Search results for: multilane free flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7764

Search results for: multilane free flow

414 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 158
413 Operation Cycle Model of ASz62IR Radial Aircraft Engine

Authors: M. Duk, L. Grabowski, P. Magryta

Abstract:

Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under

Keywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine

Procedia PDF Downloads 273
412 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products

Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola

Abstract:

The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.

Keywords: decision making, design euristics, product design, product design process, design paradigms

Procedia PDF Downloads 101
411 Surgical Skills in Mulanje

Authors: Nick Toossi, Joseph Hartland

Abstract:

Background: Malawi is an example of a low resource setting which faces a chronic shortage of doctors and other medical staff. This shortfall is made up for by clinical officers (COs), who are para-medicals trained for 4 years. The literature suggests to improve outcomes surgical skills training specifically should be promoted for COs in district and mission hospitals. Accordingly, the primary author was tasked with developing a basic surgical skills teaching package for COs of Mulanje Mission Hospital (MMH), Malawi, as part of a 4th year medical student External Student Selected Component field trip. MMH is a hospital based in the South of Malawi near the base of Mulanje Mountain and works in an extremely isolated environment with some of the poorest communities in the country. Traveling to Malawi the medical student author performed an educational needs assessment to develop and deliver a bespoke basic surgical skills teaching package. Methodology: An initial needs assessment identified the following domains: basic surgical skills (instrument naming & handling, knot tying, suturing principles and suturing techniques) and perineal repair. Five COs took part in a teaching package involving an interactive group simulation session, overseen by senior clinical officers and surgical trainees from the UK. Non-organic and animal models were used for simulation practice. This included the use of surgical skills boards to practice knot tying and ox tongue to simulate perineal repair. All participants spoke and read English. The impact of the session was analysed in two different ways. The first was via a pre and post Single Best Answer test and the second a questionnaire including likert’s scales and free text response questions. Results: There was a positive trend in pre and post test scores on competition of the course. There was increase in the mean confidence of learners before and after the delivery of teaching in basic surgical skills and simulated perineal repair, especially in ‘instrument naming and handling’. Whilst positively received it was discovered that learners desire more frequent surgical skills teaching sessions in order to improve and revise skills. Feedback suggests that the learners were not confident in retaining the skills without regular input. Discussion: Skills and confidence were improved as a result of the teaching provided. Learner's written feedback suggested there was an overall appetite for regular surgical skills teaching in the clinical environment and further opportunities to allow for deliberate self-practice. Surgical mentorship schemes facilitating supervised theatre time among trainees and lead surgeons along with improving access to surgical models/textbooks were some of the simple suggestions to improve surgical skills and confidence among COs. Although, this study is limited by population size it is reflective of the small, isolated and low resource environment in which this healthcare is delivered. This project does suggest that current surgical skills packages used in the UK could be adapted for employment in low resource settings, but it is consistency and sustainability that staff seek above all in their on-going education.

Keywords: clinical officers, education, Malawi, surgical skills

Procedia PDF Downloads 163
410 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 186
409 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use

Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner

Abstract:

The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.

Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning

Procedia PDF Downloads 343
408 Financing the Welfare State in the United States: The Recent American Economic and Ideological Challenges

Authors: Rafat Fazeli, Reza Fazeli

Abstract:

This paper focuses on the study of the welfare state and social wage in the leading liberal economy of the United States. The welfare state acquired a broad acceptance as a major socioeconomic achievement of the liberal democracy in the Western industrialized countries during the postwar boom period. The modern and modified vision of capitalist democracy offered, on the one hand, the possibility of high growth rate and, on the other hand, the possibility of continued progression of a comprehensive system of social support for a wider population. The economic crises of the 1970s, provided the ground for a great shift in economic policy and ideology in several Western countries, most notably the United States and the United Kingdom (and to a lesser extent Canada under Prime Minister Brian Mulroney). In the 1980s, the free market oriented reforms undertaken under Reagan and Thatcher greatly affected the economic outlook not only of the United States and the United Kingdom, but of the whole Western world. The movement which was behind this shift in policy is often called neo-conservatism. The neoconservatives blamed the transfer programs for the decline in economic performance during the 1970s and argued that cuts in spending were required to go back to the golden age of full employment. The agenda for both Reagan and Thatcher administrations was rolling back the welfare state, and their budgets included a wide range of cuts for social programs. The question is how successful were Reagan and Thatcher’s efforts to achieve retrenchment? The paper involves an empirical study concerning the distributive role of the welfare state in the two countries. Other studies have often concentrated on the redistributive effect of fiscal policy on different income brackets. This study examines the net benefit/ burden position of the working population with respect to state expenditures and taxes in the postwar period. This measurement will enable us to find out whether the working population has received a net gain (or net social wage). This study will discuss how the expansion of social expenditures and the trend of the ‘net social wage’ can be linked to distinct forms of economic and social organizations. This study provides an empirical foundation for analyzing the growing significance of ‘social wage’ or the collectivization of consumption and the share of social or collective consumption in total consumption of the working population in the recent decades. The paper addresses three other major questions. The first question is whether the expansion of social expenditures has posed any drag on capital accumulation and economic growth. The findings of this study provide an analytical foundation to evaluate the neoconservative claim that the welfare state is itself the source of economic stagnation that leads to the crisis of the welfare state. The second question is whether the increasing ideological challenges from the right and the competitive pressures of globalization have led to retrenchment of the American welfare states in the recent decades. The third question is how social policies have performed in the presence of the rising inequalities in the recent decades.

