Search results for: environment saving
2146 Comparison of Water Curing and Carbonation Curing on Mortar Mix Incorporating Cement Kiln Dust
Authors: Devender Sharma, Shweta Goyal
Abstract:
Sustainable development is a key to protect the environment for a secure future. Accelerated carbonation curing is a comparatively new technique for curing of concrete which involves sequestration of carbon dioxide gas into the precast concrete, resulting in improvement of the properties of concrete. This paper presents the results of a study to evaluate the effect of carbonation curing on cement mortars incorporating cement kiln dust (CKD) as partial replacement of cement. The mortar specimens were prepared by replacing cement with CKD in varying percentages of 0-50% by the weight of cement. The specimens were subjected to 12 hour carbonation curing, followed by sealed packing till testing age. The results were compared with the normal curing procedure, in which the specimens were water cured till the testing age. Compressive strength and microstructure of the mix were studied. It was noted that on increasing the percentage of CKD up to 10% by the weight of the cement, no considerable change was observed in the compressive strength. But as the percentage of CKD was further increased, there was a decrease in compressive strength, with strength decreasing up to 40% when 50% of the cement was replaced with CKD. The decrease in strength is due to the lesser lime content in CKD as compared to cement. High ettringite formation was observed in mixes with high percentages of CKD, thus indicating a decrease in the compressive strength. With carbonation curing, an early age strength gain was observed in mortars, even with higher percentages of CKD. The early strength of the carbonation cured mixes was found to be greater than water cured mixes irrespective of the percentage of CKD. 7 days and 28 days compressive strength of the mix was comparable for both the carbonation cured and water cured specimen. The increase in compressive strength can be attributed to the conversion of unstable Ca(OH)2 into stable CaCO3, which causes densification of the mix. CaCO3 precipitation and greater CSH gel formation was clearly observed in the SEM images of carbonation cured specimen, indicating higher compressive strength. Thus, carbonation curing can be used as an efficient method to enhance the properties of concrete.Keywords: carbonation, cement kiln dust, compressive strength, microstructure
Procedia PDF Downloads 2272145 Analysis of the Advent of Multinational Corporations in Developing Countries: Case Study of Nike Factories Expansion in Vietnam
Authors: Khue Do Phan
Abstract:
Nike has been confronted by the press with their harsh working conditions, underpayment and highly-labor intensive requirement to their manufacturing workers and hiring of underage workers in Vietnam, Nike's largest production center. To analyze this topic critically through an international relations perspective, theory of dependency will be used to criticize the notion of exploitation of resources from developed countries towards developing countries. Theory of economic liberalism will be used to support the notion private property, the free market and generally capitalism as beneficial to both developing and developed countries. Workers are mentally, physically and sexually abused in the factories. In addition to this, their working conditions consist of improper training, lack of safety equipment, exposure of chemicals (glues and pants), their average wage is below the minimum wage in their country; the workers have to work around 60 hours or more a week. Even Nike says that the conditions are regulated often to make sure the workers get a voice to have their work rights and safe working environment. The monitors come to analyze the factories but in the end talk to the employers, whom are the direct abusers to the employees. Health benefits are rarely granted to the employees; they are forced to pay their bills first then the company will reimburse them later. They would also get in trouble for using the bathroom, taking a lunch break or sick days off because this would mean it would decrease their hours of work, leading to an even lower wage and a really angry employer. Of course with the press criticizing Nike’s lack of respect for human rights and working rights, Nike has been working on policy making and implementation to deal with the abuses. Due to its large chains and a great number of outsourcing host countries, the changes that Nike wish or attempt to make have not be in effect as quickly nor spreading to all countries it holds accountable for in its outsourcing factories.Keywords: dependency theory, economic liberalism, human rights, outsource
Procedia PDF Downloads 3332144 A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions
Authors: Afiq Mohd Fahmi, Tony Gutierrez, Sebastian Hennige
Abstract:
Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions.Keywords: phytoplankton, bacteria, crude oil, ocean acidification
Procedia PDF Downloads 2362143 The Motivation System Development: Case-Study of the Trade Metal Company in Russian Federation
Authors: Elena V. Lysenko
Abstract:
