Search results for: one side class algorithm
258 (Anti)Depressant Effects of Non-Steroidal Antiinflammatory Drugs in Mice
Authors: Horia Păunescu
Abstract:
Purpose: The study aimed to assess the depressant or antidepressant effects of several Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in mice: the selective cyclooxygenase-2 (COX-2) inhibitor meloxicam, and the non-selective COX-1 and COX-2 inhibitors lornoxicam, sodium metamizole, and ketorolac. The current literature data regarding such effects of these agents are scarce. Materials and methods: The study was carried out on NMRI mice weighing 20-35 g, kept in a standard laboratory environment. The study was approved by the Ethics Committee of the University of Medicine and Pharmacy „Carol Davila”, Bucharest. The study agents were injected intraperitoneally, 10 mL/kg body weight (bw) 1 hour before the assessment of the locomotor activity by cage testing (n=10 mice/ group) and 2 hours before the forced swimming tests (n=15). The study agents were dissolved in normal saline (meloxicam, sodium metamizole), ethanol 11.8% v/v in normal saline (ketorolac), or water (lornoxicam), respectively. Negative and positive control agents were also given (amitryptilline in the forced swimming test). The cage floor used in the locomotor activity assessment was divided into 20 equal 10 cm squares. The forced swimming test involved partial immersion of the mice in cylinders (15/9cm height/diameter) filled with water (10 cm depth at 28C), where they were left for 6 minutes. The cage endpoint used in the locomotor activity assessment was the number of treaded squares. Four endpoints were used in the forced swimming test (immobility latency for the entire 6 minutes, and immobility, swimming, and climbing scores for the final 4 minutes of the swimming session), recorded by an observer that was "blinded" to the experimental design. The statistical analysis used the Levene test for variance homogeneity, ANOVA and post-hoc analysis as appropriate, Tukey or Tamhane tests.Results: No statistically significant increase or decrease in the number of treaded squares was seen in the locomotor activity assessment of any mice group. In the forced swimming test, amitryptilline showed an antidepressant effect in each experiment, at the 10 mg/kg bw dosage. Sodium metamizole was depressant at 100 mg/kg bw (increased the immobility score, p=0.049, Tamhane test), but not in lower dosages as well (25 and 50 mg/kg bw). Ketorolac showed an antidepressant effect at the intermediate dosage of 5 mg/kg bw, but not so in the dosages of 2.5 and 10 mg/kg bw, respectively (increased the swimming score, p=0.012, Tamhane test). Meloxicam and lornoxicam did not alter the forced swimming endpoints at any dosage level. Discussion: 1) Certain NSAIDs caused changes in the forced swimming patterns without interfering with locomotion. 2) Sodium metamizole showed a depressant effect, whereas ketorolac proved antidepressant. Conclusion: NSAID-induced mood changes are not class effects of these agents and apparently are independent of the type of inhibited cyclooxygenase (COX-1 or COX-2). Disclosure: This paper was co-financed from the European Social Fund, through the Sectorial Operational Programme Human Resources Development 2007-2013, project number POSDRU /159 /1.5 /S /138907 "Excellence in scientific interdisciplinary research, doctoral and postdoctoral, in the economic, social and medical fields -EXCELIS", coordinator The Bucharest University of Economic Studies.Keywords: antidepressant, depressant, forced swim, NSAIDs
Procedia PDF Downloads 234257 Learning-Teaching Experience about the Design of Care Applications for Nursing Professionals
Authors: A. Gonzalez Aguna, J. M. Santamaria Garcia, J. L. Gomez Gonzalez, R. Barchino Plata, M. Fernandez Batalla, S. Herrero Jaen
Abstract:
Background: Computer Science is a field that transcends other disciplines of knowledge because it allows to support all kinds of physical and mental tasks. Health centres have a greater number and complexity of technological devices and the population consume and demand services derived from technology. Also, nursing education plans have included competencies related to and, even, courses about new technologies are offered to health professionals. However, nurses still limit their performance to the use and evaluation of products previously built. Objective: Develop a teaching-learning methodology for acquiring skills on designing applications for care. Methodology: Blended learning teaching with a group of graduate nurses through official training within a Master's Degree. The study sample was selected by intentional sampling without exclusion criteria. The study covers from 2015 to 2017. The teaching sessions included a four-hour face-to-face class and between one and three tutorials. The assessment was carried out by written test consisting of the preparation of an IEEE 830 Standard Specification document where the subject chosen by the student had to be a problem in the area of care. Results: The sample is made up of 30 students: 10 men and 20 women. Nine students had a degree in nursing, 20 diploma in nursing and one had a degree in Computer Engineering. Two students had a degree in nursing specialty through residence and two in equivalent recognition by exceptional way. Except for the engineer, no subject had previously received training in this regard. All the sample enrolled in the course received the classroom teaching session, had access to the teaching material through a virtual area and maintained at least one tutoring. The maximum of tutorials were three with an hour in total. Among the material available for consultation was an example of a document drawn up based on the IEEE Standard with an issue not related to care. The test to measure competence was completed by the whole group and evaluated by a multidisciplinary teaching team of two computer engineers and two nurses. Engineers evaluated the correctness of the characteristics of the document and the degree of comprehension in the elaboration of the problem and solution elaborated nurses assessed the relevance of the chosen problem statement, the foundation, originality and correctness of the proposed solution and the validity of the application for clinical practice in care. The results were of an average grade of 8.1 over 10 points, a range between 6 and 10. The selected topic barely coincided among the students. Examples of care areas selected are care plans, family and community health, delivery care, administration and even robotics for care. Conclusion: The applied methodology of learning-teaching for the design of technologies demonstrates the success in the training of nursing professionals. The role of expert is essential to create applications that satisfy the needs of end users. Nursing has the possibility, the competence and the duty to participate in the process of construction of technological tools that are going to impact in care of people, family and community.Keywords: care, learning, nursing, technology
Procedia PDF Downloads 136256 Artificial Neural Networks Application on Nusselt Number and Pressure Drop Prediction in Triangular Corrugated Plate Heat Exchanger
