Search results for: classification techniques
7864 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation
Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian
Abstract:
The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction
Procedia PDF Downloads 1057863 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study
Authors: Zeba Mahmood
Abstract:
The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining
Procedia PDF Downloads 5397862 White Wine Discrimination Based on Deconvoluted Surface Enhanced Raman Spectroscopy Signals
Authors: Dana Alina Magdas, Nicoleta Simona Vedeanu, Ioana Feher, Rares Stiufiuc
Abstract:
Food and beverages authentication using rapid and non-expensive analytical tools represents nowadays an important challenge. In this regard, the potential of vibrational techniques in food authentication has gained an increased attention during the last years. For wines discrimination, Raman spectroscopy appears more feasible to be used as compared with IR (infrared) spectroscopy, because of the relatively weak water bending mode in the vibrational spectroscopy fingerprint range. Despite this, the use of Raman technique in wine discrimination is in an early stage. Taking this into consideration, the wine discrimination potential of surface-enhanced Raman scattering (SERS) technique is reported in the present work. The novelty of this study, compared with the previously reported studies, concerning the application of vibrational techniques in wine discrimination consists in the fact that the present work presents the wines differentiation based on the individual signals obtained from deconvoluted spectra. In order to achieve wines classification with respect to variety, geographical origin and vintage, the peaks intensities obtained after spectra deconvolution were compared using supervised chemometric methods like Linear Discriminant Analysis (LDA). For this purpose, a set of 20 white Romanian wines from different viticultural Romanian regions four varieties, was considered. Chemometric methods applied directly to row SERS experimental spectra proved their efficiency, but discrimination markers identification found to be very difficult due to the overlapped signals as well as for the band shifts. By using this approach, a better general view related to the differences that appear among the wines in terms of compositional differentiation could be reached.Keywords: chemometry, SERS, variety, wines discrimination
Procedia PDF Downloads 1637861 Classification Rule Discovery by Using Parallel Ant Colony Optimization
Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan
Abstract:
Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery
Procedia PDF Downloads 3007860 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects
Authors: Karan Sharma, Ajay Kumar
Abstract:
Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.Keywords: EEG signal, Reiki, time consuming, epileptic seizure
Procedia PDF Downloads 4097859 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3997858 Incidences and Factors Associated with Perioperative Cardiac Arrest in Trauma Patient Receiving Anesthesia
Authors: Visith Siriphuwanun, Yodying Punjasawadwong, Suwinai Saengyo, Kittipan Rerkasem
Abstract:
Objective: To determine incidences and factors associated with perioperative cardiac arrest in trauma patients who received anesthesia for emergency surgery. Design and setting: Retrospective cohort study in trauma patients during anesthesia for emergency surgery at a university hospital in northern Thailand country. Patients and methods: This study was permitted by the medical ethical committee, Faculty of Medicine at Maharaj Nakorn Chiang Mai Hospital, Thailand. We clarified data of 19,683 trauma patients receiving anesthesia within a decade between January 2007 to March 2016. The data analyzed patient characteristics, traumas surgery procedures, anesthesia information such as ASA physical status classification, anesthesia techniques, anesthetic drugs, location of anesthesia performed, and cardiac arrest outcomes. This study excluded the data of trauma patients who had received local anesthesia by surgeons or monitoring anesthesia care (MAC) and the patient which missing more information. The factor associated with perioperative cardiac arrest was identified with univariate analyses. Multiple regressions model for risk ratio (RR) and 95% confidence intervals (CI) were used to conduct factors correlated with perioperative cardiac arrest. The multicollinearity of all variables was examined by bivariate correlation matrix. A stepwise algorithm was chosen at a p-value less than 0.02 was selected to further multivariate analysis. A P-value of less than 0.05 was concluded as statistically significant. Measurements and results: The occurrence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was 170.04 per 10,000 cases. Factors associated with perioperative cardiac arrest in trauma patients were age being more than 65 years (RR=1.41, CI=1.02–1.96, p=0.039), ASA physical status 3 or higher (RR=4.19–21.58, p < 0.001), sites of surgery (intracranial, intrathoracic, upper intra-abdominal, and major vascular, each p < 0.001), cardiopulmonary comorbidities (RR=1.55, CI=1.10–2.17, p < 0.012), hemodynamic