Motivating as the leading function of a modern Human Resources Management involves issues of increasing the effectiveness of the organization in a broader context. During the formation of motivational systems, the top-management of organization should pay equal attention to both external motivation (incentive system) and internal (self-motivation). The balance of internal and external motivation harmonizes the relations between employers and employees, increases the level of job satisfaction by the organization staff, which in turn leads the organization to success and ensures the organization`s profitability and competitiveness in the market environment. The article is devoted to the study of personnel motivation system in the small metal trade company, which is located in Yekaterinburg, Russian Federation. The study took place during November-December, 2016 ordered by the Company Director to analyze the motivational potential of work (managerial aspect of motivation) and motivation of personnel (personnel aspect of motivation) with the purpose to construct a system of employees’ motivation. The research tools included 6 specially selected tests of motivation, which are: “Motivation profile of your job”, “Constructive motivational attitudes”, Tests about Motivation of achievements (1st variant: Test by А.Mehrabian by the theory of D.С.McClelland and 2nd variant: Test about leading needs according with the theory of D.С.MacClelland), Tests by T.Elers (1st variant: “Determination of the motivation towards success or to avoid failure” and 2nd variant: “Trends to achieve results or to avoid failure”). The results of the study showed only one, but fundamental problem of the whole organization: high level of both motivational potential in work and self-motivation, especially in terms of achievement motivation, but serious lack of productivity. According the results which study showed this problem is derived from insufficient staff competence. The research suggests basic guidelines in order to build the new personnel motivation system for this Company, which is planned to be developed in the nearest future.Keywords: incentive system, motivation of achievements, motivation system, self-motivation
Procedia PDF Downloads 3102142 Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand
Authors: Asis Kumar Khan, Rajeev Kumar Goel
Abstract:
Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels.Keywords: crushed sand, compressive strength, drying shrinkage, geopolymer concrete, split tensile strength, sodium sulphate attack resistance, sulphuric acid attack resistance
Procedia PDF Downloads 2932141 Impact of Sociocultural Factors on Management and Utilization of Solid Waste in Ibadan Metropolis, Nigeria
Authors: Olufunmilayo Folaranmi
Abstract:
This research was carried out to examine the impact of socio-cultural factors on the management and utilization of solid waste in Ibadan Metropolis. A descriptive survey research design was adopted for the study while a systematic and stratified random sampling technique was used to select 300 respondents which were categorized into high, middle and low-density areas. Four hypothesis were tested using chi-square test on variables of unavailability of waste disposal facilities and waste management, negligence of contractors to liaise with community members, lack of adequate environmental education and waste management and utilization, low level of motivation of sanitation workers with solid wastes management, lack of community full participation with solid waste management and utilization. Results showed that significant effect of waste disposal facilities on solid waste management and utilization (X2 +16.6, P < .05). Also, there is a significant relationship between negligence of the contractors to liaise with community elites with improper disposal (X2 = 87.5, P < .05). The motivation of sanitation workers is significantly related to solid waste management (X2 = 70.4, P < .05). Adequate environmental education and awareness influenced solid waste management. There was also a significant relationship between lack of community participation with waste management disposal and improper waste disposal. Based on the findings from the study it was recommended that the quality of life in urban centers should be improved, social welfare of the populace enhanced and environment should be adequately attended to. Poverty alleviation programmes should be intensified and made to live beyond the life of a particular administration, micro-credit facilities should be available to community members to promote their welfare. Lastly, sustained environmental education programmes for citizens at all levels of education, formal and informal through the use of agencies like Ethical and Attitudinal Reorientation Commission (EARCOM) and the National Orientation Agency (NOA).Keywords: management, social welfare, socio-cultural factors, solid waste
Procedia PDF Downloads 2272140 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing
Authors: Aldona Kluczek
Abstract:
In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment
Procedia PDF Downloads 2452139 Exhaust Gas Cleaning Systems on Board Ships and Impact on Crews’ Health: A Feasibility Study Protocol
Authors: Despoina Andrioti Bygvraa, Ida-Maja Hassellöv, George Charalambous
Abstract:
Exhaust gas cleaning systems, also known as scrubbers, are today widely used to allow for the use of High Sulphur Heavy Fuel Oil and still comply with the regulations limiting sulphur content in marine fuels. There are extensive concerns about environmental consequences, especially in the Baltic Sea, from the wide-scale use of scrubbers, as the wash water is acidic (ca pH 3) and contains high concentrations of toxic, carcinogenic, and mutagenic substances. The aim of this feasibility study is to investigate the potential adverse effects on seafarers’ health with the ultimate goal of raising awareness of chemical-related health and safety issues in the shipping environment. The project got funding from the Swedish Foundation. The team will extend previously compiled data on scrubber wash water concentrations of hazardous substances and pH to include the use of strong base in closed-loop scrubbers, and scoping assessment on handling and disposing practices. Based on the findings (a), a systematic review of risk assessment will follow to show the risk of exposures, the establishment of the hazardous levels for human health as well as the respective prevention practices. In addition, the researchers will perform (b) a systematic review to identify facilitators and barriers of the crew on compliance with the safe handling of chemicals. The study will run for 12 months, delivering (a) a risk assessment inventory with risk exposures and (b) a course description of safe handling practices. This feasibility study could provide valuable knowledge on how pollutants found in scrubbers should be considered from a human health perspective to facilitate evidence-based informed decisions in future technology- and policy development to make shipping a safer, healthier, and more attractive workplace.Keywords: health and safety, seafarers, scrubbers, chemicals, risk exposures