Authors: Hany Elsaid Fawaz Abdallah
Abstract:
This study presents a new artificial neural network(ANN) model to predict the Nusselt Number and pressure drop for the turbulent flow in a triangular corrugated plate heat exchanger for forced air and turbulent water flow. An experimental investigation was performed to create a new dataset for the Nusselt Number and pressure drop values in the following range of dimensionless parameters: The plate corrugation angles (from 0° to 60°), the Reynolds number (from 10000 to 40000), pitch to height ratio (from 1 to 4), and Prandtl number (from 0.7 to 200). Based on the ANN performance graph, the three-layer structure with {12-8-6} hidden neurons has been chosen. The training procedure includes back-propagation with the biases and weight adjustment, the evaluation of the loss function for the training and validation dataset and feed-forward propagation of the input parameters. The linear function was used at the output layer as the activation function, while for the hidden layers, the rectified linear unit activation function was utilized. In order to accelerate the ANN training, the loss function minimization may be achieved by the adaptive moment estimation algorithm (ADAM). The ‘‘MinMax’’ normalization approach was utilized to avoid the increase in the training time due to drastic differences in the loss function gradients with respect to the values of weights. Since the test dataset is not being used for the ANN training, a cross-validation technique is applied to the ANN network using the new data. Such procedure was repeated until loss function convergence was achieved or for 4000 epochs with a batch size of 200 points. The program code was written in Python 3.0 using open-source ANN libraries such as Scikit learn, TensorFlow and Keras libraries. The mean average percent error values of 9.4% for the Nusselt number and 8.2% for pressure drop for the ANN model have been achieved. Therefore, higher accuracy compared to the generalized correlations was achieved. The performance validation of the obtained model was based on a comparison of predicted data with the experimental results yielding excellent accuracy.Keywords: artificial neural networks, corrugated channel, heat transfer enhancement, Nusselt number, pressure drop, generalized correlations
Procedia PDF Downloads 87255 Developing and integrated Clinical Risk Management Model
Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei
Abstract:
Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.Keywords: failure modes and effective analysis, risk management, root cause analysis, model
Procedia PDF Downloads 249254 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 143253 A Qualitative Exploration of the Sexual and Reproductive Health Practices of Adolescent Mothers from Indigenous Populations in Ratanak Kiri Province, Cambodia
Authors: Bridget J. Kenny, Elizabeth Hoban, Jo Williams
Abstract:
Adolescent pregnancy presents a significant public health challenge for Cambodia. Despite declines in the overall fertility rate, the adolescent fertility rate is increasing. Adolescent pregnancy is particularly problematic in the Northeast provinces of Ratanak Kiri and Mondul Kiri where 34 percent of girls aged between 15 and 19 have begun childbearing; this is almost three times Cambodia’s national average of 12 percent. Language, cultural and geographic barriers have restricted qualitative exploration of the sexual and reproductive health (SRH) challenges that face indigenous adolescents in Northeast Cambodia. The current study sought to address this gap by exploring the SRH practices of adolescent mothers from indigenous populations in Ratanak Kiri Province. Twenty-two adolescent mothers, aged between 15 and 19, were recruited from seven indigenous villages in Ratanak Kiri Province and asked to participate in a combined body mapping exercise and semi-structured interview. Participants were given a large piece of paper (59.4 x 84.1 cm) with the outline of a female body and asked to draw the female reproductive organs onto the ‘body map’. Participants were encouraged to explain what they had drawn with the purpose of evoking conversation about their reproductive bodies. Adolescent mothers were then invited to participate in a semi-structured interview to further expand on topics of SRH. The qualitative approach offered an excellent avenue to explore the unique SRH challenges that face indigenous adolescents in rural Cambodia. In particular, the use of visual data collection methods reduced the language and cultural barriers that have previously restricted or prevented qualitative exploration of this population group. Thematic analysis yielded six major themes: (1) understanding of the female reproductive body, (2) contraceptive knowledge, (3) contraceptive use, (4) barriers to contraceptive use, (5) sexual practices, (6) contact with healthcare facilities. Participants could name several modern contraceptive methods and knew where they could access family planning services. However, adolescent mothers explained that they gained this knowledge during antenatal care visits and consequently participants had limited SRH knowledge, including contraceptive awareness, at the time of sexual initiation. Fear of the perceived side effects of modern contraception, including infertility, provided an additional barrier to contraceptive use for indigenous adolescents. Participants did not cite cost or geographic isolation as barriers to accessing SRH services. Child marriage and early sexual initiation were also identified as important factors contributing to the high prevalence of adolescent pregnancy in this population group. The findings support the Ministry of Education, Youth and Sports' (MoEYS) recent introduction of SRH education into the primary and secondary school curriculum but suggest indigenous girls in rural Cambodia require additional sources of SRH information. Results indicate adolescent girls’ first point of contact with healthcare facilities occurs after they become pregnant. Promotion of an effective continuum of care by increasing access to healthcare services during the pre-pregnancy period is suggested as a means of providing adolescents girls with an additional avenue to acquire SRH information.Keywords: adolescent pregnancy, contraceptive use, family planning, sexual and reproductive health
Procedia PDF Downloads 113252 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264
Authors: V. Ziegler, F. Schneider, M. Pesch
Abstract:
With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection
Procedia PDF Downloads 151251 Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River
Authors: Emery Coppola Jr., Marwan Sadat, Il Kim, Diane Trube, Richard Kurisko
Abstract:
Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study.Keywords: groundwater flow and contaminant transport modeling, groundwater/surface water interaction, landfill leachate, surface water quality modeling
Procedia PDF Downloads 260250 Investigation of Subsurface Structures within Bosso Local Government for Groundwater Exploration Using Magnetic and Resistivity Data
Authors: Adetona Abbassa, Aliyu Shakirat B.