Keywords: the welfare state, social wage, The United States, limits to growth

Procedia PDF Downloads 190
407 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 277
406 Fly ash Contamination in Groundwater and its Implications on Local Climate Change

Authors: Rajkumar Ghosh

Abstract:

Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.

Keywords: groundwater, climate, sustainable environment, fly ash contamination

Procedia PDF Downloads 62
405 Development of a Framework for Assessing Public Health Risk Due to Pluvial Flooding: A Case Study of Sukhumvit, Bangkok

Authors: Pratima Pokharel

Abstract:

When sewer overflow due to rainfall in urban areas, this leads to public health risks when an individual is exposed to that contaminated floodwater. Nevertheless, it is still unclear the extent to which the infections pose a risk to public health. This study analyzed reported diarrheal cases by month and age in Bangkok, Thailand. The results showed that the cases are reported higher in the wet season than in the dry season. It was also found that in Bangkok, the probability of infection with diarrheal diseases in the wet season is higher for the age group between 15 to 44. However, the probability of infection is highest for kids under 5 years, but they are not influenced by wet weather. Further, this study introduced a vulnerability that leads to health risks from urban flooding. This study has found some vulnerability variables that contribute to health risks from flooding. Thus, for vulnerability analysis, the study has chosen two variables, economic status, and age, that contribute to health risk. Assuming that the people's economic status depends on the types of houses they are living in, the study shows the spatial distribution of economic status in the vulnerability maps. The vulnerability map result shows that people living in Sukhumvit have low vulnerability to health risks with respect to the types of houses they are living in. In addition, from age the probability of infection of diarrhea was analyzed. Moreover, a field survey was carried out to validate the vulnerability of people. It showed that health vulnerability depends on economic status, income level, and education. The result depicts that people with low income and poor living conditions are more vulnerable to health risks. Further, the study also carried out 1D Hydrodynamic Advection-Dispersion modelling with 2-year rainfall events to simulate the dispersion of fecal coliform concentration in the drainage network as well as 1D/2D Hydrodynamic model to simulate the overland flow. The 1D result represents higher concentrations for dry weather flows and a large dilution of concentration on the commencement of a rainfall event, resulting in a drop of the concentration due to runoff generated after rainfall, whereas the model produced flood depth, flood duration, and fecal coliform concentration maps, which were transferred to ArcGIS to produce hazard and risk maps. In addition, the study also simulates the 5-year and 10-year rainfall simulations to show the variation in health hazards and risks. It was found that even though the hazard coverage is very high with a 10-year rainfall events among three rainfall events, the risk was observed to be the same with a 5-year and 10-year rainfall events.

Keywords: urban flooding, risk, hazard, vulnerability, health risk, framework

Procedia PDF Downloads 51
404 Multi-Criteria Geographic Information System Analysis of the Costs and Environmental Impacts of Improved Overland Tourist Access to Kaieteur National Park, Guyana

Authors: Mark R. Leipnik, Dahlia Durga, Linda Johnson-Bhola

Abstract:

Kaieteur is the most iconic National Park in the rainforest-clad nation of Guyana in South America. However, the magnificent 226-meter-high waterfall at its center is virtually inaccessible by surface transportation, and the occasional charter flights to the small airstrip in the park are too expensive for many tourists and residents. Thus, the largest waterfall in all of Amazonia, where the Potaro River plunges over a single free drop twice as high as Victoria Falls, remains preserved in splendid isolation inside a 57,000-hectare National Park established by the British in 1929, in the deepest recesses of a remote jungle canyon. Kaieteur Falls are largely unseen firsthand, but images of the falls are depicted on the Guyanese twenty dollar note, in every Guyanese tourist promotion, and on many items in the national capital of Georgetown. Georgetown is only 223-241 kilometers away from the falls. The lack of a single mileage figure demonstrates there is no single overland route. Any journey, except by air, involves changes of vehicles, a ferry ride, and a boat ride up a jungle river. It also entails hiking for many hours to view the falls. Surface access from Georgetown (or any city) is thus a 3-5 day-long adventure; even in the dry season, during the two wet seasons, travel is a particularly sticky proposition. This journey was made overland by the paper's co-author Dahlia Durga. This paper focuses on potential ways to improve overland tourist access to Kaieteur National Park from Georgetown. This is primarily a GIS-based analysis, using multiple criteria to determine the least cost means of creating all-weather road access to the area near the base of the falls while minimizing distance and elevation changes. Critically, it also involves minimizing the number of new bridges required to be built while utilizing the one existing ferry crossings of a major river. Cost estimates are based on data from road and bridge construction engineers operating currently in the interior of Guyana. The paper contains original maps generated with ArcGIS of the potential routes for such an overland connection, including the one deemed optimal. Other factors, such as the impact on endangered species habitats and Indigenous populations, are considered. This proposed infrastructure development is taking place at a time when Guyana is undergoing the largest boom in its history due to revenues from offshore oil and gas development. Thus, better access to the most important tourist attraction in the country is likely to happen eventually in some manner. But the questions of the most environmentally sustainable and least costly alternatives for such access remain. This paper addresses those questions and others related to access to this magnificent natural treasure and the tradeoffs such access will have on the preservation of the currently pristine natural environment of Kaieteur Falls.