Procedia PDF Downloads 572138 Genetic Analysis of the Endangered Mangrove Species Avicennia Marina in Qatar Detected by Inter-Simple Sequence Repeat DNA Markers
Authors: Talaat Ahmed, Amna Babssail
Abstract:
Mangroves are evergreen trees and grow along the coastal areas of Qatar. The largest and oldest area of mangroves can be found around Al-Thakhira and Al-Khor. Other mangrove areas originate from fairly recent plantings by the government, although unfortunately the picturesque mangrove lake in Al-Wakra has now been uprooted. Avicinnia marina is the predominant mangrove species found in the region. Mangroves protect and stabilize low lying coastal land, and provide protection and food sources for estuarine and coastal fishery food chains. They also serve as feeding, breeding and nursery grounds for a variety of fish, crustaceans, reptiles, birds and other wildlife. A total of 21 individuals of A. marina, representing seven diverse Natural and artificial populations, were sampled throughout its range in Qatar. Leaves from 2-3 randomly selected trees at each location were collected. The locations are as follows: Al-Rawis, Ras-Madpak, Fuwairt, Summaseima, Al-khour, AL-Mafjar and Zekreet. Total genomic DNA was extracted using commercial DNeasy Plant System (Qiagen, Inc., Valencia, CA) kit to be used for genetic diversity analysis. Total of 12 (Inter-Simple Sequence Repeat) ISSR primers were used to amplify DNA fragments using genomic DNA. The 12 ISSR primers amplified polymorphic bands among mangrove samples in different areas as well as within each area indicating the existing of variation within each area and among the different areas of mangrove in Qatar. The results could characterize Avicinnia marina populations exist in different areas of Qatar and establish DNA fingerprint documentations for mangrove population to be used in further studies. Moreover, existing of genetic variation within and among Avicinnia marina populations is a strong indication for the ability of such populations to adapt different environmental conditions in Qatar. This study could be a warning to save mangrove in Qatar and save the environment as well.Keywords: DNA fingerprint, Avicinnia marina, genetic analysis, Qatar
Procedia PDF Downloads 4032137 Implementation of an Economic – Probabilistic Model to Risk Analysis of ERP Project in Technological Innovation Firms – A Case Study of ICT Industry in Iran
Authors: Reza Heidari, Maryam Amiri
Abstract:
In a technological world, many countries have a tendency to fortifying their companies and technological infrastructures. Also, one of the most important requirements for developing technology is innovation, and then, all companies are struggling to consider innovation as a basic principle. Since, the expansion of a product need to combine different technologies, therefore, different innovative projects would be run in the firms as a base of technology development. In such an environment, enterprise resource planning (ERP) has special significance in order to develop and strengthen of innovations. In this article, an economic-probabilistic analysis was provided to perform an implementation project of ERP in the technological innovation (TI) based firms. The used model in this article assesses simultaneously both risk and economic analysis in view of the probability of each event that is jointly between economical approach and risk investigation approach. To provide an economic-probabilistic analysis of risk of the project, activities and milestones in the cash flow were extracted. Also, probability of occurrence of each of them was assessed. Since, Resources planning in an innovative firm is the object of this project. Therefore, we extracted various risks that are in relation with innovative project and then they were evaluated in the form of cash flow. This model, by considering risks affecting the project and the probability of each of them and assign them to the project's cash flow categories, presents an adjusted cash flow based on Net Present Value (NPV) and with probabilistic simulation approach. Indeed, this model presented economic analysis of the project based on risks-adjusted. Then, it measures NPV of the project, by concerning that these risks which have the most effect on technological innovation projects, and in the following measures probability associated with the NPV for each category. As a result of application of presented model in the information and communication technology (ICT) industry, provided an appropriate analysis of feasibility of the project from the point of view of cash flow based on risk impact on the project. Obtained results can be given to decision makers until they can practically have a systematically analysis of the possibility of the project with an economic approach and as moderated.Keywords: cash flow categorization, economic evaluation, probabilistic, risk assessment, technological innovation
Procedia PDF Downloads 4032136 Yield and Sward Composition Responses of Natural Grasslands to Treatments Meeting Sustainability
Authors: D. Díaz Fernández, I. Csízi, K. Pető, G. Nagy
Abstract:
An outstanding part of the animal products are based on the grasslands, due to the fact that the grassland ecosystems can be found all over the globe. In places where economical and successful crop production cannot be managed, the grassland based animal husbandry can be an efficient way of food production. In addition, these ecosystems have an important role in carbon sequestration, and with their rich flora – and fauna connected to it – in conservation of biodiversity. The protection of nature, and the sustainable agriculture is getting more and more attention in the European Union, but, looking at the consumers’ needs, the production of healthy food cannot be neglected either. Because of these facts, the effects of two specific composts - which are officially authorized in organic farming, in Agri-environment Schemes and Natura 2000 programs – on grass yields and sward compositions were investigated in a field trial. The investigation took place in Hungary, on a natural grassland based on solonetz soil. Three rates of compost (10 t/ha, 20 t/ha, 30 t/ha) were tested on 3 m X 10 m experimental plots. Every treatment had four replications and both type of compost had four-four control plots too, this way 32 experimental plots were included in the investigations. The yield of the pasture was harvested two-times (in May and in September) and before cutting the plots, measurements on botanical compositions were made. Samples for laboratory analysis were also taken. Dry matter yield of pasture showed positive responses to the rates of composts. The increase in dry matter yield was partly due to some positive changes in sward composition. It means that the proportions of grass species with higher yield potential increased in ground cover of the sward without depressing out valuable native species of diverse natural grasslands. The research results indicate that the use of organic compost can be an efficient way to increase grass yields in a sustainable way.Keywords: compost application, dry matter yield, native grassland, sward composition
Procedia PDF Downloads 2482135 The Curse of Oil: Unpacking the Challenges to Food Security in the Nigeria's Niger Delta
Authors: Abosede Omowumi Babatunde
Abstract:
While the Niger Delta region satisfies the global thirst for oil, the inhabitants have not been adequately compensated for the use of their ancestral land. Besides, the ruthless exploitation and destruction of the natural environment upon which the inhabitants of the Niger Delta depend for their livelihood and sustenance by the activities of oil multinationals, pose major threats to food security in the region and by implication, Nigeria in general, Africa, and the world, given the present global emphasis on food security. This paper examines the effect of oil exploitation on household food security, identify key gaps in measures put in place to address the changes to livelihoods and food security and explore what should be done to improve the local people access to sufficient, safe and culturally acceptable food in the Niger Delta. Data is derived through interviews with key informants and Focus Group Discussions (FGDs) conducted with respondents in the local communities in the Niger Delta states of Delta, Bayelsa and Rivers as well as relevant extant studies. The threat to food security is one important aspect of the human security challenges in the Niger Delta which has received limited scholarly attention. In addition, successive Nigerian governments have not meaningfully addressed the negative impacts of oil-induced environmental degradation on traditional livelihoods given the significant linkages between environmental sustainability, livelihood security, and food security. The destructive impact of oil pollution on the farmlands, crops, economic trees, creeks, lakes, and fishing equipment is so devastating that the people can no longer engage in productive farming and fishing. Also important is the limited access to modern agricultural methods for fishing and subsistence farming as fishing and farming are done using mostly crude implements and traditional methods. It is imperative and urgent to take stock of the negative implications of the activities of oil multinationals for environmental and livelihood sustainability, and household food security in the Niger Delta.Keywords: challenges, food security, Nigeria's Niger delta, oil
Procedia PDF Downloads 2462134 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt
Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal
Abstract:
In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm
Procedia PDF Downloads 4012133 Performance Study of Experimental Ferritic Alloy with High Content of Molybdenum in Corrosive Environment of Soybean Methyl Biodiesel
Authors: Maurício N. Kleinberg, Ana P. R. N. Barroso, Frederico R. Silva, Natasha l. Gomes, Rodrigo F. Guimarães, Marcelo M. V. Parente, Jackson Q. Malveira
Abstract:
Increased production of biofuels, especially biodiesel, as an option to replace the diesel derived from oil is already a reality in countries seeking a renewable and environmentally friendly fuel, as is the case in Brazil. However, it is known that the use of fuels, renewable or not, implies that it is in contact with various metallic materials which may cause corrosion. In the search for more corrosion resistant materials has been experimentally observed that the addition of molybdenum in ferritic steels increases their protective character without significantly burdening the cost of production. In order to evaluate the effect of adding molybdenum, samples of commercial steel (austenitic, ferritic and carbon steel) and the experimental ferritic alloy with a high molybdenum content (5.3%) were immersed separately into biodiesel derived from transesterification of soy oil to monitor the corrosion process of these metal samples, and in parallel to analyze the oxidative degradation of biodiesel itself. During