Abstract:
The study area is part of Bosso local Government, enclosed within Longitude 6.25’ to 6.31’ and Latitude 9.35’ to 9.45’, an area of 16x8 km², within the basement region of central Nigeria. The region is a host to Nigerian Airforce base 12 (NAF 12quick response) and its staff quarters, the headquarters of Bosso local government, the Independent National Electoral Commission’s two offices, four government secondary schools, six primary schools and Minna international airport. The area suffers an acute shortage of water from November when rains stop to June when rains commence within North Central Nigeria. A way of addressing this problem is a reconnaissance method to delineate possible fractures and fault lines that exists within the region by sampling the Aeromagnetic data and using an appropriate analytical algorithm to delineate these fractures. This is followed by an appropriate ground truthing method that will confirm if the fracture is connected to underground water movement. The first vertical derivative for structural analysis, reveals a set of lineaments labeled AA’, BB’, CC’, DD’, EE’ and FF’ all trending in the Northeast – Southwest directions. AA’ is just below latitude 9.45’ above Maikunkele village, cutting off the upper part of the field, it runs through Kangwo, Nini, Lawo and other communities. BB’ is at Latitude 9.43’ it truncated at about 2Km before Maikunkele and Kuyi. CC’ is around 9.40’ sitting below Maikunkele runs down through Nanaum. DD’ is from Latitude 9.38’; interestingly no community within this region where the fault passes through. A result from the three sites where Vertical Electrical Sounding was carried out reveals three layers comprised of topsoil, intermediate Clay formation and weathered/fractured or fresh basement. The depth to basement map was also produced, depth to the basement from the ground surface with VES A₂, B5, D₂ and E₁ to be relatively deeper with depth values range between 25 to 35 m while the shallower region of the area has a depth range value between 10 to 20 m. Hence, VES A₂, A₅, B₄, B₅, C₂, C₄, D₄, D₅, E₁, E₃, and F₄ are high conductivity zone that are prolific for groundwater potential. The depth range of the aquifer potential zones is between 22.7 m to 50.4 m. The result from site C is quite unique though the 3 layers were detected in the majority of the VES points, the maximum depth to the basement in 90% of the VES points is below 8 km, only three VES points shows considerably viability, which are C₆, E₂ and F₂ with depths of 35.2 m and 38 m respectively but lack of connectivity will be a big challenge of chargeability.Keywords: lithology, aeromagnetic, aquifer, geoelectric, iso-resistivity, basement, vertical electrical sounding(VES)
Procedia PDF Downloads 139249 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 15248 Simple Model of Social Innovation Based on Entrepreneurship Incidence in Mexico
Authors: Vicente Espinola, Luis Torres, Christhian Gonzalez
Abstract:
Entrepreneurship is a topic of current interest in Mexico and the World, which has been fostered through public policies with great impact on its generation. The strategies used in Mexico have not been successful, being motivational strategies aimed at the masses with the intention that someone in the process generates a venture. The strategies used for its development have been "picking of winners" favoring those who have already overcome the initial stages of undertaking without effective support. This situation shows a disarticulation that appears even more in social entrepreneurship; due to this, it is relevant to research on those elements that could develop them and thus integrate a model of entrepreneurship and social innovation for Mexico. Social entrepreneurship should be generating social innovation, which is translated into business models in order to make the benefits reach the population. These models are proposed putting the social impact before the economic impact, without forgetting its sustainability in the medium and long term. In this work, we present a simple model of innovation and social entrepreneurship for Guanajuato, Mexico. This algorithm was based on how social innovation could be generated in a systemic way for Mexico through different institutions that promote innovation. In this case, the technological parks of the state of Guanajuato were studied because these are considered one of the areas of Mexico where its main objectives are to make technology transfer to companies but overlooking the social sector and entrepreneurs. An experimental design of n = 60 was carried out with potential entrepreneurs to identify their perception of the social approach that the enterprises should have, the skills they consider required to create a venture, as well as their interest in generating ventures that solve social problems. This experiment had a 2K design, the value of k = 3 and the computational simulation was performed in R statistical language. A simple model of interconnected variables is proposed, which allows us to identify where it is necessary to increase efforts for the generation of social enterprises. The 96.67% of potential entrepreneurs expressed interest in ventures that solve social problems. In the analysis of the variables interaction, it was identified that the isolated development of entrepreneurial skills would only replicate the generation of traditional ventures. The variable of social approach presented positive interactions, which may influence the generation of social entrepreneurship if this variable was strengthened and permeated in the processes of training and development of entrepreneurs. In the future, it will be necessary to analyze the institutional actors that are present in the social entrepreneurship ecosystem, in order to analyze the interaction necessary to strengt the innovation and social entrepreneurship ecosystem.Keywords: social innovation, model, entrepreneurship, technological parks
Procedia PDF Downloads 273247 Reproductive Biology and Lipid Content of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean
Authors: Zahirah Dhurmeea, Iker Zudaire, Heidi Pethybridge, Emmanuel Chassot, Maria Cedras, Natacha Nikolic, Jerome Bourjea, Wendy West, Chandani Appadoo, Nathalie Bodin
Abstract:
Scientific advice on the status of fish stocks relies on indicators that are based on strong assumptions on biological parameters such as condition, maturity and fecundity. Currently, information on the biology of albacore tuna, Thunnus alalunga, in the Indian Ocean is scarce. Consequently, many parameters used in stock assessment models for Indian Ocean albacore originate largely from other studied stocks or species of tuna. Inclusion of incorrect biological data in stock assessment models would lead to inappropriate estimates of stock status used by fisheries manager’s to establish future catch allowances. The reproductive biology of albacore tuna in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency, fecundity and fish condition. In addition, the total lipid content (TL) and lipid class composition in the gonads, liver and muscle tissues of female albacore during the reproductive cycle was investigated. A total of 923 female and 867 male albacore were sampled from 2013 to 2015. A bias in sex-ratio was found in favour of females with fork length (LF) <100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF at the vitellogenic 3 oocyte stage maturity threshold. Albacore spawn on average every 2.2 days within the spawning region and spawning months from November to January. Batch