Search results for: technology enabled learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14049

Search results for: technology enabled learning

6729 Use of Social Media in Political Communications: Example of Facebook

Authors: Havva Nur Tarakci, Bahar Urhan Torun

Abstract:

The transformation that is seen in every area of life by technology, especially internet technology changes the structure of political communications too. Internet, which is at the top of new communication technologies, affects political communications with its structure in a way that no traditional communication tools ever have and enables interaction and the channel between receiver and sender, and it becomes one of the most effective tools preferred among the political communication applications. This state as a result of technological convergence makes Internet an unobtainable place for political communication campaigns. Political communications, which means every kind of communication strategies that political parties called 'actors of political communications' use with the aim of messaging their opinions and party programmes to their present and potential voters who are a target group for them, is a type of communication that is frequently used also among social media tools at the present day. The electorate consisting of different structures is informed, directed, and managed by social media tools. Political parties easily reach their electorate by these tools without any limitations of both time and place and also are able to take the opinions and reactions of their electorate by the element of interaction that is a feature of social media. In this context, Facebook, which is a place that political parties use in social media at most, is a communication network including in our daily life since 2004. As it is one of the most popular social networks today, it is among the most-visited websites in the global scale. In this way, the research is based on the question, “How do the political parties use Facebook at the campaigns, which they conduct during the election periods, for informing their voters?” and it aims at clarifying the Facebook using practices of the political parties. In direction of this objective the official Facebook accounts of the four political parties (JDP–AKParti, PDP–BDP, RPP-CHP, NMP-MHP), which reach their voters by social media besides other communication tools, are treated, and a frame for the politics of Turkey is formed. The time of examination is constricted with totally two weeks, one week before the mayoral elections and one week after the mayoral elections, when it is supposed that the political parties use their Facebook accounts in full swing. As a research method, the method of content analysis is preferred, and the texts and the visual elements that are gotten are interpreted based on this analysis.

Keywords: Facebook, political communications, social media, electrorate

Procedia PDF Downloads 383
6728 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions

Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan

Abstract:

Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.

Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec

Procedia PDF Downloads 176
6727 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features

Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng

Abstract:

Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.

Keywords: HTML5, web worker, canvas, web socket

Procedia PDF Downloads 300
6726 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 228
6725 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation

Authors: Yuechao Lei, Lei Zhang

Abstract:

The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.

Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay

Procedia PDF Downloads 48
6724 An Enzyme Technology - Metnin™ - Enables the Full Replacement of Fossil-Based Polymers by Lignin in Polymeric Composites

Authors: Joana Antunes, Thomas Levée, Barbara Radovani, Anu Suonpää, Paulina Saloranta, Liji Sobhana, Petri Ihalainen

Abstract:

Lignin is an important component in the exploitation of lignocellulosic biomass. It has been shown that within the next years, the yield of added-value lignin-based chemicals and materials will generate renewable alternatives to oil-based products (e.g. polymeric composites, resins and adhesives) and enhance the economic feasibility of biorefineries. In this paper, a novel technology for lignin valorisation (METNIN™) is presented. METNIN™ is based on the oxidative action of an alkaliphilic enzyme in aqueous alkaline conditions (pH 10-11) at mild temperature (40-50 °C) combined with a cascading membrane operation, yielding a collection of lignin fractions (from oligomeric down to mixture of tri-, di- and monomeric units) with distinct molecular weight distribution, low polydispersity and favourable physicochemical properties. The alkaline process conditions ensure the high processibility of crude lignin in an aqueous environment and the efficiency of the enzyme, yielding better compatibility of lignin towards targeted applications. The application of a selected lignin fraction produced by METNIN™ as a suitable lignopolyol to completely replace a commercial polyol in polyurethane rigid foam formulations is presented as a prototype. Liquid lignopolyols with a high lignin content were prepared by oxypropylation and their full utilization in the polyurethane rigid foam formulation was successfully demonstrated. Moreover, selected technical specifications of different foam demonstrators were determined, including closed cell count, water uptake and compression characteristics. These specifications are within industrial standards for rigid foam applications. The lignin loading in the lignopolyol was a major factor determining the properties of the foam. In addition to polyurethane foam demonstrators, other examples of lignin-based products related to resins and sizing applications will be presented.

Keywords: enzyme, lignin valorisation, polyol, polyurethane foam

Procedia PDF Downloads 153
6723 Digitalization: The Uneven Geography of Information and Communication Technology (ICTS) CTSoss Four Major States in India

Authors: Sanchari Mukhopadhyay

Abstract:

Today, almost the entire realm of human activities are becoming increasingly dependent on the power of information, where through ICTs it is now possible to cater distances and avail various services at a few clicks. In principle, ICTs are thus expected to blur location-specific differences and affiliations of development and bring in an inclusive society at the wake of globalization. However, eventually researchers and policy analysts realized that ICTs are also generating inequality in spite of the hope for an integrated world and widespread social well-being. Regarding this unevenness, location plays a major role as often ICT development is seen to be concentrated into pockets, leaving behind large tracks as underprivileged. Thus, understanding the spatial pattern of ICT development and distribution is significant in relation to exploring the extent to which ICTs are fulfilling the promises or reassuring the existing divisions. In addition, it is also profoundly crucial to investigate how regions are connecting and competing both locally and globally. The focus of the research paper is to evaluate the spatial structure of ICT led development in India. Thereby, it attempts to understand the state level (four selected states) pattern of ICT penetration, the pattern of diffusion across districts with respect to large urban centres and the rural-urban disparity of technology adoption. It also tries to assess the changes in access dynamisms of ICTs as one move away from a large metropolitan city towards the periphery. In brief, the analysis investigates into the tendency towards the uneven growth of development through the identification of the core areas of ICT advancement within the country and its diffusion from the core to the periphery. In order to assess the level of ICT development and rural-urban disparity across the districts of selected states, two indices named ICT Development Index and Rural-Urban Digital Divide Index have been constructed. The study mostly encompasses the latest Census (2011) of the country and TRAI (Telecom Regulatory Authority of India) in some cases.

Keywords: ICT development, diffusion, core-periphery, digital divide

Procedia PDF Downloads 333
6722 Integrating a Six Thinking Hats Approach Into the Prewriting Stage of Argumentative Writing In English as a Foreign Language: A Chinese Case Study of Generating Ideas in Action

Authors: Mei Lin, Chang Liu

Abstract:

Argumentative writing is the most prevalent genre in diverse writing tests. How to construct academic arguments is often regarded as a difficult task by most English as a foreign language (EFL) learners. A failure to generate enough ideas and organise them coherently and logically as well as a lack of competence in supporting their arguments with relevant evidence are frequent problems faced by EFL learners when approaching an English argumentative writing task. Overall, these problems are closely related to planning, and planning an argumentative writing at pre-writing stage plays a vital role in a good academic essay. However, how teachers can effectively guide students to generate ideas is rarely discussed in planning English argumentative writing, apart from brainstorming. Brainstorming has been a common practice used by teachers to help students generate ideas. However, some limitations of brainstorming suggest that it can help students generate many ideas, but ideas might not necessarily be coherent and logic, and could sometimes impede production. It calls for a need to explore effective instructional strategies at pre-writing stage of English argumentative writing. This paper will first examine how a Six Thinking Hats approach can be used to provide a dialogic space for EFL learners to experience and collaboratively generate ideas from multiple perspectives at pre-writing stage. Part of the findings of the impact of a twelve-week intervention (from March to July 2021) on students learning to generate ideas through engaging in group discussions of using Six Thinking Hats will then be reported. The research design is based on the sociocultural theory. The findings present evidence from a mixed-methods approach and fifty-nine participants from two first-year undergraduate natural classes in a Chinese university. Analysis of pre- and post- questionnaires suggests that participants had a positive attitude toward the Six Thinking Hats approach. It fosters their understanding of prewriting and argumentative writing, helps them to generate more ideas not only from multiple perspectives but also in a systematic way. A comparison of participants writing plans confirms an improvement in generating counterarguments and rebuttals to support their arguments. Above all, visual and transcripts data of group discussion collected from different weeks throughout the intervention enable teachers and researchers to ‘see’ the hidden process of learning to generate ideas in action.

Keywords: argumentative writing, innovative pedagogy, six thinking hats, dialogic space, prewriting, higher education

Procedia PDF Downloads 87
6721 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)

Authors: Wafa' Slaibi Alsharafat

Abstract:

Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.

Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection

Procedia PDF Downloads 474
6720 People Management, Knowledge Sharing and Intermediary Variables

Authors: Nizar Mansour, Chiha Gaha, Emna Gara

Abstract:

The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.

Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia

Procedia PDF Downloads 333
6719 A Case Study on Experiences of Clinical Preceptors in the Undergraduate Nursing Program

Authors: Jacqueline M. Dias, Amina A Khowaja

Abstract:

Clinical education is one of the most important components of a nursing curriculum as it develops the students’ cognitive, psychomotor and affective skills. Clinical teaching ensures the integration of knowledge into practice. As the numbers of students increase in the field of nursing coupled with the faculty shortage, clinical preceptors are the best choice to ensure student learning in the clinical settings. The clinical preceptor role has been introduced in the undergraduate nursing programme. In Pakistan, this role emerged due to a faculty shortage. Initially, two clinical preceptors were hired. This study will explore clinical preceptors views and experiences of precepting Bachelor of Science in Nursing (BScN) students in an undergraduate program. A case study design was used. As case studies explore a single unit of study such as a person or very small number of subjects; the two clinical preceptors were fundamental to the study and served as a single case. Qualitative data were obtained through an iterative process using in depth interviews and written accounts from reflective journals that were kept by the clinical preceptors. The findings revealed that the clinical preceptors were dedicated to their roles and responsibilities. Another, key finding was that clinical preceptors’ prior knowledge and clinical experience were valuable assets to perform their role effectively. The clinical preceptors found their new role innovative and challenging; it was stressful at the same time. Findings also revealed that in the clinical agencies there were unclear expectations and role ambiguity. Furthermore, clinical preceptors had difficulty integrating theory into practice in the clinical area and they had difficulty in giving feedback to the students. Although this study is localized to one university, generalizations can be drawn from the results. The key findings indicate that the role of a clinical preceptor is demanding and stressful. Clinical preceptors need preparation prior to precepting students on clinicals. Also, institutional support is fundamental for their acceptance. This paper focuses on the views and experiences of clinical preceptors undertaking a newly established role and resonates with the literature. The following recommendations are drawn to strengthen the role of the clinical preceptors: A structured program for clinical preceptors is needed along with mentorship. Clinical preceptors should be provided with formal training in teaching and learning with emphasis on clinical teaching and giving feedback to students. Additionally, for improving integration of theory into practice, clinical modules should be provided ahead of the clinical. In spite of all the challenges, ten more clinical preceptors have been hired as the faculty shortage continues to persist.