Keywords: nature tourism, GIS, Amazonia, national parks

Procedia PDF Downloads 134
403 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 32
402 Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market

Authors: Seema Singh, Puja Anand, Alok Bhasin

Abstract:

The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The Gaddi communities of Himachal Pradesh use wool from the Gaddi sheep breed to create Pattu (a multi-purpose textile). The Kurumas of Telangana weave a blanket called the Gongadi, using wool from the Black Deccani variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography.

Keywords: design intervention, eco- friendly, healthy interiors, indigenous, organic wool, pastoralism, sustainability

Procedia PDF Downloads 143
401 Immunomodulatory Role of Heat Killed Mycobacterium indicus pranii against Cervical Cancer

Authors: Priyanka Bhowmik, Subrata Majumdar, Debprasad Chattopadhyay

Abstract:

Background: Cervical cancer is the third major cause of cancer in women and the second most frequent cause of cancer related deaths causing 300,000 deaths annually worldwide. Evasion of immune response by Human Papilloma Virus (HPV), the key contributing factor behind cancer and pre-cancerous lesions of the uterine cervix, makes immunotherapy a necessity to treat this disease. Objective: A Heat killed fraction of Mycobacterium indicus pranii (MIP), a non-pathogenic Mycobacterium has been shown to exhibit cytotoxic effects on different cancer cells, including human cervical carcinoma cell line HeLa. However, the underlying mechanisms remain unknown. The aim of this study is to decipher the mechanism of MIP induced HeLa cell death. Methods: The cytotoxicity of Mycobacterium indicus pranii against HeLa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and Propidium iodide (PI) staining. The assessment of reactive oxygen species (ROS) generation and cell cycle analysis were measured by flow cytometry. The expression of apoptosis associated genes was analyzed by real time PCR. Result: MIP could inhibit the proliferation of HeLa cell in a time and dose dependent manner but caused minor damage to normal cells. The induction of apoptosis was confirmed by the cell surface presentation of phosphatidyl serine, DNA fragmentation, and mitochondrial damage. MIP caused very early (as early as 30 minutes) transcriptional activation of p53, followed by a higher activation (32 fold) at 24 hours suggesting prime importance of p53 in MIP-induced apoptosis in HeLa cell. The up regulation of p53 dependent pro-apoptotic genes Bax, Bak, PUMA, and Noxa followed a lag phase that was required for the transcriptional p53 program. MIP also caused the transcriptional up regulation of Toll like receptor 2 and 4 after 30 minutes of MIP treatment suggesting recognition of MIP by toll like receptors. Moreover, MIP caused the inhibition of expression of HPV anti apoptotic gene E6, which is known to interfere with p53/PUMA/Bax apoptotic cascade. This inhibition might have played a role in transcriptional up regulation of PUMA and subsequently apoptosis. ROS was generated transiently which was concomitant with the highest transcription activation of p53 suggesting a plausible feedback loop network of p53 and ROS in the apoptosis of HeLa cells. Scavenger of ROS, such as N-acetyl-L-cysteine, decreased apoptosis suggesting ROS is an important effector of MIP induced apoptosis. Conclusion: Taken together, MIP possesses full potential to be a novel therapeutic agent in the clinical treatment of cervical cancer.

Keywords: cancer, mycobacterium, immunity, immunotherapy.

Procedia PDF Downloads 236
400 Strategies for Urban-Architectural Design for the Sustainable Recovery of the Huayla Stuary in Puerto Bolivar, Machala-Ecuador

Authors: Soledad Coronel Poma, Lorena Alvarado Rodriguez

Abstract:

The purpose of this project is to design public space through urban-architectural strategies that help to the sustainable recovery of the Huayla estuary and the revival of tourism in this area. This design considers other sustainable and architectural ideas used in similar cases, along with national and international regulations for saving shorelines in danger. To understand the situation of this location, Puerto Bolivar is the main port of the Province of El Oro and of the south of the country, where 90,000 national and foreign tourists pass through all year round. For that reason, a physical-urban, social, and environmental analysis of the area was carried out through surveys and conversations with the community. This analysis showed that around 70% of people feel unsatisfied and concerned about the estuary and its surroundings. Crime, absence of green areas, bad conservation of shorelines, lack of tourists, poor commercial infrastructure, and the spread of informal commerce are the main issues to be solved. As an intervention project whose main goal is that residents and tourists have contact with native nature and enjoy doing local activities, three main strategies: mobility, ecology, and urban –architectural are proposed to recover the estuary and its surroundings. First of all, the design of this public space is based on turning the estuary location into a linear promenade that could be seen as a tourist corridor, which would help to reduce pollution, increase green spaces and improve tourism. Another strategy aims to improve the economy of the community through some local activities like fishing and sailing and the commerce of fresh seafood, both raw products and in restaurants. Furthermore, in support of the environmental approach, some houses are rebuilt as sustainable houses using local materials and rearranged into blocks closer to the commercial area. Finally, the planning incorporates the use of many plants such as palms, sameness trees, and mangroves around the area to encourage people to get in touch with nature. The results of designing this space showed an increase in the green area per inhabitant index. It went from 1.69 m²/room to 10.48 m²/room, with 12 096 m² of green corridors and the incorporation of 5000 m² of mangroves at the shoreline. Additionally, living zones also increased with the creation of green areas taking advantage of the existing nature and implementing restaurants and recreational spaces. Moreover, the relocation of houses and buildings helped to free estuary's shoreline, so people are now in more comfortable places closer to their workplaces. Finally, dock spaces are increased, reaching the capacity of the boats and canoes, helping to organize the area in the estuary. To sum up, this project searches the improvement of the estuary environment with its shoreline and surroundings that include the vegetation, infrastructure and people with their local activities, achieving a better quality of life, attraction of tourism, reduction of pollution and finally getting a full recovered estuary as a natural ecosystem.

Keywords: recover, public space, stuary, sustainable

Procedia PDF Downloads 129
399 Multiple Plant-Based Cell Suspension as a Bio-Ink for 3D Bioprinting Applications in Food Technology

Authors: Yusuf Hesham Mohamed

Abstract:

Introduction: Three-dimensional printing technology includes multiple procedures that fabricate three-dimensional objects through consecutively layering two-dimensional cross-sections on top of each other. 3D bioprinting is a promising field of 3D printing, which fabricates tissues and organs by accurately controlling the proper arrangement of diverse biological components. 3D bioprinting uses software and prints biological materials and their supporting components layer-by-layer on a substrate or in a tissue culture plate to produce complex live tissues and organs. 3D food printing is an emerging field of 3D bioprinting in which the 3D printed products are food products that are cheap, require less effort to produce, and have more desirable traits. The Aim of the Study is the development of an affordable 3D bioprinter by altering a locally made CNC instrument with an open-source platform to suit the 3D bio-printer purposes. Later, we went through applying the prototype in several applications regarding food technology and drug testing, including the organ-On-Chip. Materials and Methods: An off-the-shelf 3D printer was modified by designing and fabricating the syringe unit, which was designed on the basis of the Milli-fluidics system. Sodium alginate and gelatin hydrogels were prepared, followed by leaf cell suspension preparation from narrow sections of Fragaria’s viable leaves. The desired 3D structure was modeled, and 3D printing preparations took place. Cell-free and cell-laden hydrogels were printed at room temperature under sterile conditions. Post printing curing process was performed. The printed structure was further studied. Results: Positive results have been achieved using the altered 3D bioprinter where a 3D hydrogel construct of two layers made of the combination of sodium alginate to gelatin (15%: 0.5%) has been printed. DLP 3D printer was used to design the syringe component with a transparent PLA-Pro resin for the creation of a microfluidics system having two channels altered to the double extruder. The hydrogel extruder’s design was based on peristaltic pumps, which utilized a stepper motor. The design and fabrication were made using DIY-3D printed parts. Hard plastic PLA was the material utilized for printing. SEM was used to carry out the porous 3D construct imaging. Multiple physical and chemical tests were performed in order to ensure that the cell line was suitable for hosting. Fragaria plant was developed by suspending Fragaria’s cells from its leaves using the 3D bioprinter. Conclusion: 3D bioprinting is considered to be an emerging scientific field that can facilitate and improve many scientific tests and studies. Thus, having a 3D bioprinter in labs is considered to be an essential requirement. 3D bioprinters are very expensive; however, the fabrication of a 3D printer into a 3D bioprinter can lower the cost of the bioprinter. The 3D bioprinter implemented made use of peristaltic pumps instead of syringe-based pumps in order to extend the ability to print multiple types of materials and cells.

Keywords: scaffold, eco on chip, 3D bioprinter, DLP printer

Procedia PDF Downloads 103
398 Presence, Distribution and Form of Calcium Oxalate Crystals in Relation to Age of Actinidia Deliciosa Leaves and Petioles

Authors: Muccifora S., Rinallo C., Bellani L.