fecundity varied between 0.26 and 2.09 million eggs and the relative batch fecundity (mean standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. Depending on the maturity stage, TL in ovaries ranged from 7.5 to 577.8 mg g-1 of wet weight (ww) with different proportions of phospholipids (PL), wax esters (WE), triacylglycerol (TAG) and sterol (ST). The highest TL were observed in immature (mostly TAG and PL) and spawning capable ovaries (mostly PL, WE and TAG). Liver TL varied from 21.1 to 294.8 mg g-1 (ww) and acted as an energy (mainly TAG and PL) storage prior to reproduction when the lowest TL was observed. Muscle TL varied from 2.0 to 71.7 g-1 (ww) in mature females without a clear pattern between maturity stages, although higher values of up to 117.3 g-1 (ww) was found in immature females. TL results suggest that albacore could be viewed predominantly as a capital breeder relying mostly on lipids stored before the onset of reproduction and with little additional energy derived from feeding. This study is the first one to provide new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually promote sustainability of the fishery.Keywords: condition, size-at-maturity, spawning behaviour, temperate tuna, total lipid content
Procedia PDF Downloads 260246 A Study of Non-Coplanar Imaging Technique in INER Prototype Tomosynthesis System
Authors: Chia-Yu Lin, Yu-Hsiang Shen, Cing-Ciao Ke, Chia-Hao Chang, Fan-Pin Tseng, Yu-Ching Ni, Sheng-Pin Tseng
Abstract:
Tomosynthesis is an imaging system that generates a 3D image by scanning in a limited angular range. It could provide more depth information than traditional 2D X-ray single projection. Radiation dose in tomosynthesis is less than computed tomography (CT). Because of limited angular range scanning, there are many properties depending on scanning direction. Therefore, non-coplanar imaging technique was developed to improve image quality in traditional tomosynthesis. The purpose of this study was to establish the non-coplanar imaging technique of tomosynthesis system and evaluate this technique by the reconstructed image. INER prototype tomosynthesis system contains an X-ray tube, a flat panel detector, and a motion machine. This system could move X-ray tube in multiple directions during the acquisition. In this study, we investigated three different imaging techniques that were 2D X-ray single projection, traditional tomosynthesis, and non-coplanar tomosynthesis. An anthropopathic chest phantom was used to evaluate the image quality. It contained three different size lesions (3 mm, 5 mm and, 8 mm diameter). The traditional tomosynthesis acquired 61 projections over a 30 degrees angular range in one scanning direction. The non-coplanar tomosynthesis acquired 62 projections over 30 degrees angular range in two scanning directions. A 3D image was reconstructed by iterative image reconstruction algorithm (ML-EM). Our qualitative method was to evaluate artifacts in tomosynthesis reconstructed image. The quantitative method was used to calculate a peak-to-valley ratio (PVR) that means the intensity ratio of the lesion to the background. We used PVRs to evaluate the contrast of lesions. The qualitative results showed that in the reconstructed image of non-coplanar scanning, anatomic structures of chest and lesions could be identified clearly and no significant artifacts of scanning direction dependent could be discovered. In 2D X-ray single projection, anatomic structures overlapped and lesions could not be discovered. In traditional tomosynthesis image, anatomic structures and lesions could be identified clearly, but there were many artifacts of scanning direction dependent. The quantitative results of PVRs show that there were no significant differences between non-coplanar tomosynthesis and traditional tomosynthesis. The PVRs of the non-coplanar technique were slightly higher than traditional technique in 5 mm and 8 mm lesions. In non-coplanar tomosynthesis, artifacts of scanning direction dependent could be reduced and PVRs of lesions were not decreased. The reconstructed image was more isotropic uniformity in non-coplanar tomosynthesis than in traditional tomosynthesis. In the future, scan strategy and scan time will be the challenges of non-coplanar imaging technique.Keywords: image reconstruction, non-coplanar imaging technique, tomosynthesis, X-ray imaging
Procedia PDF Downloads 366245 Localization of Radioactive Sources with a Mobile Radiation Detection System using Profit Functions
Authors: Luís Miguel Cabeça Marques, Alberto Manuel Martinho Vale, José Pedro Miragaia Trancoso Vaz, Ana Sofia Baptista Fernandes, Rui Alexandre de Barros Coito, Tiago Miguel Prates da Costa
Abstract:
The detection and localization of hidden radioactive sources are of significant importance in countering the illicit traffic of Special Nuclear Materials and other radioactive sources and materials. Radiation portal monitors are commonly used at airports, seaports, and international land borders for inspecting cargo and vehicles. However, these equipment can be expensive and are not available at all checkpoints. Consequently, the localization of SNM and other radioactive sources often relies on handheld equipment, which can be time-consuming. The current study presents the advantages of real-time analysis of gamma-ray count rate data from a mobile radiation detection system based on simulated data and field tests. The incorporation of profit functions and decision criteria to optimize the detection system's path significantly enhances the radiation field information and reduces survey time during cargo inspection. For source position estimation, a maximum likelihood estimation algorithm is employed, and confidence intervals are derived using the Fisher information. The study also explores the impact of uncertainties, baselines, and thresholds on the performance of the profit function. The proposed detection system, utilizing a plastic scintillator with silicon photomultiplier sensors, boasts several benefits, including cost-effectiveness, high geometric efficiency, compactness, and lightweight design. This versatility allows for seamless integration into any mobile platform, be it air, land, maritime, or hybrid, and it can also serve as a handheld device. Furthermore, integration of the detection system into drones, particularly multirotors, and its affordability enable the automation of source search and substantial reduction in survey time, particularly when deploying a fleet of drones. While the primary focus is on inspecting maritime container cargo, the methodologies explored in this research can be applied to the inspection of other infrastructures, such as nuclear facilities or vehicles.Keywords: plastic scintillators, profit functions, path planning, gamma-ray detection, source localization, mobile radiation detection system, security scenario
Procedia PDF Downloads 116244 Magneto-Luminescent Biocompatible Complexes Based on Alloyed Quantum Dots and Superparamagnetic Iron Oxide Nanoparticles
Authors: A. Matiushkina, A. Bazhenova, I. Litvinov, E. Kornilova, A. Dubavik, A. Orlova
Abstract:
Magnetic-luminescent complexes based on superparamagnetic iron oxide nanoparticles (SPIONs) and semiconductor quantum dots (QDs) have been recognized as a new class of materials that have high potential in modern medicine. These materials can serve for theranostics of oncological diseases, and also as a target agent for drug delivery. They combine the qualities characteristic of magnetic nanoparticles, that is, magneto-controllability and the ability to local heating under the influence of an external magnetic field, as well as phosphors, due to luminescence of which, for example, early tumor imaging is possible. The complexity of creating complexes is the energy transfer between particles, which quenches the luminescence of QDs in complexes with SPIONs. In this regard, a relatively new type of alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs is used in our work. The presence of a sufficiently thick gradient semiconductor shell in alloyed QDs makes it possible to reduce the probability of energy transfer from QDs to SPIONs in complexes. At the same time, Forster Resonance Energy Transfer (FRET) is a perfect instrument to confirm the formation of complexes based on QDs and different-type energy acceptors. The formation of complexes in the aprotic bipolar solvent dimethyl sulfoxide is ensured by the coordination of the carboxyl group of the stabilizing QD molecule (L-cysteine) on the surface iron atoms of the SPIONs. An analysis of the photoluminescence (PL) spectra has shown that a sequential increase in the SPIONs concentration in the samples is accompanied by effective quenching of the luminescence of QDs. However, it has not confirmed the formation of complexes yet, because of a decrease in the PL intensity of QDs due to reabsorption of light by SPIONs. Therefore, a study of the PL kinetics of QDs at different SPIONs concentrations was made, which demonstrates that an increase in the SPIONs concentration is accompanied by a symbatic reduction in all characteristic PL decay times. It confirms the FRET from QDs to SPIONs, which indicates the QDs/SPIONs complex formation, rather than a spontaneous aggregation of QDs, which is usually accompanied by a sharp increase in the percentage of the QD fraction with the shortest characteristic PL decay time. The complexes have been studied by the magnetic circular dichroism (MCD) spectroscopy that allows one to estimate the response of magnetic material to the applied magnetic field and also can be useful to check SPIONs aggregation. An analysis of the MCD spectra has shown that the complexes have zero residual magnetization, which is an important factor for using in biomedical applications, and don't contain SPIONs aggregates. Cell penetration, biocompatibility, and stability of QDs/SPIONs complexes in cancer cells have been studied using HeLa cell line. We have found that the complexes penetrate in HeLa cell and don't demonstrate cytotoxic effect up to 25 nM concentration. Our results clearly demonstrate that alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs can be successfully used in complexes with SPIONs reached new hybrid nanostructures, which combine bright luminescence for tumor imaging and magnetic properties for targeted drug delivery and magnetic hyperthermia of tumors. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and was financially supported by Government of Russian Federation, Grant 08-08.Keywords: alloyed quantum dots, magnetic circular dichroism, magneto-luminescent complexes, superparamagnetic iron oxide nanoparticles
Procedia PDF Downloads 118243 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine
Authors: G. Barański, P. Kacejko, M. Wendeker
Abstract:
The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: algorithm, combustion process, radial engine, spark plug
Procedia PDF Downloads 293242 Liability of AI in Workplace: A Comparative Approach Between Shari’ah and Common Law
Authors: Barakat Adebisi Raji
Abstract:
In the workplace, Artificial Intelligence has, in recent years, emerged as a transformative technology that revolutionizes how organizations operate and perform tasks. It is a technology that has a significant impact on transportation, manufacturing, education, cyber security, robotics, agriculture, healthcare, and so many other organizations. By harnessing AI technology, workplaces can enhance productivity, streamline processes, and make more informed decisions. Given the potential of AI to change the way we work and its impact on the labor market in years to come, employers understand that it entails legal challenges and risks despite the advantages inherent in it. Therefore, as AI continues to integrate into various aspects of the workplace, understanding the legal and ethical implications becomes paramount. Also central to this study is the question of who is held liable where AI makes any defaults; the person (company) who created the AI, the person who programmed the AI algorithm or the person who uses the AI? Thus, the aim of this paper is to provide a detailed overview of how AI-related liabilities are addressed under each legal tradition and shed light on potential areas of accord and divergence between the two legal cultures. The objectives of this paper are to (i) examine the ability of Common law and Islamic law to accommodate the issues and damage caused by AI in the workplace and the legality of compensation for such injury sustained; (ii) to discuss the extent to which AI can be described as a legal personality to bear responsibility: (iii) examine the similarities and disparities between Common Law and Islamic Jurisprudence on the liability of AI in the workplace. The methodology adopted in this work was qualitative, and the method was purely a doctrinal research method where information is gathered from the primary and secondary sources of law, such as comprehensive materials found in journal articles, expert-authored books and online news sources. Comparative legal method was also used to juxtapose the approach of Islam and Common Law. The paper concludes that since AI, in its current legal state, is not recognized as a legal entity, operators or manufacturers of AI should be held liable for any damage that arises, and the determination of who bears the responsibility should be dependent on the circumstances surrounding each scenario. The study recommends the granting of legal personality to AI systems, the establishment of legal rights and liabilities for AI, the establishment of a holistic Islamic virtue-based AI ethics framework, and the consideration of Islamic ethics.Keywords: AI, health- care, agriculture, cyber security, common law, Shari'ah
Procedia PDF Downloads 37241 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations
Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer
Abstract:
In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.Keywords: power system, stability, oscillations, power system stabilizer, model reference adaptive control
Procedia PDF Downloads 138240 Cultural Cognition and Voting: Understanding Values and Perceived Risks in the Colombian Population
Authors: Andrea N. Alarcon, Julian D. Castro, Gloria C. Rojas, Paola A. Vaca, Santiago Ortiz, Gustavo Martinez, Pablo D. Lemoine
Abstract:
Recently, electoral results across many countries have shown to be inconsistent with rational decision theory, which states that individuals make decisions based on maximizing benefits and reducing risks. An alternative explanation has emerged: Fear and rage-driven vote have been proved to be highly effective for political persuasion and mobilization. This phenomenon has been evident in the 2016 elections in the United States, 2006 elections in Mexico, 1998 elections in Venezuela, and 2004 elections in Bolivia. In Colombia, it has occurred recently in the 2016 plebiscite for peace and 2018 presidential elections. The aim of this study is to explain this phenomenon using cultural cognition theory, referring to the psychological predisposition individuals have to believe that its own and its peer´s behavior is correct and, therefore, beneficial to the entire society. Cultural cognition refers to the tendency of individuals to fit perceived risks, and factual beliefs into group shared values; the Cultural Cognition Worldview Scales (CCWS) measures cultural perceptions through two different dimensions: Individualism-communitarianism and hierarchy-egalitarianism. The former refers to attitudes towards social dominance based on conspicuous and static characteristics (sex, ethnicity or social class), while the latter refers to attitudes towards a social ordering in which it is expected from individuals to guarantee their own wellbeing without society´s or government´s intervention. A probabilistic national sample was obtained from different polls from the consulting and public opinion company Centro Nacional de Consultoría. Sociodemographic data was obtained along with CCWS scores, a subjective measure of left-right ideological placement and vote intention for 2019 Mayor´s elections were also included in the questionnaires. Finally, the question “In your opinion, what is the greatest risk Colombia is facing right now?” was included to identify perceived risk in the population. Preliminary results show that Colombians are highly distributed among hierarchical communitarians and egalitarian individualists (30.9% and 31.7%, respectively), and to a less extent among hierarchical individualists and egalitarian communitarians (19% and 18.4%, respectively). Males tended to be more hierarchical (p < .000) and communitarian (p=.009) than females. ANOVA´s revealed statistically significant differences between groups (quadrants) for the level of schooling, left-right ideological orientation, and stratum (p < .000 for all), and proportion differences revealed statistically significant differences for groups of age (p < .001). Differences and distributions for vote intention and perceived risks are still being processed and results are yet to be analyzed. Results show that Colombians are differentially distributed among quadrants in regard to sociodemographic data and left-right ideological orientation. These preliminary results indicate that this study may shed some light on why Colombians vote the way they do, and future qualitative data will show the fears emerging from the identified values in the CCWS and the relation this has with vote intention.Keywords: communitarianism, cultural cognition, egalitarianism, hierarchy, individualism, perceived risks
Procedia PDF Downloads 148239 Self-Medication with Antibiotics, Evidence of Factors Influencing the Practice in Low and Middle-Income Countries: A Systematic Scoping Review
Authors: Neusa Fernanda Torres, Buyisile Chibi, Lyn E. Middleton, Vernon P. Solomon, Tivani P. Mashamba-Thompson
Abstract:
Background: Self-medication with antibiotics (SMA) is a global concern, with a higher incidence in low and middle-income countries (LMICs). Despite intense world-wide efforts to control and promote the rational use of antibiotics, continuing practices of SMA systematically exposes individuals and communities to the risk of antibiotic resistance and other undesirable antibiotic side effects. Moreover, it increases the health systems costs of acquiring more powerful antibiotics to treat the resistant infection. This review thus maps evidence on the factors influencing self-medication with antibiotics in these settings. Methods: The search strategy for this review involved electronic databases including PubMed, Web of Knowledge, Science Direct, EBSCOhost (PubMed, CINAHL with Full Text, Health Source - Consumer Edition, MEDLINE), Google Scholar, BioMed Central and World Health Organization library, using the search terms:’ Self-Medication’, ‘antibiotics’, ‘factors’ and ‘reasons’. Our search included studies published from 2007 to 2017. Thematic analysis was performed to identify the patterns of evidence on SMA in LMICs. The mixed method quality appraisal tool (MMAT) version 2011 was employed to assess the quality of the included primary studies. Results: Fifteen studies met the inclusion criteria. Studies included population from the rural (46,4%), urban (33,6%) and combined (20%) settings, of the following LMICs: Guatemala (2 studies), India (2), Indonesia (2), Kenya (1), Laos (1), Nepal (1), Nigeria (2), Pakistan (2), Sri Lanka (1), and Yemen (1). The total sample size of all 15 included studies was 7676 participants. The findings of the review show a high prevalence of SMA ranging from 8,1% to 93%. Accessibility, affordability, conditions of health facilities (long waiting, quality of services and workers) as long well as poor health-seeking behavior and lack of information are factors that influence SMA in LMICs. Antibiotics such as amoxicillin, metronidazole, amoxicillin/clavulanic, ampicillin, ciprofloxacin, azithromycin, penicillin, and tetracycline, were the most frequently used for SMA. The major sources of antibiotics included pharmacies, drug stores, leftover drugs, family/friends and old prescription. Sore throat, common cold, cough with mucus, headache, toothache, flu-like symptoms, pain relief, fever, running nose, toothache, upper respiratory tract infections, urinary symptoms, urinary tract infection were the common disease symptoms managed with SMA. Conclusion: Although the information on factors influencing SMA in LMICs is unevenly distributed, the available information revealed the existence of research evidence on antibiotic self-medication in some countries of LMICs. SMA practices are influenced by social-cultural determinants of health and frequently associated with poor dispensing and prescribing practices, deficient health-seeking behavior and consequently with inappropriate drug use. Therefore, there is still a need to conduct further studies (qualitative, quantitative and randomized control trial) on factors and reasons for SMA to correctly address the public health problem in LMICs.Keywords: antibiotics, factors, reasons, self-medication, low and middle-income countries (LMICs)
Procedia PDF Downloads 215238 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays
Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir
Abstract:
Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis
Procedia PDF Downloads 113237 A First Step towards Automatic Evolutionary for Gas Lifts Allocation Optimization
Authors: Younis Elhaddad, Alfonso Ortega
Abstract:
Oil production by means of gas lift is a standard technique in oil production industry. To optimize the total amount of oil production in terms of the amount of gas injected is a key question in this domain. Different methods have been tested to propose a general methodology. Many of them apply well-known numerical methods. Some of them have taken into account the power of evolutionary approaches. Our goal is to provide the experts of the domain with a powerful automatic searching engine into which they can introduce their knowledge in a format close to the one used in their domain, and get solutions comprehensible in the same terms, as well. These proposals introduced in the genetic engine the most expressive formal models to represent the solutions to the problem. These algorithms have proven to be as effective as other genetic systems but more flexible and comfortable for the researcher although they usually require huge search spaces to justify their use due to the computational resources involved in the formal models. The first step to evaluate the viability of applying our approaches to this realm is to fully understand the domain and to