the immersion time of 258 days, biodiesel samples were taken for analysis of acidity, kinematic viscosity, density and refraction. Likewise, the metal samples were taken from the biodiesel to be weighed and microstructurally analyzed by light microscopy. The results obtained at the end of 258 days shown that biodiesel presented a considerable increase on the values of the studied parameters for all the samples. However, this increase was not able to produce significant mass loss in metallic samples. As regards the microstructural analysis, it showed the onset of surface oxidation on the carbon steel sample. As for the other samples, no significant surface changes were shown. These results are consistent with literature for short immersion times. It is concluded that the increase in the values of the studied parameters is not significant yet, probably due to the low time of immersion and exposure of the samples. Thus, it is necessary to continue the tests so that the objectives of this work are achieved.Keywords: biodiesel, corrosion, immersion, experimental alloy
Procedia PDF Downloads 4382132 Assessment of Cafe Design Criteria in a Consumerist Society: An Approach on Place Attachment
Authors: Azadeh Razzagh Shoar, Hassan Sadeghi Naeini
Abstract:
There is little doubt that concepts such as space and place have become more common considering that human beings have grown more apart and more than having contact with each other, they are in contact with objects, spaces, and places. Cafés, as a third place which is neither home nor workplace, have attracted these authors’ interests, who are industrial and interior designers. There has been much research on providing suitable cafés, customer behavior, and criteria for spatial sense. However, little research has been carried out on consumerism, desire for variety, and their relationship with changing places, and specifically cafes in term of interior design. In fact, customer’s sense of place has mostly been overlooked. In this case study, authors conducted to challenge the desire for variety and consumerism as well as investigating the addictive factors in cafés. From the designers’ point of view and by collecting data through observing and interviewing café managers, this study investigates and analyzes the customers in two cafes located in a commercial building in northern Tehran (a part of city with above average economic conditions). Since these two cafés are at the same level in terms of interior and spatial design, the question is raised as to why customers patronize the newly built café despite their loyalty to the older café. This study aims to investigate and find the criteria based on the sense of space (café) in a consumerist society, a world where consumption is a myth. Going to cafés in a larger scale than a product can show a selection and finally who you are, where you go, which brand of coffee you prefer, and what time of the day you would like to have your coffee. The results show that since people spend time in cafés more than any other third place, the interaction they have with their environment is more than anything else, and they are consumers of time and place more than coffee or any other product. Also, if there is a sense of consumerism and variety, it is mostly for the place rather than coffee and other products. To satisfy this sense, individuals go to a new place (the new café). It can be easily observed that this sense overshadows the sense of efficiency, design, facilities and all important factor for a café.Keywords: place, cafe, consumerist society, consumerism, desire for variety
Procedia PDF Downloads 1622131 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 5522130 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behavior of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behavior in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. The structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behavior of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.Keywords: axial restraint, catenary action, cellular beam, fire, numerical modeling, stainless steel, transit temperature
Procedia PDF Downloads 782129 Reduction of Biofilm Formation in Closed Circuit Cooling Towers
Authors: Irfan Turetgen
Abstract:
Closed-circuit cooling towers are cooling units that operate according to the indirect cooling principle. Unlike the open-loop cooling tower, the filler material includes a closed-loop water-operated heat exchanger. The main purpose of this heat exchanger is to prevent the cooled process water from contacting with the external environment. In order to ensure that the hot water is cooled, the water is cooled by the air flow and the circulation water of the tower as it passes through the pipe. They are now more commonly used than open loop cooling towers that provide cooling with plastic filling material. As with all surfaces in contact with water, there is a biofilm formation on the outer surface of the pipe. Although biofilm has been studied very well on plastic surfaces in open loop cooling towers, studies on biofilm layer formed on the heat exchangers of the closed circuit tower have not been found. In the recent study, natural biofilm formation was observed on the heat exchangers of the closed loop tower for 6 months. At the same time, nano-silica coating, which is known to reduce the formation of the biofilm layer, a comparison was made between the two different surfaces in terms of biofilm formation potential. Test surfaces were placed into biofilm reactor along with the untreated control coupons up to 6-months period for biofilm maturation. Natural bacterial communities were monitored to analyze the impact to mimic the real-life conditions. Surfaces were monthly analyzed in situ for their microbial load using epifluorescence microscopy. Wettability is known to play a key role in biofilm formation on surfaces, because characteristics of surface properties affect the bacterial adhesion. Results showed that surface-conditioning with nano-silica significantly reduce (up to 90%) biofilm formation. Easy coating process is a facile and low-cost method to prepare hydrophobic surface without any kinds of expensive compounds or methods.Keywords: biofilms, cooling towers, fill material, nano silica