Abstract:

Calcium (Ca²+) is an element essential to the plant being involved in plant growth and development. At high concentrations, it is toxic and can influence every stage, process and cellular activity of plant life. Given its toxicity, cells implement mechanisms to compartmentalize calcium in a vacuole, endoplasmic reticulum, mitochondria, plastids and cell wall. One of the most effective mechanisms to reduce the excess of calcium, thus avoiding cellular damage, is its complexation with oxalic acid to form calcium oxalate crystals that are no longer osmotically or physiologically active. However, the sequestered calcium can be mobilized when the plant needs it. Calcium crystals can be accumulated in the vacuole of specialized sink-cells called idioblasts, with different crystalline forms (druse, raphyde and styloid) of diverse physiological meanings. Actinidia deliciosa cv. Hayward presents raphydes and styloid localized in idioblasts in cells of photosynthetic and non-photosynthetic tissues. The purpose of this work was to understand if there is a relationship between the age of Actinidia leaves and the presence, distribution, dimension and shape of oxalate crystals by means of light, fluorescent, polarized and transmission electron microscopy. Three vines from female plants were chosen at the beginning of the season and used throughout the study. The leaves with petioles were collected at various stages of development from the bottom to the shoot of the plants monthly from April to July. The samples were taken in corresponding areas of the central and lateral parts of the leaves and of the basal portion of the petiole. The results showed that in the leaves, the number of raphyde idioblasts decreased with the progress of the growing season, while the styloid idioblasts increased progressively, becoming very numerous in the upper nodes of July. In June and in July samples, in the vacuoles of the highest nodes, a portion regular in shape strongly stained with rubeanic acid was present. Moreover, the chlortetracycline (CTC) staining for localization of free calcium marked the wall of the idioblasts and the wall of the cells near vascular bundles. In April petiole samples, moving towards the youngest nodes, the raphydes idioblast decreased in number and in the length of the single raphydes. Besides, crystals stained with rubeanic acid appeared in the vacuoles of some cells. In June samples, numerous raphyde idioblasts oriented parallel to vascular bundles were evident. Under the electron microscope, numerous idioblasts presented not homogeneous electrondense aggregates of material, in which a few crystals (styloids) in the form of regular holes were scattered. In July samples, an increase in the number of styloid idioblasts in the youngest nodes and little masses stained with CTC near styloids were observed. Peculiar cells stained with rubeanic acid were detected and hypothesized to be involved in the formation of the idioblasts. In conclusion, in Actinidia leaves and petioles, it seems to confirm the hypothesis that the formation of styloid idioblasts can be correlated to increasing calcium levels in growing tissues.

Keywords: calcium oxalate crystals, actinidia deliciosa, light and electron microscopy, idioblasts

Procedia PDF Downloads 66
397 The Role of Oral and Intestinal Microbiota in European Badgers

Authors: Emma J. Dale, Christina D. Buesching, Kevin R. Theis, David W. Macdonald

Abstract:

This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway.

Keywords: communication, energetics, fitness, free-ranging animals, immunology

Procedia PDF Downloads 166
396 Corporate Life Cycle and Corporate Social Responsibility Performance: Empirical Evidence from Pharmaceutical Industry in China

Authors: Jing (Claire) LI

Abstract:

The topic of corporate social responsibility (CSR) is significant for pharmaceutical companies in China at this current stage. This is because, as a rapid growth industry in China in recent years, the pharmaceutical industry in China has been undergone continuous and terrible incidents relating to CSR. However, there is limited research and practice of CSR in Chinese pharmaceutical companies. Also, there is an urgent call for more research in an international context to understand the implications of corporate life cycle on CSR performance. To respond to the research need and research call, this study examines the relationship between corporate life cycle and CSR performance of Chinese listed companies in pharmaceutical industry. This research studies Chinese listed companies in pharmaceutical industry for the period of 2010-2017, where the data is available in database. Following the literature, this study divides CSR performance with regards to CSR dimensions, including shareholders, creditors, employees, customers, suppliers, the government, and the society. This study uses CSR scores of HEXUN database and financial measures of these CSR dimensions to measure the CSR performance. This study performed regression analysis to examine the relationship between corporate life cycle stages and CSR performance with regards to CSR dimensions for pharmaceutical listed companies in China. Using cash flow pattern as proxy of corporate life cycle to classify corporate life cycle stages, this study found that most (least) pharmaceutical companies in China are in maturity (decline) stage. This study found that CSR performance for most dimensions are highest (lowest) in maturity (decline) stage as well. Among these CSR dimensions, performing responsibilities for shareholder is the most important among all CSR responsibilities for pharmaceutical companies. This study is the first to provide important empirical evidence from Chinese pharmaceutical industry on the association between life cycle and CSR performance, supporting that corporate life cycle is a key factor in CSR performance. The study expands corporate life cycle and CSR literatures and has both empirical and theoretical contributions to the literature. From perspective of empirical contributions, the findings contribute to the argument that whether there is a relationship between CSR performance and various corporate life cycle stages in the literature. This study also provides empirical evidence that companies in different corporate life cycles have difference in CSR performance. From perspective of theoretical contributions, this study relates CSR and stakeholders to corporate life cycle stages and complements the corporate life cycle and CSR literature. This study has important implications for managers and policy makers. First, the results will be helpful for managers to have an understanding in the essence of CSR, and their company’s current and future CSR focus over corporate life cycle. This study provides a reference for their actions and may help them make more wise resources allocation decisions of CSR investment. Second, policy makers (in the government, stock exchanges, and securities commission) may consider corporate life cycle as an important factor in formulating future regulations for companies. Future research can explore the "process-based" differences in CSR performance and more industries.