select an instance of the problem (gas lift optimization) in which applying genetic approaches could seem promising. After analyzing the state of the art of this topic, we have decided to choose a previous work from the literature that faces the problem by means of numerical methods. This contribution includes details enough to be reproduced and complete data to be carefully analyzed. We have designed a classical, simple genetic algorithm just to try to get the same results and to understand the problem in depth. We could easily incorporate the well mathematical model, and the well data used by the authors and easily translate their mathematical model, to be numerically optimized, into a proper fitness function. We have analyzed the 100 curves they use in their experiment, similar results were observed, in addition, our system has automatically inferred an optimum total amount of injected gas for the field compatible with the addition of the optimum gas injected in each well by them. We have identified several constraints that could be interesting to incorporate to the optimization process but that could be difficult to numerically express. It could be interesting to automatically propose other mathematical models to fit both, individual well curves and also the behaviour of the complete field. All these facts and conclusions justify continuing exploring the viability of applying the approaches more sophisticated previously proposed by our research group.Keywords: evolutionary automatic programming, gas lift, genetic algorithms, oil production
Procedia PDF Downloads 162236 Governance Challenges for the Management of Water Resources in Agriculture: The Italian Way
Authors: Silvia Baralla, Raffaella Zucaro, Romina Lorenzetti
Abstract:
Water management needs to cope with economic, societal, and environmental changes. This could be guaranteed through 'shifting from government to governance'. In the last decades, it was applied in Europe through and within important legislative pillars (Water Framework Directive and Common Agricultural Policy) and their measures focused on resilience and adaptation to climate change, with particular attention to the creation of synergies among policies and all the actors involved at different levels. Within the climate change context, the agricultural sector can play, through sustainable water management, a leading role for climate-resilient growth and environmental integrity. A recent analysis on the water management governance of different countries identified some common gaps dealing with administrative, policy, information, capacity building, funding, objective, and accountability. The ability of a country to fill these gaps is an essential requirement to make some of the changes requested by Europe, in particular the improvement of the agro-ecosystem resilience to the effect of climatic change, supporting green and digital transitions, and sustainable water use. This research aims to contribute in sharing examples of water governances and related advantages useful to fill the highlighted gaps. Italy has developed a strong and exhaustive model of water governance in order to react with strategic and synergic actions since it is one of the European countries most threatened by climate change and its extreme events (drought, floods). In particular, the Italian water governance model was able to overcome several gaps, specifically as concerns the water use in agriculture, adopting strategies as a systemic/integrated approach, the stakeholder engagement, capacity building, the improvement of planning and monitoring ability, and an adaptive/resilient strategy for funding activities. They were carried out, putting in place regulatory, structural, and management actions. Regulatory actions include both the institution of technical committees grouping together water decision-makers and the elaboration of operative manuals and guidelines by means of a participative and cross-cutting approach. Structural actions deal with the funding of interventions within European and national funds according to the principles of coherence and complementarity. Finally, management actions regard the introduction of operational tools to support decision-makers in order to improve planning and monitoring ability. In particular, two cross-functional and interoperable web databases were introduced: SIGRIAN (National Information System for Water Resources Management in Agriculture) and DANIA (National Database of Investments for Irrigation and the Environment). Their interconnection allows to support sustainable investments, taking into account the compliance about irrigation volumes quantified in SIGRIAN, ensuring a high level of attention on water saving, and monitoring the efficiency of funding. Main positive results from the Italian water governance model deal with a synergic and coordinated work at the national, regional, and local level among institutions, the transparency on water use in agriculture, a deeper understanding from the stakeholder side of the importance of their roles and of their own potential benefits and the capacity to guarantee continuity to this model, through a sensitization process and the combined use of management operational tools.Keywords: agricultural sustainability, governance model, water management, water policies
Procedia PDF Downloads 117235 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study
Authors: John Zanetich
Abstract:
Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.Keywords: constructivism, knowledge management, tacit knowledge, social media
Procedia PDF Downloads 215234 Isotope Effects on Inhibitors Binding to HIV Reverse Transcriptase
Authors: Agnieszka Krzemińska, Katarzyna Świderek, Vicente Molinier, Piotr Paneth
Abstract:
In order to understand in details the interactions between ligands and the enzyme isotope effects were studied between clinically used drugs that bind in the active site of Human Immunodeficiency Virus Reverse Transcriptase, HIV-1 RT, as well as triazole-based inhibitor that binds in the allosteric pocket of this enzyme. The magnitudes and origins of the resulting binding isotope effects were analyzed. Subsequently, binding isotope effect of the same triazole-based inhibitor bound in the active site were analyzed and compared. Together, these results show differences in binding origins in two sites of the enzyme and allow to analyze binding mode and place of newly synthesized inhibitors. Typical protocol is described below on the example of triazole ligand in the allosteric pocket. Triazole was docked into allosteric cavity of HIV-1 RT with Glide using extra-precision mode as implemented in Schroedinger software. The structure of HIV-1 RT was obtained from Protein Data Bank as structure of PDB ID 2RKI. The pKa for titratable amino acids was calculated using PROPKA software, and in order to neutralize the system 15 Cl- were added using tLEaP package implemented in AMBERTools ver.1.5. Also N-terminals and C-terminals were build using tLEaP. The system was placed in 144x160x144Å3 orthorhombic box of water molecules using NAMD program. Missing parameters for triazole were obtained at the AM1 level using Antechamber software implemented in AMBERTools. The energy minimizations were carried out by means of a conjugate gradient algorithm using NAMD. Then system was heated from 0 to 300 K with temperature increment 0.001 K. Subsequently 2 ns Langevin−Verlet (NVT) MM MD simulation with AMBER force field implemented in NAMD was carried out. Periodic Boundary Conditions and cut-offs for the nonbonding interactions, range radius from 14.5 to 16 Å, are used. After 2 ns relaxation 200 ps of QM/MM MD at 300 K were simulated. The triazole was treated quantum mechanically at the AM1 level, protein was described using AMBER and water molecules were described using TIP3P, as implemented in fDynamo library. Molecules 20 Å apart from the triazole were kept frozen, with cut-offs established on range radius from 14.5 to 16 Å. In order to describe interactions between triazole and RT free energy of binding using Free Energy Perturbation method was done. The change in frequencies from ligand in solution to ligand bounded in enzyme was used to calculate binding isotope effects.Keywords: binding isotope effects, molecular dynamics, HIV, reverse transcriptase
