Search results for: power efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11633

Search results for: power efficiency

4223 Analysis of Economics and Value Addition of Optimized Blend with Petrodiesel of Nanocomposite Oil Methyl Esters

Authors: Chandrashekara Krishnappa, Yogish Huchaiah

Abstract:

The present work considers the importance of economic feasibility and financial viability of biodiesel production, and its use in the present context of prevailing Indian scenario. For this, costs involved in production of one litre of biodiesel from non-edible Jatropha and Pongamia oils Nano mix are considered. Biodiesel derived from the mix is blended with petrodiesel in various proportions and used in Compression Ignition (CI) Direct Injection (DI) engine. Performance and Emission characteristics were investigated. Optimization of the blends considering experimental results was carried out. To validate the experimental results and optimization, Multi-Functional Criteria Technique (MFCT) is used. Further, value additions in terms of INR due to increase in performance and reduction in emissions are investigated. Cost component of subsidy on petrodiesel is taken into consideration in the calculation of cost of one litre of it. Comparison of costs is with respect to the unit of power generated per litre of COME and petrodiesel. By the analysis it has been concluded that the amount saved with subsidy is INR 1.45 Lakh Crores per year and it is INR1.60 Lakh Crores per year without subsidy for petrodiesel.

Keywords: cap value addition, economic analysis, MFCT, NACOME, subsidy

Procedia PDF Downloads 235
4222 Linkages between Postponement Strategies and Flexibility in Organizations

Authors: Polycarpe Feussi

Abstract:

Globalization, technological and customer increasing changes, amongst other drivers, result in higher levels of uncertainty and unpredictability for organizations. In order for organizations to cope with the uncertain and fast-changing economic and business environment, these organizations need to innovate in order to achieve flexibility. In simple terms, the organizations must develop strategies leading to the ability of these organizations to provide horizontal information connections across the supply chain to create and deliver products that meet customer needs by synchronization of customer demands with product creation. The generated information will create efficiency and effectiveness throughout the whole supply chain regarding production, storage, and distribution, as well as eliminating redundant activities and reduction in response time. In an integrated supply chain, spanning activities include coordination with distributors and suppliers. This paper explains how through postponement strategies, flexibility can be achieved in an organization. In order to achieve the above, a thorough literature review was conducted via the search of online websites that contains material from scientific journal data-bases, articles, and textbooks on the subject of postponement and flexibility. The findings of the research are found in the last part of the paper. The first part introduces the concept of postponement and its importance in supply chain management. The second part of the paper provides the methodology used in the process of writing the paper.

Keywords: postponement strategies, supply chain management, flexibility, logistics

Procedia PDF Downloads 189
4221 The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods

Authors: Lukman Andi Priyatna, Vivi Fauzia, Ferry Anggoro Ardy Nugroho

Abstract:

Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures.

Keywords: atomic nebulizer, photocurrent density, photoelectrochemical water splitting, ZnO nanorods

Procedia PDF Downloads 13
4220 One-off Separation of Multiple Types of Oil-In-Water Emulsions With Surface-Engineered Graphene-Based Multilevel Structure Materials

Authors: Han Longxiang

Abstract:

In the process of treating industrial oily wastewater with complex components, the traditional treatment methods (flotation, coagulation, microwave heating, etc.) often produce high operating costs, secondary pollution, and other problems. In order to solve these problems, the materials with high flux and stability applied to surfactant-stabilized emulsions separation have gained huge attention in the treatment of oily wastewater. Nevertheless, four stable oil-in-water emulsions can be formed due to different surfactants (surfactant-free, anionic surfactant, cationic surfactant, and non-ionic surfactant), and the previous advanced materials can only separate one or several of them, cannot effectively separate in one step. Herein, a facile synthesis method of graphene-based multilevel filter materials (GMFM) which can efficiently separate the oil-in-water emulsions stabilized with different surfactants only through its gravity. The prepared materials with high stability of 20 cycles show a high flux of ~ 5000 L m-2 h-1 with a high separation efficiency of > 99.9 %. GMFM can effectively separate the emulsion stabilized by mixed surfactants and oily wastewater from factories. The results indicate that the GMFM have a wide range of applications in oil-in-water emulsions separation in industry and environmental science.

Keywords: emulsion, filtration, graphene, one-step

Procedia PDF Downloads 84
4219 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 334
4218 Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media

Authors: M. Merabet-Khelassi, Z. Houiene, L. Aribi-Zouioueche, O. Riant

Abstract:

Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500).