instability with shock prior to receiving anesthesia (RR=1.60, CI=1.21–2.11, p < 0.001) , special techniques for surgery such as cardiopulmonary bypass (CPB) and hypotensive techniques (RR=5.55, CI=2.01–15.36, p=0.001; RR=6.24, CI=2.21–17.58, p=0.001, respectively), and patients who had a history of being alcoholic (RR=5.27, CI=4.09–6.79, p < 0.001). Conclusion: Incidence of perioperative cardiac arrest in trauma patients receiving anesthesia for emergency surgery was very high and correlated with many factors, especially age of patient and cardiopulmonary comorbidities, patient having a history of alcoholic addiction, increasing ASA physical status, preoperative shock, special techniques for surgery, and sites of surgery including brain, thorax, abdomen, and major vascular region. Anesthesiologists and multidisciplinary teams in pre- and perioperative periods should remain alert for warning signs of pre-cardiac arrest and be quick to manage the high-risk group of surgical trauma patients. Furthermore, a healthcare policy should be promoted for protecting against accidents in high-risk groups of the population as well.Keywords: perioperative cardiac arrest, trauma patients, emergency surgery, anesthesia, factors risk, incidence
Procedia PDF Downloads 1727857 A Study of the Performance Parameter for Recommendation Algorithm Evaluation
Authors: C. Rana, S. K. Jain
Abstract:
The enormous amount of Web data has challenged its usage in efficient manner in the past few years. As such, a range of techniques are applied to tackle this problem; prominent among them is personalization and recommender system. In fact, these are the tools that assist user in finding relevant information of web. Most of the e-commerce websites are applying such tools in one way or the other. In the past decade, a large number of recommendation algorithms have been proposed to tackle such problems. However, there have not been much research in the evaluation criteria for these algorithms. As such, the traditional accuracy and classification metrics are still used for the evaluation purpose that provides a static view. This paper studies how the evolution of user preference over a period of time can be mapped in a recommender system using a new evaluation methodology that explicitly using time dimension. We have also presented different types of experimental set up that are generally used for recommender system evaluation. Furthermore, an overview of major accuracy metrics and metrics that go beyond the scope of accuracy as researched in the past few years is also discussed in detail.Keywords: collaborative filtering, data mining, evolutionary, clustering, algorithm, recommender systems
Procedia PDF Downloads 4197856 Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data
Authors: Navya Saira George, Patroba Achola Odera
Abstract:
This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s.Keywords: Geographical Information Systems, Kochi City, Land use/cover, Remote Sensing, Urban Sprawl
Procedia PDF Downloads 1347855 Revealing the Manufacturing Techniques of the Leather Scale Armour of Tutankhamun by the Assist of Conservation Procedures
Authors: Safwat Mohamed, Rasha Metawi, Hadeel Khalil, Hussein Kamal
Abstract:
This paper discusses and reveals the manufacturing techniques of the leather scale armour of Tutankhamun. This armour was in critical condition and went under many conservation procedures as it suffered from some serious deterioration aspects including fragmentation. In addition, its original shape was lost, the leather scales were found scattered in the box and separated from the linen basis, and hence its outlines were blurred and incomprehensible. In view of this, the leather scale armour of Tutankhamun was desperate for urgent conservation and reconstruction interventions. Documentation measures were done before conservation. Several re-treatable conservation procedures were applied seeking for stabilizing the armour and reaching sustainable condition. The conservation treatments included many investigations and analyses that helped in revealing materials and techniques of making the armour. The leather scale armour of Tutankhamun consisted of leather scales attached to a linen support. This linen support consisted of several layers. Howard Carter assumed that the linen support consisted of 6 layers. The undertaken conservation treatments helped in revealing the actual number of layers of the linen support as well as in reaching the most sustainable condition. This paper views the importance of the conservation procedures, which were recently carried out on Tutankhamun’s leather scale armour, in identifying and revealing all materials and techniques used in its manufacturing. The collected data about manufacturing techniques were used in making a replica of the leather scale armour with the same methods and materials.Keywords: leather scales armours, conservation, manufacturing techniques, Tutankhamun, producing a replica
Procedia PDF Downloads 1057854 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 3607853 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices
Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim
Abstract:
In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer
Procedia PDF Downloads 3357852 The Role of Questioning Techniques in a Literature Classroom
Authors: Barbara Magallona
Abstract:
Given the observations between students who were active participants in a dialogue with their teacher and students who simply answered the teacher’s questions, the researcher will investigate the relationship between student-teacher dialogue in the classroom and the development of higher level thinking skills with an emphasis on the questioning techniques used by the teacher. The study posits the main question: What is the relationship between teachers’ questioning techniques and the development of students’ higher level thinking skills in a literature class (or in literature classes) in Xavier? The following are the study’s sub-questions: a) What types of questions do literature teachers at Xavier School ask? b) What types of responses do literature students at Xavier School give to teachers' questions? c) To what extent is the development of students' higher level thinking skills shown in teacher-student classroom dialogues in Xavier School's literature classroom? Since questioning techniques and student responses in the literature classroom form the core of this paper and in order to evaluate them, the study uses Andersen and Krathwohl’s revision of Harold Bloom’s Taxonomy of Educational Objectives. Teun van Dijk’s discourse-cognition-society triangle will be used as a theoretical framework to design and to guide the classroom interaction.Keywords: discourse analysis, literature classroom, questioning techniques, secondary education
Procedia PDF Downloads 5327851 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3417850 Coping with the Stress and Negative Emotions of Care-Giving by Using Techniques from Seneca, Epictetus, and Marcus Aurelius
Authors: Arsalan Memon
Abstract:
There are many challenges that a caregiver faces in average everyday life. One such challenge is coping with the stress and negative emotions of caregiving. The Stoics (i.e. Lucius Annaeus Seneca [4 B.C.E. - 65 C.E.], Epictetus [50-135 C.E.], and Marcus Aurelius [121-180 C.E.]) have provided coping techniques that are useful for dealing with stress and negative emotions. This paper lists and explains some of the fundamental coping techniques provided by the Stoics. For instance, some Stoic coping techniques thus follow (the list is far from exhaustive): a) mindfulness: to the best of your ability, constantly being aware of your thoughts, habits, desires, norms, memories, likes/dislikes, beliefs, values, and of everything outside of you in the world (b) constantly adjusting one’s expectations in accordance with reality, c) memento mori: constantly reminding oneself that death is inevitable and that death is not to be seen as evil, and d) praemeditatio malorum: constantly detaching oneself from everything that is so dear to one so that the least amount of suffering follows from the loss, damage, or ceasing to be of such entities. All coping techniques will be extracted from the following original texts by the Stoics: Seneca’s Letters to Lucilius, Epictetus’ Discourses and the Encheiridion, and Marcus Aurelius’ Meditations. One major finding is that the usefulness of each Stoic coping technique can be empirically tested by anyone in the sense of applying it one’s own life especially when one is facing real-life challenges. Another major finding is that all of the Stoic coping techniques are predicated upon, and follow from, one fundamental principle: constantly differentiate what is and what is not in one’s control. After differentiating it, one should constantly habituate oneself in not controlling things that are beyond one’s control. For example, the following things are beyond one’s control (all things being equal): death, certain illnesses, being born in a particular socio-economic family, etc. The conclusion is that if one habituates oneself by practicing to the best of one’s ability both the fundamental Stoic principle and the Stoic coping techniques, then such a habitual practice can eventually decrease the stress and negative emotions that one experiences by being a caregiver.Keywords: care-giving, coping techniques, negative emotions, stoicism, stress
Procedia PDF Downloads 1477849 On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing
Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane
Abstract:
Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques.Keywords: mathematical modelling, optimization, emerging trends, advanced manufacturing
Procedia PDF Downloads 3027848 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network
Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir
Abstract:
Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS
Procedia PDF Downloads 4057847 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 1647846 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification
Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar
Abstract:
Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings
Procedia PDF Downloads 1797845 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.Keywords: routing, sensor, survey, wireless sensor networks, WSNs