Procedia PDF Downloads 1272128 Drugstore Control System Design and Realization Based on Programmable Logic Controller (PLC)
Authors: Muhammad Faheem Khakhi, Jian Yu Wang, Salman Muhammad, Muhammad Faisal Shabir
Abstract:
Population growth and Chinese two-child policy will boost pharmaceutical market, and it will continue to maintain the growth for a period of time in the future, the traditional pharmacy dispensary has been unable to meet the growing medical needs of the peoples. Under the strong support of the national policy, the automatic transformation of traditional pharmacies is the inclination of the Times, the new type of intelligent pharmacy system will continue to promote the development of the pharmaceutical industry. Under this background, based on PLC control, the paper proposed an intelligent storage and automatic drug delivery system; complete design of the lower computer's control system and the host computer's software system has been present. The system can be applied to dispensing work for Chinese herbal medicinal and Western medicines. Firstly, the essential of intelligent control system for pharmacy is discussed. After the analysis of the requirements, the overall scheme of the system design is presented. Secondly, introduces the software and hardware design of the lower computer's control system, including the selection of PLC and the selection of motion control system, the problem of the human-computer interaction module and the communication between PC and PLC solves, the program design and development of the PLC control system is completed. The design of the upper computer software management system is described in detail. By analyzing of E-R diagram, built the establish data, the communication protocol between systems is customize, C++ Builder is adopted to realize interface module, supply module, main control module, etc. The paper also gives the implementations of the multi-threaded system and communication method. Lastly, each module of the lower computer control system is tested. Then, after building a test environment, the function test of the upper computer software management system is completed. On this basis, the entire control system accepts the overall test.Keywords: automatic pharmacy, PLC, control system, management system, communication
Procedia PDF Downloads 3072127 We Are Thriving: Increasing the Number of Women in Engineering
Authors: Kathryn Redmond, Mojdeh Asadollahi Pajouh, Grace Panther, Rick Evans, Stacey Kulesza, Jia Liang
Abstract:
An on-going focus in engineering education research is on increasing the number of women in engineering. While the number of women participating in engineering project teams has increased over the past five years, the number of women enrolled in engineering colleges remains stagnant. Previous studies have explored why the number of women enrolled in engineering colleges remains small. In doing so, researchers focused primarily on negative experiences women encountered. Instead of looking at negative experiences, which can further deter women from entering the field, the aim of this study is to explore the personal and institutional factors that allow women to succeed and thrive in undergraduate engineering programs. There are two research questions addressed in this paper. The first is: what are the personal traits and characteristics that allow women to thrive in engineering? The other is: what are the institutional policies and culture, as well as micro-level behaviors on project teams, that influence the environment for women to thrive in engineering? Two women studying engineering at an R1 university were interviewed. Each woman was interviewed three times for a total of six interviews. The phenomenographic interviews focused on the lived experiences of the participants to better understand thriving in engineering. The first interview focused on the women’s personal life and background, the second on their learning journey and project team experiences, and the third focused on videos the women took through a method called Photovoice. Interviews were transcribed, and an inductive thematic analysis was conducted. Four themes were identified. Multiple coders were utilized to ensure trustworthiness and increase interrater reliability. Results indicate that thriving women have supportive families, experienced gender biases, and enjoy hands-on engineering and creating a final product. These traits and experiences may help inspire younger women to pursue engineering degrees and can help inform institutions as they make policy changes to support women. Additional women will be recruited from four different universities to further develop a theoretical framework to help inform institutions in how they can support women to thrive in engineering.Keywords: diversity, inclusion, project teams, women in engineering
Procedia PDF Downloads 1082126 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)
Authors: Lokesh Harshe
Abstract:
The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED
Procedia PDF Downloads 522125 The Use of Geographic Information System for Selecting Landfill Sites in Osogbo
Authors: Nureni Amoo, Sunday Aroge, Oluranti Akintola, Hakeem Olujide, Ibrahim Alabi
Abstract:
This study investigated the optimum landfill site in Osogbo so as to identify suitable solid waste dumpsite for proper waste management in the capital city. Despite an increase in alternative techniques for disposing of waste, landfilling remains the primary means of waste disposal. These changes in attitudes in many parts of the world have been supported by changes in laws and policies regarding the environment and waste disposal. Selecting the most suitable site for landfill can avoid any ecological and socio-economic effects. The increase in industrial and economic development, along with the increase of population growth in Osogbo town, generates a tremendous amount of solid waste within the region. Factors such as the scarcity of land, the lifespan of the landfill, and environmental considerations warrant that the scientific and fundamental studies are carried out in determining the suitability of a landfill site. The analysis of spatial data and consideration of regulations and accepted criteria are part of the important elements in the site selection. This paper presents a multi-criteria decision-making method using geographic information system (GIS) with the integration of the fuzzy logic multi-criteria decision making (FMCDM) technique for landfill suitability site evaluation. By using the fuzzy logic method (classification of suitable areas in the range of 0 to 1 scale), the superposing of the information layers related to drainage, soil, land use/land cover, slope, land use, and geology maps were performed in the study. Based on the result obtained in this study, five (5) potential sites are suitable for the construction of a landfill are proposed, two of which belong to the most suitable zone, and the existing waste disposal site belonged to the unsuitable zone.Keywords: fuzzy logic multi-criteria decision making, geographic information system, landfill, suitable site, waste disposal
Procedia PDF Downloads 1402124 Phoenix dactylifera Ecosystem in Morocco: Ecology, Socio Economic Role and Constraints to Its Development
Authors: Mohammed Sghir Taleb
Abstract:
Introduction The date palm (Phoenix dactylifera L.) represents an essential element of the oasis ecosystem for Saharan and pre-Saharan regions of Morocco. It plays an important role, not only due to its economic importance, but also its ecological adaptation to, firstly, to ensure necessary protection for crops against underlying warm and dry sales, and secondly to contribute to the fight against desertification. This is one of the oldest cultivated plant species best adapted to difficult climatic conditions of the Saharan and pre-Saharan regions, because of its ecological requirements and economically most suitable for investing in oasis agriculture. Methodology The methodology is mainly based on a literature review of principal theses and projects for the conservation of flora and vegetation. Results The date palm has multiple uses. Indeed, it produces fruits rich in nutrients, provides a multitude of secondary products and generates needed revenue for the survival of oasis populations. In Morocco, the development and modernization of the date palm sector face, both upstream and downstream of the industry, several major constraints. In addition to climate constraints (prolonged drought), in its environment (lack of water resources), to the incessant invasion of disease Bayoud, Moroccan palm ecosystem suffers from a low level of technical and traditional practices prevail and traditional, from the choice of variety and site preparation up to harvesting and recycling of products. Conclusion The date palm plays an important role in the socioeconomic development of local and national level. However, this ecosystem however, is subject to numerous degradation factors caused by anthropogenic action and climate change. to reverse the trends, several programs have been developed by Morocco for the restoration of degraded areas and the development of the Phoenix dactylifera ecosystem to meet the needs of local populations and the development of the national economy.Keywords: efforts, flora, ecosystem, forest, conservation, Morocco
Procedia PDF Downloads 852123 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes
Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta
Abstract:
Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.Keywords: tillage, soil respiration, MBC, fungal-bacterial activity
Procedia PDF Downloads 2592122 Development of Low Calorie Jelly with Increased Content of Natural Compounds from Superfoods with No Added Sugar
Authors: Liana C. Salanță, Maria Tofană, Carmen R. Pop, Vlad Mureșan
Abstract:
The landscape of functional food is expanding very fast, due to the consumer interest for healthy natural products. Consumers nowadays demand healthy products that impart phytonutrients to encourage good health and well-being, prevent diseases, without sacrificing taste and texture. Candies are foodstuffs appreciated by all category of consumers. They are available in a range variety of forms (jellies, marshmallows, caramels, lollipops, etc.). Jelly is characterized by a gummy and chewy texture typically conferred by a hydrocolloid (gelatin, pectin). The purpose of this research was to obtain hypocaloric jelly (no added sugar) enriched with protein powder from acai, chia seeds and hemp, which are considered superfood. Peach and raspberry juice were used for obtaining functional jelly, due to the specific flavour, natural carbohydrate, natural pigments and vitamins (C, B1, PP, etc). Instead of classic hydrocolloids used in Romania for the industry of jelly, agar-agar was used in this study, due to its properties. Agar-agar is able to form gels in the aqueous medium, stronger than other gel-forming agents. High sugar concentrations or an acid environment (as is necessary with pectins) are not needed. In addition to its gelation properties, Agar-agar is considered to have important nutritional benefits, high content of fibre and has low calories. Six prototypes of jellies were obtained and evaluated by physicochemical, microbiological and sensorial analysis. For the textural profile analysis, the Brookfield CT3 Texture Analyzer, equipped with a 10kg load cell, was used. The results revealed that hypocaloric jelly can serve as a good source of bioactive compounds in the diet. The jelly is a convenient way of delivering potential health benefits of protein powder and agar-agar to a wide range of consumers.Keywords: agar-agar, functional food, hypocaloric jelly, superfoods