Keywords: China, corporate life cycle, corporate social responsibility, pharmaceutical industry

Procedia PDF Downloads 86
395 Mastopexy With The "Dermoglandular Autоaugmentation" Method. Increased Stability Of The Result. Personalized Technique

Authors: Maksim Barsakov

Abstract:

Introduction. In modern plastic surgery, there are a large number of breast lift techniques.Due to the spreading information about the "side effects" of silicone implants, interest in implant-free mastopexy is increasing year after year. However, despite the variety of techniques, patients sometimes do not get full satisfaction from the results of mastopexy because of the unexpressed filling of the upper pole, extended anchoring postoperative scars and sometimes because of obtaining an aesthetically unattractive breast shape. The stability of the result after mastopexy depends on many factors, including postoperative rehabilitation. Stability of weight and hormonal background, stretchability of tissues. The high recurrence rate of ptosis and short-term aesthetic effect of mastopexy indicate the urgency of improving surgical techniques and increasing the stabilization of breast tissue. Purpose of the study. To develop and introduce into practice a technique of mastopexy based on the use of a modified Ribeiro flap, as well as elements of tissue movement and fixation designed to increase the stability of postoperative mastopexy. In addition, to give indications for the application of this surgical technique. Materials and Methods. it operated on 103 patients aged 18 to 53 years from 2019 to 2023 according to the reported method. These were patients with primary mastopexy, secondary mastopexy, and also patient with implant removal and one-stage mastopexy. The patients were followed up for 12 months to assess the stability of the result. Results and their discussion. Observing the patients, we noted greater stability of the breast shape and upper pole filling compared to the conventional classical methods. We did not have to resort to anchoring scars. In 90 percent of cases, a inverted T-shape scar was used. In 10 percent, the J-scar was used. The quantitative distribution of complications identified among the operated patients is as follows: worsened healing of the junction of vertical and horizontal sutures at the period of 1-1.5 months after surgery - 15 patients; at treatment with ointment method healing was observed in 7-30 days; permanent loss of NAC sensitivity - 0 patients; vascular disorders in the area of NAC/areola necrosis - 0 patients; marginal necrosis of the areola-2 patients. independent healing within 3-4 weeks without aesthetic defects. Aesthetically unacceptable mature scars-3 patients; partial liponecrosis of the autoflap unilaterally - 1 patient. recurrence of ptosis - 1 patient (after weight loss of 12 kg). In the late postoperative period, 2 patients became pregnant, gave birth, and no lactation problems were observed. Conclusion. Thus, in the world of plastic surgery methods of breast lift continue to improve, which is especially relevant in modern times, due to the increased attention to this operation. The author's proposed method of mastopexy with glandular autoflap allows obtaining in most cases a stable result, a fuller breast shape, avoiding the presence of extended anchoring scars, and also preserves the possibility of lactation. The author of this article has obtained a patent for invention for this method of mastopexy.

Keywords: mastopexy, mammoplasty, autoflap, personal technique

Procedia PDF Downloads 13
394 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 62
393 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 111
392 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 488
391 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty

Abstract:

The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.

Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal

Procedia PDF Downloads 151
390 The End Justifies the Means: Using Programmed Mastery Drill to Teach Spoken English to Spanish Youngsters, without Relying on Homework

Authors: Robert Pocklington

Abstract:

Most current language courses expect students to be ‘vocational’, sacrificing their free time in order to learn. However, pupils with a full-time job, or bringing up children, hardly have a spare moment. Others just need the language as a tool or a qualification, as if it were book-keeping or a driving license. Then there are children in unstructured families whose stressful life makes private study almost impossible. And the countless parents whose evenings and weekends have become a nightmare, trying to get the children to do their homework. There are many arguments against homework being a necessity (rather than an optional extra for more ambitious or dedicated students), making a clear case for teaching methods which facilitate full learning of the key content within the classroom. A methodology which could be described as Programmed Mastery Learning has been used at Fluency Language Academy (Spain) since 1992, to teach English to over 4000 pupils yearly, with a staff of around 100 teachers, barely requiring homework. The course is structured according to the tenets of Programmed Learning: small manageable teaching steps, immediate feedback, and constant successful activity. For the Mastery component (not stopping until everyone has learned), the memorisation and practice are entrusted to flashcard-based drilling in the classroom, leading all students to progress together and develop a permanently growing knowledge base. Vocabulary and expressions are memorised using flashcards as stimuli, obliging the brain to constantly recover words from the long-term memory and converting them into reflex knowledge, before they are deployed in sentence building. The use of grammar rules is practised with ‘cue’ flashcards: the brain refers consciously to the grammar rule each time it produces a phrase until it comes easily. This automation of lexicon and correct grammar use greatly facilitates all other language and conversational activities. The full B2 course consists of 48 units each of which takes a class an average of 17,5 hours to complete, allowing the vast majority of students to reach B2 level in 840 class hours, which is corroborated by an 85% pass-rate in the Cambridge University B2 exam (First Certificate). In the past, studying for qualifications was just one of many different options open to young people. Nowadays, youngsters need to stay at school and obtain qualifications in order to get any kind of job. There are many students in our classes who have little intrinsic interest in what they are studying; they just need the certificate. In these circumstances and with increasing government pressure to minimise failure, teachers can no longer think ‘If they don’t study, and fail, its their problem’. It is now becoming the teacher’s problem. Teachers are ever more in need of methods which make their pupils successful learners; this means assuring learning in the classroom. Furthermore, homework is arguably the main divider between successful middle-class schoolchildren and failing working-class children who drop out: if everything important is learned at school, the latter will have a much better chance, favouring inclusiveness in the language classroom.