Keywords: alkaline-hydrolysis, enzymatic kinetic resolution, lipases, arylalkylcarbinol, non-aqueous media

Procedia PDF Downloads 157
4217 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis

Authors: Yazid Alkraimeen

Abstract:

Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.

Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses

Procedia PDF Downloads 133
4216 Enhancing Reused Lubricating Oil Performance Using Novel Ionic Liquids Based on Imidazolium Derivatives

Authors: Mohamed Deyab

Abstract:

The global lubricant additives market size was USD 14.35 billion in 2015. The industry is characterized by increasing additive usage in base oil blending for longer service life and performance. These additives improve the viscosity of oil, act as detergents, defoamers, antioxidants, and antiwear agents. Since additives play a significant role in base oil blending and subsequent formulations as they are critical materials in improving specification and performance of oils. Herein, we report on the synthesis and characterization of three imidazolium derivatives and their application as antioxidants, detergents and antiwear agents. The molecular structure and characterizations of these ionic liquids were confirmed by elemental analysis, FTIR, X-Ray Diffraction (XRD) and 1HNMR spectroscopy. Thermo gravimetric analysis (TGA), is used to study the degradation and thermal stability of the studied base stock samples. It was found that all the prepared ionic liquids additives have excellent power of dispersion and detergency. The ionic liquids as additives to engine oil reduced the friction (38%) and wear volume (76%) of steel balls. The obtained results show that the ionic liquids have an oxidation inhibitor up to 95%.

Keywords: reused lubricating oil, waste, petroleum, ionic liquids

Procedia PDF Downloads 130
4215 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN

Procedia PDF Downloads 126
4214 Electric Field Impact on the Biomass Gasification and Combustion Dynamics

Authors: M. Zake, I. Barmina, R. Valdmanis, A. Kolmickovs

Abstract:

Experimental investigations of the DC electric field effect on thermal decomposition of biomass, formation of the axial flow of volatiles (CO, H2, CxHy), mixing of volatiles with swirling airflow at low swirl intensity (S ≈ 0.2-0.35), their ignition and on formation of combustion dynamics are carried out with the aim to understand the mechanism of electric field influence on biomass gasification, combustion of volatiles and heat energy production. The DC electric field effect on combustion dynamics was studied by varying the positive bias voltage of the central electrode from 0.6 kV to 3 kV, whereas the ion current was limited to 2 mA. The results of experimental investigations confirm the field-enhanced biomass gasification with enhanced release of volatiles and the development of endothermic processes at the primary stage of thermochemical conversion of biomass determining the field-enhanced heat energy consumption with the correlating decrease of the flame temperature and heat energy production at this stage of flame formation. Further, the field-enhanced radial expansion of the flame reaction zone correlates with a more complete combustion of volatiles increasing the combustion efficiency by 3 % and decreasing the mass fraction of CO, H2 and CxHy in the products, whereas by 10 % increases the average volume fraction of CO2 and the heat energy production downstream the combustor increases by 5-10 %

Keywords: biomass, combustion, electrodynamic control, gasification

Procedia PDF Downloads 441
4213 The Trajectory of the Ball in Football Game

Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar

Abstract:

Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.

Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter

Procedia PDF Downloads 454
4212 Matching Farmer Competence and Farm Resources with the Transformation of Agri-Food Marketing Systems

Authors: Bhawat Chiamjinnawat

Abstract:

The agri-food market transformation has implied market growth for the fruit industry in Thailand. This article focuses on analysis of farmer competence and farm resources which affect market strategies used by fruit farmers in Chanthaburi province of Thailand. The survey data were collected through the use of face-to-face interviews with structured questionnaires. This study identified 14 drivers related to farmer competence and farm resources of which some had significant effect on the decision to use either high-value markets or traditional markets. The results suggest that farmers who used high-value markets were better educated and they had longer experience and larger sized business. Identifying the important factors that match with the market transformation provides policy with opportunities to support the fruit farmers to increase their market power. Policies that promote business expansion of agricultural cooperatives and knowledge sharing among farmers are recommended to reduce limitations due to limited knowledge, low experience, and small business sizes.

Keywords: farmer competence, farm resources, fruit industry, high-value markets, Thailand

Procedia PDF Downloads 158
4211 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction

Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani

Abstract:

Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.

Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse

Procedia PDF Downloads 79
4210 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 338
4209 Building an Interactive Web-Based GIS System for Planning of Geological Survey Works

Authors: Wu Defu, Kiefer Chiam, Yang Kin Seng

Abstract:

The planning of geological survey works is an iterative process which involves planner, geologist, civil engineer and other stakeholders, who perform different roles and have different points of view. Traditionally, the team used paper maps or CAD drawings to present the proposal which is not an efficient way to present and share idea on the site investigation proposal such as sitting of borehole location or seismic survey lines. This paper focuses on how a GIS approach can be utilised to develop a web-based system to support decision making process in the planning of geological survey works and also to plan site activities carried out by Singapore Geological Office (SGO). The authors design a framework of building an interactive web-based GIS system, and develop a prototype, which enables the users to obtain rapidly existing geological information and also to plan interactively borehole locations and seismic survey lines via a web browser. This prototype system is used daily by SGO and has shown to be effective in increasing efficiency and productivity as the time taken in the planning of geological survey works is shortened. The prototype system has been developed using the ESRI ArcGIS API 3.7 for Flex which is based on the ArcGIS 10.2.1 platform.

Keywords: engineering geology, flex, geological survey planning, geoscience, GIS, site investigation, WebGIS

Procedia PDF Downloads 305
4208 Gender and Older People: Reframing Gender Analysis through Lifecycle Lens

Authors: Supriya Akerkar

Abstract:

The UN Decade on Healthy Ageing (2021-2030) provides a new opportunity to address ageing and gender issues in different societies. The concept of gender has been used to unpack and analyse the power and constructions of gender relations in different societies. Such analysis has been employed and used to inform policy and practices of governments and non-governmental organisations to further gender equalities in their work. Yet, experiences of older women and men are often left out of such mainstream gender analysis, marginalising their existence and issues. This paper argues that new critical analytical tools are needed to capture the realities and issues of interest to older women and men. In particular, it argues that gender analysis needs to integrate analytical concepts of ageing and lifecycle approach in its framework. The paper develops such a framework by critical interrogation of the gender analysis tools that are currently applied for framing gender issues in international development and humanitarian work. Informed by the realities and experiences of older women and men, developed through a synthesis of available literature, the paper will develop a new framework for gender analysis that can be used by governments and non-government organisations in their work to further gender justice across the life cycle.

Keywords: ageing, gender, older people, social inclusion

Procedia PDF Downloads 237
4207 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 138
4206 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 472
4205 Computational Analysis and Daily Application of the Key Neurotransmitters Involved in Happiness: Dopamine, Oxytocin, Serotonin, and Endorphins

Authors: Hee Soo Kim, Ha Young Kyung

Abstract:

Happiness and pleasure are a result of dopamine, oxytocin, serotonin, and endorphin levels in the body. In order to increase the four neurochemical levels, it is important to associate daily activities with its corresponding neurochemical releases. This includes setting goals, maintaining social relationships, laughing frequently, and exercising regularly. The likelihood of experiencing happiness increases when all four neurochemicals are released at the optimal level. The achievement of happiness is important because it increases healthiness, productivity, and the ability to overcome adversity. To process emotions, electrical brain waves, brain structure, and neurochemicals must be analyzed. This research uses Chemcraft and Avogadro to determine the theoretical and chemical properties of the four neurochemical molecules. Each neurochemical molecule’s thermodynamic stability is calculated to observe the efficiency of the molecules. The study found that among dopamine, oxytocin, serotonin, alpha-, beta-, and gamma-endorphin, beta-endorphin has the lowest optimized energy of 388.510 kJ/mol. Beta-endorphin, a neurotransmitter involved in mitigating pain and stress, is the most thermodynamically stable and efficient molecule that is involved in the process of happiness. Through examining such properties of happiness neurotransmitters, the science of happiness is better understood.

Keywords: happiness, neurotransmitters, positive psychology, dopamine, oxytocin, serotonin, endorphins

Procedia PDF Downloads 150
4204 A New Method of Extracting Polyphenols from Honey Using a Biosorbent Compared to the Commercial Resin Amberlite XAD2

Authors: Farid Benkaci-Alia, Abdelhamid Neggada, Sophie Laurentb

Abstract:

A new extraction method of polyphenols from honey using a biodegradable resin was developed and compared with the common commercial resin amberlite XAD2. For this purpose, three honey samples of Algerian origin were selected for the different physico-chemical and biochemical parameters study. After extraction of the target compounds by both resins, the polyphenol content was determined, the antioxidant activity was tested, and LC-MS analyses were performed for identification and quantification. The results showed that physico-chemical and biochemical parameters meet the norms of the International Honey commission, and the H1 sample seemed to be of high quality. The optimal conditions of extraction by biodegradable resin were a pH of 3, an adsorption dose of 40 g/L, a contact time of 50 min, an extraction temperature of 60°C and no stirring. The regeneration and reuse number of both resins was three cycles. The polyphenol contents demonstrated a higher extraction efficiency of biosorbent than of XAD2, especially in H1. LC-MS analyses allowed for the identification and quantification of fifteen compounds in the different honey samples extracted using both resins and the most abundant compound was 3,4,5-trimethoxybenzoic acid. In addition, the biosorbent extracts showed stronger antioxidant activities than the XAD2 extracts.

Keywords: extraction, polyphénols, biosorbent, resin amberlite, HPLC-MS

Procedia PDF Downloads 100
4203 Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems

Authors: Jun Yuan

Abstract:

Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations.

Keywords: shipping emission, electricity ship, charging station, optimal design

Procedia PDF Downloads 55
4202 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines

Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna

Abstract:

Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.

Keywords: nanoparticles, vincristine, drug delivery, PNIPAM

Procedia PDF Downloads 149
4201 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled

Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov

Abstract:

This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.

Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS

Procedia PDF Downloads 332
4200 Quality and Yield of Potato Seed Tubers as Influenced by Plant Growth Promoting Rhizobacteria

Authors: Muhammad Raqib Rasul, Tavga Sulaiman Rashid

Abstract:

Fertilization increases efficiency and obtains better quality of product recovery in agricultural activities. However, fertilizer consumption increased exponentially throughout the world, causing severe environmental problems. Biofertilizers can be a practical approach to minimize chemical fertilizer sources and ultimately develop soil fertility. This study was carried out to isolate, identify and characterize bacteria from medicinal plant (Rumex tuberosus L. and Verbascum sp.) rhizosphere for in vivo screening. 25 bacterial isolates were isolated and several biochemical tests were performed. Two isolates that were positive for most biochemical tests were chosen for the field experiment. The isolates were identified as Go1 Alcaligenes faecalis (Accession No. OP001725) and T11 (Bacillus sp.) based on the 16S rRNA sequence analysis that was compared with related bacteria in GenBank database using MEGA 6.1. For the field trial isolate GO1 and T11 (separately and mixed), NPK as a positive control was used. Both isolates increased plant height, chlorophyll content, number of tubers, and tuber’s weight. The results demonstrated that these two isolates of bacteria can potentially replace with chemical fertilizers for potato production.

Keywords: biofertilizer, Bacillus subtilis, Alcaligenes faecalis, potato tubers, in vivo screening

Procedia PDF Downloads 99
4199 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: diesel engine, hydrogen, BTHE, BSEC, soot, NOx

Procedia PDF Downloads 531
4198 BIM Model and Virtual Prototyping in Construction Management

Authors: Samar Alkindy

Abstract:

Purpose: The BIM model has been used to support the planning of different construction projects in the industry by showing the different stages of the construction process. The model has been instrumental in identifying some of the common errors in the construction process through the spatial arrangement. The continuous use of the BIM model in the construction industry has resulted in various radical changes such as virtual prototyping. Construction virtual prototyping is a highly advanced technology that incorporates a BIM model with realistic graphical simulations, and facilitates the simulation of the project before a product is built in the factory. The paper presents virtual prototyping in the construction industry by examining its application, challenges and benefits to a construction project. Methodology approach: A case study was conducted for this study in four major construction projects, which incorporate virtual construction prototyping in several stages of the construction project. Furthermore, there was the administration of interviews with the project manager and engineer and the planning manager. Findings: Data collected from the methodological approach shows a positive response for virtual construction prototyping in construction, especially concerning communication and visualization. Furthermore, the use of virtual prototyping has increased collaboration and efficiency between construction experts handling a project. During the planning stage, virtual prototyping has increased accuracy, reduced planning time, and reduced the amount of rework during the implementation stage. Irrespective of virtual prototyping being a new concept in the construction industry, the findings outline that the approach will benefit the management of construction projects.

Keywords: construction operations, construction planning, process simulation, virtual prototyping

Procedia PDF Downloads 225
4197 Supplemental VisCo-friction Damping for Dynamical Structural Systems

Authors: Sharad Singh, Ajay Kumar Sinha

Abstract:

Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.

Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping

Procedia PDF Downloads 154
4196 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 446
4195 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 433
4194 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 124