called the "additional singleton paradigm", in which participants have to discriminate targets according to their duration. This task is perturbed (higher error rates and longer response times) by the presence of an irrelevant additional sound, of which we can manipulate a feature of our choice at equal loudness. This allows us to highlight the influence of the timbre features of a sound stimulus on its salience at equal loudness. We have shown that a stimulus that is brighter than the others but not louder leads to an attentional capture phenomenon in this framework. This work opens the door to the study of the influence of any timbre feature on salience.Keywords: attention, audition, bottom-up attention, psychoacoustics, salience, timbre
Procedia PDF Downloads 1705349 Investigation and Optimization of DNA Isolation Efficiency Using Ferrite-Based Magnetic Nanoparticles
Authors: Tímea Gerzsenyi, Ágnes M. Ilosvai, László Vanyorek, Emma Szőri-Dorogházi
Abstract:
DNA isolation is a crucial step in many molecular biological applications for diagnostic and research purposes. However, traditional extraction requires toxic reagents, and commercially available kits are expensive, this leading to the recently wide-spread method, the magnetic nanoparticle (MNP)-based DNA isolation. Different ferrite containing MNPs were examined and compared in their plasmid DNA isolation efficiency. Among the tested MNPs, one has never been used for the extraction of plasmid molecules, marking a distinct application. pDNA isolation process was optimized for each type of nanoparticle and the best protocol was selected based on different criteria: DNA quantity, quality and integrity. With the best-performing magnetic nanoparticle, which excelled in all aspects, further tests were performed to recover genomic DNA from bacterial cells and a protocol was developed.Keywords: DNA isolation, nanobiotechnology, magnetic nanoparticles, protocol optimization, pDNA, gDNA
Procedia PDF Downloads 95348 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4885347 A New Approach to Image Stitching of Radiographic Images
Authors: Somaya Adwan, Rasha Majed, Lamya'a Majed, Hamzah Arof
Abstract:
In order to produce images with whole body parts, X-ray of different portions of the body parts is assembled using image stitching methods. A new method for image stitching that exploits mutually feature based method and direct based method to identify and merge pairs of X-ray medical images is presented in this paper. The performance of the proposed method based on this hybrid approach is investigated in this paper. The ability of the proposed method to stitch and merge the overlapping pairs of images is demonstrated. Our proposed method display comparable if not superior performance to other feature based methods that are mentioned in the literature on the standard databases. These results are promising and demonstrate the potential of the proposed method for further development to tackle more advanced stitching problems.Keywords: image stitching, direct based method, panoramic image, X-ray
Procedia PDF Downloads 5415346 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 5065345 Antibacterial and Antioxidant Properties of Total Phenolics from Waste Orange Peels
Authors: Kanika Kalra, Harmeet Kaur, Dinesh Goyal
Abstract:
Total phenolics were extracted from waste orange peels by solvent extraction and alkali hydrolysis method. The most efficient solvents for extracting phenolic compounds from waste biomass were methanol (60%) > dimethyl sulfoxide > ethanol (60%) > distilled water. The extraction yields were significantly impacted by solvents (ethanol, methanol, and dimethyl sulfoxide) due to varying polarity and concentrations. Extraction of phenolics using 60% methanol yielded the highest phenolics (in terms of gallic acid equivalent (GAE) per gram of biomass) in orange peels. Alkali hydrolyzed extract from orange peels contained 7.58±0.33 mg GAE g⁻¹. By using the solvent extraction technique, it was observed that 60% methanol is comparatively the best-suited solvent for extracting polyphenolic compounds and gave the maximum yield of 4.68 ± 0.47 mg GAE g⁻¹ in orange peel extracts. DPPH radical scavenging activity and reducing the power of orange peel extract were checked, where 60% methanolic extract showed the highest antioxidant activity, 85.50±0.009% for DPPH, and dimethyl sulfoxide (DMSO) extract gave the highest yield of 1.75±0.01% for reducing power ability of the orange peels extract. Characterization of the polyphenolic compounds was done by using Fourier transformation infrared (FTIR) spectroscopy. Solvent and alkali hydrolysed extracts were evaluated for antibacterial activity using the agar well diffusion method against Gram-positive Bacillus subtilis MTCC441 and Gram-negative Escherichia coli MTCC729. Methanolic extract at 300µl concentration showed an inhibition zone of around 16.33±0.47 mm against Bacillus subtilis, whereas, for Escherichia coli, it was comparatively less. Broth-based turbidimetric assay revealed the antibacterial effect of different volumes of orange peel extracts against both organisms.Keywords: orange peels, total phenolic content, antioxidant, antibacterial