Procedia PDF Downloads 1252121 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation
Authors: Jiahui Song
Abstract:
The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics
Procedia PDF Downloads 502120 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature
Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa
Abstract:
The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).Keywords: flame propagation, flame propagation velocity, explosion, propane, methane
Procedia PDF Downloads 2242119 Shear Behavior of Reinforced Concrete Beams Casted with Recycled Coarse Aggregate
Authors: Salah A. Aly, Mohammed A. Ibrahim, Mostafa M. khttab
Abstract:
The amount of construction and demolition (C&D) waste has increased considerably over the last few decades. From the viewpoint of environmental preservation and effective utilization of resources, crushing C&D concrete waste to produce coarse aggregate (CA) with different replacement percentage for the production of new concrete is one common means for achieving a more environment-friendly concrete. In the study presented herein, the investigation was conducted in two phases. In the first phase, the selection of the materials was carried out and the physical, mechanical and chemical characteristics of these materials were evaluated. Different concrete mixes were designed. The investigation parameter was Recycled Concrete Aggregate (RCA) ratios. The mechanical properties of all mixes were evaluated based on compressive strength and workability results. Accordingly, two mixes have been chosen to be used in the next phase. In the second phase, the study of the structural behavior of the concrete beams was developed. Sixteen beams were casted to investigate the effect of RCA ratios, the shear span to depth ratios and the effect of different locations and reinforcement of openings on the shear behavior of the tested specimens. All these beams were designed to fail in shear. Test results of the compressive strength of concrete indicated that, replacement of natural aggregate by up to 50% recycled concrete aggregates in mixtures with 350 Kg/m3 cement content led to increase of concrete compressive strength. Moreover, the tensile strength and the modulus of elasticity of the specimens with RCA have very close values to those with natural aggregates. The ultimate shear strength of beams with RCA is very close to those with natural aggregates indicating the possibility of using RCA as partial replacement to produce structural concrete elements. The validity of both the Egyptian Code for the design and implementation of Concrete Structures (ECCS) 203-2007 and American Concrete Institute (ACI) 318-2011Codes for estimating the shear strength of the tested RCA beams was investigated. It was found that the codes procedures gives conservative estimates for shear strength.Keywords: construction and demolition (C&D) waste, coarse aggregate (CA), recycled coarse aggregates (RCA), opening
Procedia PDF Downloads 3912118 GIS-Driven Analysis for Locating Suitable Areas for Renewable Energy
Authors: Saleh Nabiyev
Abstract:
Renewable energy is becoming increasingly important in today's world due to its significant impact on the green economy, ecology, environment, and climate change. Renewable energy sources, such as solar and wind, are clean and sustainable, making them an ideal solution to reduce carbon emissions and mitigate the effects of climate change. The Karabakh region is located in the South Caucasus and covers an area of approximately 11,500 km². The region has a mountainous terrain, which can affect the availability of wind and solar resources. The Karabakh region has significant wind power potential, particularly in its mountainous areas where wind speeds are typically higher. According to a study conducted by the European Commission Joint Research Centre, the average wind speed in the Karabakh region is between 4 and 6 meters per second (m/s) at a height of 50 meters above ground level (AGL). However, wind speeds can be higher in some areas, reaching up to 10 m/s in some mountainous areas. The region also has significant solar power potential, with an average of 2,000 to 2,200 hours of sunshine per year. The region's high altitude and clear skies make it particularly suitable for the development of solar power projects. In this research, the application of satellite images, solar radiation, wind speed and direction, as well as various other materials to determine suitable areas for alternative energy sources, is investigated. The methodology for selecting suitable locations for solar and wind energy consists of four main parts: identification of factors, evaluation of factors, data preparation, and application of suitability analysis. At the end of the research, the territory of the Kalbajar and Lachin districts is suitable for wind energy. The southern plain part of Karabakh is highly evaluated in terms of solar energy potential, especially Jabrayil district. Generally, outcomes taken from this research are essential data for increasing of rational using natural resources, as well as combating climate change.Keywords: GIS, remote sensing, suitability analysis, solar energy, wind energy
Procedia PDF Downloads 312117 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting
Authors: D. O. Ramadan, R. S. Dwyer-Joyce
Abstract:
The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring
Procedia PDF Downloads 482