Procedia PDF Downloads 431233 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment
Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane
Abstract:
Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.Keywords: artificial intelligence, computer science, criminal investigation, digital forensics
Procedia PDF Downloads 212232 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 409231 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model
Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han
Abstract:
Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model
Procedia PDF Downloads 362230 CyberSteer: Cyber-Human Approach for Safely Shaping Autonomous Robotic Behavior to Comply with Human Intention
Authors: Vinicius G. Goecks, Gregory M. Gremillion, William D. Nothwang
Abstract:
Modern approaches to train intelligent agents rely on prolonged training sessions, high amounts of input data, and multiple interactions with the environment. This restricts the application of these learning algorithms in robotics and real-world applications, in which there is low tolerance to inadequate actions, interactions are expensive, and real-time processing and action are required. This paper addresses this issue introducing CyberSteer, a novel approach to efficiently design intrinsic reward functions based on human intention to guide deep reinforcement learning agents with no environment-dependent rewards. CyberSteer uses non-expert human operators for initial demonstration of a given task or desired behavior. The trajectories collected are used to train a behavior cloning deep neural network that asynchronously runs in the background and suggests actions to the deep reinforcement learning module. An intrinsic reward is computed based on the similarity between actions suggested and taken by the deep reinforcement learning algorithm commanding the agent. This intrinsic reward can also be reshaped through additional human demonstration or critique. This approach removes the need for environment-dependent or hand-engineered rewards while still being able to safely shape the behavior of autonomous robotic agents, in this case, based on human intention. CyberSteer is tested in a high-fidelity unmanned aerial vehicle simulation environment, the Microsoft AirSim. The simulated aerial robot performs collision avoidance through a clustered forest environment using forward-looking depth sensing and roll, pitch, and yaw references angle commands to the flight controller. This approach shows that the behavior of robotic systems can be shaped in a reduced amount of time when guided by a non-expert human, who is only aware of the high-level goals of the task. Decreasing the amount of training time required and increasing safety during training maneuvers will allow for faster deployment of intelligent robotic agents in dynamic real-world applications.Keywords: human-robot interaction, intelligent robots, robot learning, semisupervised learning, unmanned aerial vehicles
Procedia PDF Downloads 259229 Clinical Efficacy of Localized Salvage Prostate Cancer Reirradiation with Proton Scanning Beam Therapy
Authors: Charles Shang, Salina Ramirez, Stephen Shang, Maria Estrada, Timothy R. Williams
Abstract:
Purpose: Over the past decade, proton therapy utilizing pencil beam scanning has emerged as a preferred treatment modality in radiation oncology, particularly for prostate cancer. This retrospective study aims to assess the clinical and radiobiological efficacy of proton scanning beam therapy in the treatment of localized salvage prostate cancer, following initial radiation therapy with a different modality. Despite the previously delivered high radiation doses, this investigation explores the potential of proton reirradiation in controlling recurrent prostate cancer and detrimental quality of life side effects. Methods and Materials: A retrospective analysis was conducted on 45 cases of locally recurrent prostate cancer that underwent salvage proton reirradiation. Patients were followed for 24.6 ± 13.1 months post-treatment. These patients had experienced an average remission of 8.5 ± 7.9 years after definitive radiotherapy for localized prostate cancer (n=41) or post-prostatectomy (n=4), followed by rising PSA levels. Recurrent disease was confirmed by FDG-PET (n=31), PSMA-PET (n=10), or positive local biopsy (n=4). Gross tumor volume (GTV) was delineated based on PET and MR imaging, with the planning target volume (PTV) expanding to an average of 10.9 cm³. Patients received proton reirradiation using two oblique coplanar beams, delivering total doses ranging from 30.06 to 60.00 GyE in 17–30 fractions. All treatments were administered using the ProBeam Compact system with CT image guidance. The International Prostate Symptom Scores (IPSS) and prostate-specific antigen (PSA) levels were evaluated to assess treatment-related toxicity and tumor control. Results and Discussions: In this cohort (mean age: 76.7 ± 7.3 years), 60% (27/45) of patients showed sustained reductions in PSA levels post-treatment, while 36% (16/45) experienced a PSA decline of more than 0.8 ng/mL. Additionally, 73% (33/45) of patients exhibited an initial PSA reduction, though some showed later PSA increases, indicating the potential presence of undetected metastatic lesions. The median post-retreatment IPSS score was 4, significantly lower than scores reported in other treatment studies. Overall, 69% of patients reported mild urinary symptoms, with 96% (43/45) experiencing mild to moderate symptoms. Three patients experienced grade I or II proctitis, while one patient reported grade III proctitis. These findings suggest that regional organs, including the urethra, bladder, and rectum, demonstrate significant radiobiological recovery from prior radiation exposure, enabling tolerance to additional proton scanning beam therapy. Conclusions: This retrospective analysis of 45 patients with recurrent localized prostate cancer treated with salvage proton reirradiation demonstrates favorable outcomes, with a median follow-up of two years. The post-retreatment IPSS scores were comparable to those reported in follow-up studies of initial radiation therapy treatments, indicating stable or improved urinary symptoms compared to the end of initial treatment. These results highlight the efficacy of proton scanning beam therapy in providing effective salvage treatment while minimizing adverse effects on critical organs. The findings also enhance the understanding of radiobiological responses to reirradiation and support proton therapy as a viable option for patients with recurrent localized prostate cancer following previous definitive radiation therapy.Keywords: prostate salvage radiotherapy, proton therapy, biological radiation tolerance, radiobiology of organs
Procedia PDF Downloads 18