Procedia PDF Downloads 735344 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 925343 Effect of Hemicellulase on Extraction of Essential Oil from Algerian Artemisia campestris
Authors: Khalida Boutemak, Nasssima Benali, Nadji Moulai-Mostefa
Abstract:
Effect of enzyme on the yield and chemical composition of Artemisia campestris essential oil is reported in the present study. It was demonstrated that enzyme facilitated the extraction of essential oil with increase in oil yield and did not affect any noticeable change in flavour profile of the volatile oil. Essential oil was tested for antibacterial activity using Escherichia coli; which was extremely sensitive against control with the largest inhibition (29mm), whereas Staphylococcus aureus was the most sensitive against essential oil obtained from enzymatic pre-treatment with the largest inhibition zone (25mm). The antioxidant activity of the essential oil with hemicellulase pre-treatment (EO2) and control sample (EO1) was determined through reducing power. It was significantly lower than the standard drug (vitamin C) in this order: vitamin C˃EO2˃EO1.Keywords: Artemisia campestris, enzyme pre-treatment, hemicellulase, antibacterial activity, antioxidant activity
Procedia PDF Downloads 3295342 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1945341 A Multi-Family Offline SPE LC-MS/MS Analytical Method for Anionic, Cationic and Non-ionic Surfactants in Surface Water
Authors: Laure Wiest, Barbara Giroud, Azziz Assoumani, Francois Lestremau, Emmanuelle Vulliet
Abstract:
Due to their production at high tonnages and their extensive use, surfactants are contaminants among those determined at the highest concentrations in wastewater. However, analytical methods and data regarding their occurrence in river water are scarce and concern only a few families, mainly anionic surfactants. The objective of this study was to develop an analytical method to extract and analyze a wide variety of surfactants in a minimum of steps, with a sensitivity compatible with the detection of ultra-traces in surface waters. 27 substances, from 12 families of surfactants, anionic, cationic and non-ionic were selected for method optimization. Different retention mechanisms for the extraction by solid phase extraction (SPE) were tested and compared in order to improve their detection by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The best results were finally obtained with a C18 grafted silica LC column and a polymer cartridge with hydrophilic lipophilic balance (HLB), and the method developed allows the extraction of the three types of surfactants with satisfactory recoveries. The final analytical method comprised only one extraction and two LC injections. It was validated and applied for the quantification of surfactants in 36 river samples. The method's limits of quantification (LQ), intra- and inter-day precision and accuracy were evaluated, and good performances were obtained for the 27 substances. As these compounds have many areas of application, contaminations of instrument and method blanks were observed and considered for the determination of LQ. Nevertheless, with LQ between 15 and 485 ng/L, and accuracy of over 80%, this method was suitable for monitoring surfactants in surface waters. Application on French river samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations ranging from 24 ng/L for octylphenol ethoxylates (OPEO) to 4.6 µg/L for linear alkylbenzenesulfonates (LAS). The analytical method developed in this work will therefore be useful for future monitoring of surfactants in waters. Moreover, this method, which shows good performances for anionic, non-ionic and cationic surfactants, may be easily adapted to other surfactants.Keywords: anionic surfactant, cationic surfactant, LC-MS/MS, non-ionic surfactant, SPE, surface water
Procedia PDF Downloads 1455340 Thermodynamic Modelling of Liquid-Liquid Equilibria (LLE) in the Separation of p-Cresol from the Coal Tar by Solvent Extraction
Authors: D. S. Fardhyanti, Megawati, W. B. Sediawan
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in the separation of phenol from the coal tar by solvent extraction. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of p-Cresol mixtures for those system.Keywords: coal tar, phenol, Wohl, Van Laar, Three-Suffix Margules