Procedia PDF Downloads 1887844 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe, V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: diabetic retinopathy, fundus images, STARE, Gabor filter, support vector machine
Procedia PDF Downloads 2967843 Review of Dielectric Permittivity Measurement Techniques
Authors: Ahmad H. Abdelgwad, Galal E. Nadim, Tarek M. Said, Amr M. Gody
Abstract:
The prime objective of this manuscript is to provide intensive review of the techniques used for permittivity measurements. The measurement techniques, relevant for any desired application, rely on the nature of the measured dielectric material, both electrically and physically, the degree of accuracy required, and the frequency of interest. Regardless of the way that distinctive sorts of instruments can be utilized, measuring devices that provide reliable determinations of the required electrical properties including the obscure material in the frequency range of interest can be considered. The challenge in making precise dielectric property or permittivity measurements is in designing of the material specimen holder for those measurements (RF and MW frequency ranges) and adequately modeling the circuit for reliable computation of the permittivity from the electrical measurements. If the RF circuit parameters such as the impedance or admittance are estimated appropriately at a certain frequency, the material’s permittivity at this frequency can be estimated by the equations which relate the way in which the dielectric properties of the material affect on the parameters of the circuit.Keywords: dielectric permittivity, free space measurement, waveguide techniques, coaxial probe, cavity resonator
Procedia PDF Downloads 3717842 Strategies for Improving Teaching and Learning in Higher Institutions: Case Study of Enugu State University of Science and Technology, Nigeria
Authors: Gertrude Nkechi Okenwa
Abstract:
Higher institutions, especially the universities that are saddled with the responsibilities of teaching, learning, research, publications and social services for the production of graduates that are worthy in learning and character, and the creation of up-to-date knowledge and innovations for the total socio-economic and even political development of a given nation. Therefore, the purpose of the study was to identify the teaching, learning techniques used in the Enugu State University of Science and Technology to ensure or ascertain students’ perception on these techniques. To guide the study, survey research method was used. The population for the study was made up of second and final year students which summed up to one hundred and twenty-six students in the faculty of education. Stratified random sampling technique was adopted. A sample size of sixty (60) students was drawn for the study. The instrument used for data collection was questionnaire. To analyze the data, mean and standard deviation were used to answers the research questions. The findings revealed that direct instruction and construction techniques are used in the university. On the whole, it was observed that the students perceived constructivist techniques to be more useful and effective than direct instruction technique. Based on the findings recommendations were made to include diversification of teaching techniques among others.Keywords: Strategies, Teaching and Learning, Constructive Technique, Direct Instructional Technique
Procedia PDF Downloads 5467841 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining
Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre
Abstract:
Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systemsKeywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format
Procedia PDF Downloads 747840 Next-Viz: A Literature Review and Web-Based Visualization Tool Proposal
Authors: Railly Hugo, Igor Aguilar-Alonso
Abstract:
Software visualization is a powerful tool for understanding complex software systems. However, current visualization tools often lack features or are difficult to use, limiting their effectiveness. In this paper, we present next-viz, a proposed web-based visualization tool that addresses these challenges. We provide a literature review of existing software visualization techniques and tools and describe the architecture of next-viz in detail. Our proposed tool incorporates state-of-the-art visualization techniques and is designed to be user-friendly and intuitive. We believe next-viz has the potential to advance the field of software visualization significantly.Keywords: software visualization, literature review, tool proposal, next-viz, web-based, architecture, visualization techniques, user-friendly, intuitive
Procedia PDF Downloads 897839 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 4347838 Medical Neural Classifier Based on Improved Genetic Algorithm
Authors: Fadzil Ahmad, Noor Ashidi Mat Isa
Abstract:
This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy
Procedia PDF Downloads 4767837 A Computer-Aided System for Detection and Classification of Liver Cirrhosis
Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy
Abstract:
This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy
Procedia PDF Downloads 4637836 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 407835 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 40