Keywords: flashcard drilling, fluency method, mastery learning, programmed learning, teaching English as a foreign language

Procedia PDF Downloads 94
389 Coupling Random Demand and Route Selection in the Transportation Network Design Problem

Authors: Shabnam Najafi, Metin Turkay

Abstract:

Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.

Keywords: epsilon-constraint, multi-objective, network design, stochastic

Procedia PDF Downloads 625
388 Migrant and Population Health, Two Sides of a Coin: A Descriptive Study

Authors: A. Sottomayor, M. Perez Duque, M. C. Henriques

Abstract:

Introduction: Migration is not a new phenomenon; nomads often traveled, seeking better living conditions, including food and water. The increase of migrations affects all countries, rising health-related challenges. In Portugal, we have had migrant movements in the last decades, pairing with economic behavior. Irregular immigrants are detained in Santo António detention center from Portuguese Immigration and Borders Service (USHA-SEF) in Porto until court decision for a maximum of 60 days. It is the only long stay officially designated detention center for immigrants in Portugal. Immigrant health is important for public health (PH). It affects and is affected by the community. The XXVII Portuguese Government considered immigrant integration, including access to health, health promotion, protection and reduction of inequities a political priority. Many curative, psychological and legal services are provided for detainees, but until 2015, no structured health promotion or prevention actions were being held at USHA-SEF. That year, Porto Occidental PH Local Unit started to provide vaccination and health literacy on this theme for detainees and SEF workers. Our activities include a vaccine lecture, a medical consultation with vaccine prescription and administration, along with documented proof of vaccination. All vaccines are volunteer and free of charge. This action reduces the risk of importation and transmission of diseases, contributing to world eradication and elimination programs. We aimed to characterize the demography of irregular immigrant detained at UHSA-SEF and describe our activity. Methods: All data was provided by Porto Occidental Public Health Unit. All paper registers of vaccination were uploaded to MicrosoftExcel®. We included all registers and collected demographic variables, nationality, vaccination date, category, and administered vaccines. Descriptive analysis was performed using MicrosoftExcel®. Results: From 2015 to 2018, we delivered care to 256 individuals (179 immigrants; 77 workers). Considering immigrants, 72% were male, and 8 (16%) women were pregnant. 85% were between 20-54 years (ᵡ=30,8y; 2-71y), and 11 didn’t report any age. Migrants came from 48 countries, and India had the highest number (9%). MMR and Tetanus vaccines had > 90% vaccination rate and Poliomyelitis, hepatitis B and flu vaccines had around 85% vaccination rates. We had a consistent number of refusals. Conclusion: Our irregular migrant population comes from many different countries, which increases the risk of disease importation. Pregnant women are present as a particular subset of irregular migrants, and vaccination protects them and the baby. Vaccination of migrant is valuable for them and for the countries in which they pass. It contributes to universal health coverage, for eradication programmes and accomplishment of the Sustainable Development Goals. Peer influence may present as a determinant of refusals so we must consistently educate migrants before vaccination. More studies would be valuable, particularly on the migrant trajectory, duration of stay, destiny after court decision and health impact.

Keywords: migrants, public health, universal health coverage, vaccination

Procedia PDF Downloads 104
387 Survey for Mango Seed Weevils and Pulp Weevil Sternochetus Species (Coleoptera:Curculionidae) on Mango, Mangifera indica in Shan State-South, Myanmar

Authors: Khin Nyunt Yee, Mu Mu Thein

Abstract:

Detection survey of mango seed and Pulp weevils was undertaken at major mango production areas, Yat Sauk, Taunggyi, Nyaung Shwe and Hopong Townships, in Shan State (South) of Myanmar on two mango cultivars of Sein Ta Lone and Yinkwe from May to August 2016 to coincide with fruiting season to conduct a survey of mango seed and pulp weevils population. The total numbers of 6300 fruits of both mango cultivars were sampled. Among them, 2900 fruits from 5674 fruit bearing plants were collected for Sein Ta Lone cultivar of five well managed, one unmanaged orchards and Urban in Yatsauk Twonship, 400 fruits from only one well managed orchard in Taunggyi Township, 400 fruits from two managed orchards in Nyaung Shwe Township and 400 fruits from one managed orchard in Hopong Township from May to June. 2200 fruits were collected from 4043 fruit bearing plants for Yinkwe Cultivar of four well managed orchards, one unmanaged orchards and one wild tree only in Yat Sauk Township from July to August, 2016. Fruit sample size was 200 fruits /orchard, / wild or /volunteer trees as minimum number. The pulps of all randomly sampling fruits were longitudinal cut open into three slices on each side of fruit and seed were cut longitudinally to inspect the presence of mango weevils. The collected weevils were identified up to species level at Plant Quarantine Laboratory, Plant Protection Division, Department of Agriculture, Ministry of Agriculture, Livestock and Irrigation, Yangon, Myanmar. Mango Pulp and Seed weevils were found on Sein Ta Lone Mango Cultivar in three out of four surveyed Townships except Hopong with the level of infestation ranged from 0.0% to 3.5% of fruits per Township with 0.0% to 39.0% of fruits per orchard. The highest infestation rate per township was 3.5% of fruits (n=400 fruits) in Nyaung Shwe, then, at Yat Suak, the rate was 2.47% (n=2900 fruits). A well-managed orchard at Taung Gyi had 0.75% (n=400 fruits) whereas Hopong was free 0.0% (n=400). The weevils were also recorded on Yinkwe Mango Cultivar in Yatsauk Township where the infestation level was 12.63% of fruits (n=2200) with 0.0% to 67.0% of fruits per orchard. This high level of infestation was obtained by including an absolutely non Integrated Pest Management (non IPM) orchards in both survey with the infestation rates 63.0% of fruits (n=200) and 67.0% of fruits (n=200) respectively on Yinkwe cultivar. Two different species; mango pulp weevil, Sternochetus frigitus, and mango seed weevil Sternochetus olivieri (Faust) of family Curculionidae under the order Coleoptera were recorded. Sternochetus mangiferae was not found during these surveys. Three different developmental stages of mango seed and pulp weevils: larva, pupa and adult were first detected since the first survey in 3rd week of May and mostly were recorded as adult stages in the following surveys in June, July and August The number of Mango pulp weevil was statistically higher than that of mango seed weevils at P < 0.001%. More precise surveys should be carried out national wide to detect the mango weevils.

Keywords: mango pulp weevil, Sternochetus frigitus, mango seed weevil Sternochetus olivieri, faust, Sternochetus mangiferae, fabricius, Sein Ta Lone, Yinkwe mango cultivars, Shan State (South) Myanmar

Procedia PDF Downloads 288
386 Using Fractal Architectures for Enhancing the Thermal-Fluid Transport

Authors: Surupa Shaw, Debjyoti Banerjee

Abstract:

Enhancing heat transfer in compact volumes is a challenge when constrained by cost issues, especially those associated with requirements for minimizing pumping power consumption. This is particularly acute for electronic chip cooling applications. Technological advancements in microelectronics have led to development of chip architectures that involve increased power consumption. As a consequence packaging, technologies are saddled with needs for higher rates of power dissipation in smaller form factors. The increasing circuit density, higher heat flux values for dissipation and the significant decrease in the size of the electronic devices are posing thermal management challenges that need to be addressed with a better design of the cooling system. Maximizing surface area for heat exchanging surfaces (e.g., extended surfaces or “fins”) can enable dissipation of higher levels of heat flux. Fractal structures have been shown to maximize surface area in compact volumes. Self-replicating structures at multiple length scales are called “Fractals” (i.e., objects with fractional dimensions; unlike regular geometric objects, such as spheres or cubes whose volumes and surface area values scale as integer values of the length scale dimensions). Fractal structures are expected to provide an appropriate technology solution to meet these challenges for enhanced heat transfer in the microelectronic devices by maximizing surface area available for heat exchanging fluids within compact volumes. In this study, the effect of different fractal micro-channel architectures and flow structures on the enhancement of transport phenomena in heat exchangers is explored by parametric variation of fractal dimension. This study proposes a model that would enable cost-effective solutions for thermal-fluid transport for energy applications. The objective of this study is to ascertain the sensitivity of various parameters (such as heat flux and pressure gradient as well as pumping power) to variation in fractal dimension. The role of the fractal parameters will be instrumental in establishing the most effective design for the optimum cooling of microelectronic devices. This can help establish the requirement of minimal pumping power for enhancement of heat transfer during cooling. Results obtained in this study show that the proposed models for fractal architectures of microchannels significantly enhanced heat transfer due to augmentation of surface area in the branching networks of varying length-scales.

Keywords: fractals, microelectronics, constructal theory, heat transfer enhancement, pumping power enhancement

Procedia PDF Downloads 301
385 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 119