Procedia PDF Downloads 2585339 Gas Chromatography Coupled to Tandem Mass Spectrometry and Liquid Chromatography Coupled to Tandem Mass Spectrometry Qualitative Determination of Pesticides Found in Tea Infusions
Authors: Mihai-Alexandru Florea, Veronica Drumea, Roxana Nita, Cerasela Gird, Laura Olariu
Abstract:
The aim of this study was to investigate the residues of pesticide found in tea water infusions. A multi-residues method to determine 147 pesticides has been developed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) procedure and dispersive solid phase extraction (d-SPE) for the cleanup the pesticides from complex matrices such as plants and tea. Sample preparation was carefully optimized for the efficient removal of coextracted matrix components by testing more solvent systems. Determination of pesticides was performed using GC-MS/MS (100 of pesticides) and LC-MS/MS (47 of pesticides). The selected reaction monitoring (SRM) mode was chosen to achieve low detection limits and high compounds selectivity and sensitivity. Overall performance was evaluated and validated according to DG-SANTE Guidelines. To assess the pesticide residue transfer rate (qualitative) from dried tea in infusions the samples (tea) were spiked with a mixture of pesticides at the maximum residues level accepted for teas and herbal infusions. In order to investigate the release of the pesticides in tea preparations, the medicinal plants were prepared in four ways by variation of water temperature and the infusion time. The pesticides from infusions were extracted using two methods: QuEChERS versus solid-phase extraction (SPE). More that 90 % of the pesticides studied was identified in infusion.Keywords: tea, solid-phase extraction (SPE), selected reaction monitoring (SRM), QuEChERS
Procedia PDF Downloads 2135338 Comprehensive Care and the Right to Autonomy of Children and Adolescents with Cancer
Authors: Sandra Soca Lozano, Teresa Isabel Lozano Pérez, Germain Weber
Abstract:
Cancer is a chronic disease of high prevalence in children and adolescents. Medical care in Cuba is carried out by a multidisciplinary team and family is the mediator between this team and the patient. Around this disease, there are interwoven many stereotypes and taboos by its relation to death. In this research report, we describe the work paradigm of psychological care to patients suffering from these diseases in the University Pediatric Hospital Juan Manuel Márquez of Havana, Cuba. We present the psychosocial factors that must be taken into account to provide comprehensive care and ensuring the quality of life of patients and their families. We also present the factors related to the health team and the management of information done with the patient. This is a descriptive proposal from the working experience accumulated in the named institution and in the review of the literature. As a result of this report we make a proposal of teamwork and the aspects in which psychological intervention should be continue performing in terms of increasing the quality of the care made by the health team. We conclude that it is necessary to continue improving the information management of children and adolescents with theses health problems and took into account their right to autonomy.Keywords: comprehensive care, management of information, psychosocial factors, right to autonomy
Procedia PDF Downloads 3335337 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation
Authors: Ke He, Wumaier Parezhati, Haruka Yamashita
Abstract:
Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.Keywords: Doc2Vec, online marketplace, marketing, recommendation systems
Procedia PDF Downloads 1125336 Use of the Gas Chromatography Method for Hydrocarbons' Quality Evaluation in the Offshore Fields of the Baltic Sea
Authors: Pavel Shcherban, Vlad Golovanov
Abstract:
Currently, there is an active geological exploration and development of the subsoil shelf of the Kaliningrad region. To carry out a comprehensive and accurate assessment of the volumes and degree of extraction of hydrocarbons from open deposits, it is necessary to establish not only a number of geological and lithological characteristics of the structures under study, but also to determine the oil quality, its viscosity, density, fractional composition as accurately as possible. In terms of considered works, gas chromatography is one of the most capacious methods that allow the rapid formation of a significant amount of initial data. The aspects of the application of the gas chromatography method for determining the chemical characteristics of the hydrocarbons of the Kaliningrad shelf fields are observed in the article, as well as the correlation-regression analysis of these parameters in comparison with the previously obtained chemical characteristics of hydrocarbon deposits located on the land of the region. In the process of research, a number of methods of mathematical statistics and computer processing of large data sets have been applied, which makes it possible to evaluate the identity of the deposits, to specify the amount of reserves and to make a number of assumptions about the genesis of the hydrocarbons under analysis.Keywords: computer processing of large databases, correlation-regression analysis, hydrocarbon deposits, method of gas chromatography
Procedia PDF Downloads 1575335 The Development and Testing of Greenhouse Comprehensive Environment Control System
Authors: Mohammed Alrefaie, Yaser Miaji
Abstract:
Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.Keywords: greenhouse, control system, light intensity, comprehensive environment
Procedia PDF Downloads 4825334 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 585333 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent
Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen
Abstract:
Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.Keywords: adsorption, nanoporous silicon, ore solution, scandium
Procedia PDF Downloads 1465332 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 795331 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes
Authors: Muammer Kaya
Abstract:
The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy
Procedia PDF Downloads 3565330 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 755329 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study
Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua
Abstract:
This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis
Procedia PDF Downloads 615328 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration
Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.
Abstract:
Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.Keywords: artificial intelligence, space exploration, space missions, deep learning
Procedia PDF Downloads 335327 The Acquisition of Case in Biological Domain Based on Text Mining
Authors: Shen Jian, Hu Jie, Qi Jin, Liu Wei Jie, Chen Ji Yi, Peng Ying Hong
Abstract:
In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text.Keywords: text mining, vector space model, feature selection, biologically inspired design
Procedia PDF Downloads 2615326 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 455325 Subpixel Corner Detection for Monocular Camera Linear Model Research
Authors: Guorong Sui, Xingwei Jia, Fei Tong, Xiumin Gao
Abstract:
Camera calibration is a fundamental issue of high precision noncontact measurement. And it is necessary to analyze and study the reliability and application range of its linear model which is often used in the camera calibration. According to the imaging features of monocular cameras, a camera model which is based on the image pixel coordinates and three dimensional space coordinates is built. Using our own customized template, the image pixel coordinate is obtained by the subpixel corner detection method. Without considering the aberration of the optical system, the feature extraction and linearity analysis of the line segment in the template are performed. Moreover, the experiment is repeated 11 times by constantly varying the measuring distance. At last, the linearity of the camera is achieved by fitting 11 groups of data. The camera model measurement results show that the relative error does not exceed 1%, and the repeated measurement error is not more than 0.1 mm magnitude. Meanwhile, it is found that the model has some measurement differences in the different region and object distance. The experiment results show this linear model is simple and practical, and have good linearity within a certain object distance. These experiment results provide a powerful basis for establishment of the linear model of camera. These works will have potential value to the actual engineering measurement.Keywords: camera linear model, geometric imaging relationship, image pixel coordinates, three dimensional space coordinates, sub-pixel corner detection
Procedia PDF Downloads 2775324 Intensifying Approach for Separation of Bio-Butanol Using Ionic Liquid as Green Solvent: Moving Towards Sustainable Biorefinery
Authors: Kailas L. Wasewar
Abstract:
Biobutanol has been considered as a potential and alternative biofuel relative to the most popular biodiesel and bioethanol. End product toxicity is the major problems in commercialization of fermentation based process which can be reduce to some possible extent by removing biobutanol simultaneously. Several techniques have been investigated for removing butanol from fermentation broth such as stripping, adsorption, liquid–liquid extraction, pervaporation, and membrane solvent extraction. Liquid–liquid extraction can be performed with high selectivity and is possible to carry out inside the fermenter. Conventional solvents have few drawbacks including toxicity, loss of solvent, high cost etc. Hence alternative solvents must be explored for the same. Room temperature ionic liquids (RTILs) composed entirely of ions are liquid at room temperature having negligible vapor pressure, non-flammability, and tunable physiochemical properties for a particular application which term them as “designer solvents”. Ionic liquids (ILs) have recently gained much attention as alternatives for organic solvents in many processes. In particular, ILs have been used as alternative solvents for liquid–liquid extraction. Their negligible vapor pressure allows the extracted products to be separated from ILs by conventional low pressure distillation with the potential for saving energy. Morpholinium, imidazolium, ammonium, phosphonium etc. based ionic liquids have been employed for the separation biobutanol. In present chapter, basic concepts of ionic liquids and application in separation have been presented. Further, type of ionic liquids including, conventional, functionalized, polymeric, supported membrane, and other ionic liquids have been explored. Also the effect of various performance parameters on separation of biobutanol by ionic liquids have been discussed and compared for different cation and anion based ionic liquids. The typical methodology for investigation have been adopted such as contacting the equal amount of biobutanol and ionic liquids for a specific time say, 30 minutes to confirm the equilibrium. Further, biobutanol phase were analyzed using GC to know the concentration of biobutanol and material balance were used to find the concentration in ionic liquid.Keywords: biobutanol, separation, ionic liquids, sustainability, biorefinery, waste biomass
Procedia PDF Downloads 915323 Extraction and Uses of Essential Oil
Authors: Ram Prasad Baral
Abstract:
A large number of herb materials contain Essential Oils with extensive bioactivities. Acknowledging the importance of plants and its medicinal value, extraction of Essential Oil had been done using Steam Distillation method. In this project, Steam Distillation was used to extract oil from different plant materials like Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha Arvensia, Nardostachys Jatamansi, Wintergreen Essential Oil, and Valeriana Officinalis. Research has confirmed centuries of practical use of essential oils, and we now know that the 'fragrant pharmacy' contains compounds with an extremely broad range of biochemical effects. Essential oils are so termed as they are believed to represent the very essence of odor and flavor. The recovery of Essential Oil from the raw botanical starting material is very important since the quality of the oil is greatly influenced during this step. There is a variety of methods for obtaining volatile oils from plants. Steam distillation method was found to be one of the promising techniques for the extraction of essential oil from plants as reputable distiller will preserve the original qualities of the plant. The distillation was conducted in Clevenger apparatus in which boiling, condensing, and decantation was done. Analysis of essential oil was done using Gas Chromatography-Mass Spectrometer apparatus, which gives evaluates essential oil qualitatively and quantitatively. The volume of essential oil obtained was changing with respect to temperature and time of heating.Keywords: Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha
Procedia PDF Downloads 3245322 A Comprehensive Analysis of LACK (Leishmania Homologue of Receptors for Activated C Kinase) in the Context of Visceral Leishmaniasis
Authors: Sukrat Sinha, Abhay Kumar, Shanthy Sundaram
Abstract:
The Leishmania homologue of activated C kinase (LACK) is known T cell epitope from soluble Leishmania antigens (SLA) that confers protection against Leishmania challenge. This antigen has been found to be highly conserved among Leishmania strains. LACK has been shown to be protective against L. donovani challenge. A comprehensive analysis of several LACK sequences was completed. The analysis shows a high level of conservation, lower variability and higher antigenicity in specific portions of the LACK protein. This information provides insights for the potential consideration of LACK as a putative candidate in the context of visceral Leishmaniasis vaccine target.Keywords: bioinformatics, genome assembly, leishmania activated protein kinase c (lack), next-generation sequencing
Procedia PDF Downloads 3385321 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals
Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle
Abstract:
This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.Keywords: bioleaching, extraction, microorganisms, soil, polluted, Thiobacillus ferooxidans
Procedia PDF Downloads 161