Keywords: baccalaureate nursing education, clinical education, clinical preceptors, nursing curriculum

Procedia PDF Downloads 174
6718 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 134
6717 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis

Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante

Abstract:

The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.

Keywords: dynamic analysis, long short-term memory, prediction, sepsis

Procedia PDF Downloads 125
6716 Privatising Higher Education: Imparting Quality in Academics

Authors: Manish Khanna

Abstract:

Higher education seeks to preserve, transmit and advance knowledge. It is one of the most important instruments of change and progress. The observation of Kothari Commission (1964-66) is true even today; The destiny of India is now being shaped in her classrooms. This, we believe, is no more rhetoric. In the world based on science and technology it is education that determines the level of prosperity, welfare, and security of the people. On the quality and number of persons coming out of our schools and colleges will depend our success in the great enterprise of national reconstruction.

Keywords: higher education, quality in academics, Kothari commission, privatising higher education

Procedia PDF Downloads 481
6715 Impact of Mhealth Tools on Psycho-Social Predictors of Behaviour Regarding Contraceptive Use

Authors: Preeti Tiwari, Jay Wood, Duncan Babbage

Abstract:

Family planning plays a role in saving lives across the globe by preventing unwanted pregnancies. The purpose of this multidisciplinary research was to determine the impact of mHealth tools have on psychosocial determinants of behaviour for family planning. The present study examines a topic that is very relevant in times where human-technology interaction is at its peak. It is probably one of the first studies that have investigated the impact of mobile phone technology on the underlying mechanisms of behaviour change for family planning using primary data. To examine the association between exposure to mHealth tools and predictors of behaviour, data was collected from mHealth intervention areas in India. A post-intervention quasi-experimental study with a 2x2 factorial design was conducted among 831 men and women from the state of Bihar. The quantitative data analysis evaluated the extent of influence that predictors of behaviour (beliefs, social norms, perceived behaviour control, and outcome behaviour) have on a woman’s decisions about family planning. The results indicated an association between exposure to mHealth tools and improved communication about family planning among various family members after receiving health information from a health worker (H1). A relationship between exposure to mHealth tools and increased support women received from their husbands and extended family (mothers-in-law specifically) and peers (H2) was also found. A further result showed that knowledge about family planning was greater among users of family planning (H4). mHealth tools empower women to communicate with family members. This has important implications for developing mobile phone-based tools, as they can be used as a crucial communication channel that can be an effective method of increasing communication among family members about contraceptives. Thus, it can be implied that where women feel nervous talking about contraception, the successful application of mHealth tools can strengthen the interactivity of the health communication and could increase the likelihood of using contraception. However, while it may improve health communication that can inform health decisions, it may be insufficient on its own to cause behaviour change.

Keywords: contraceptive, e-health, psycho-social, women

Procedia PDF Downloads 122
6714 A Research on Determining the Viability of a Job Board Website for Refugees in Kenya

Authors: Prince Mugoya, Collins Oduor Ondiek, Patrick Kanyi Wamuyu

Abstract:

Refugee Job Board Website is a web-based application that provides a platform for organizations to post jobs specifically for refugees. Organizations upload job opportunities and refugees can view them on the website. The website also allows refugees to input their skills and qualifications. The methodology used to develop this system is a waterfall (traditional) methodology. Software development tools include Brackets which will be used to code the website and PhpMyAdmin to store all the data in a database.

Keywords: information technology, refugee, skills, utilization, economy, jobs

Procedia PDF Downloads 165
6713 Makhraj Recognition Using Convolutional Neural Network

Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak

Abstract:

This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.

Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow

Procedia PDF Downloads 335
6712 Human-Automation Interaction in Law: Mapping Legal Decisions and Judgments, Cognitive Processes, and Automation Levels

Authors: Dovile Petkeviciute-Barysiene

Abstract:

Legal technologies not only create new ways for accessing and providing legal services but also transform the role of legal practitioners. Both lawyers and users of legal services expect automated solutions to outperform people with objectivity and impartiality. Although fairness of the automated decisions is crucial, research on assessing various characteristics of automated processes related to the perceived fairness has only begun. One of the major obstacles to this research is the lack of comprehensive understanding of what legal actions are automated and could be meaningfully automated, and to what extent. Neither public nor legal practitioners oftentimes cannot envision technological input due to the lack of general without illustrative examples. The aim of this study is to map decision making stages and automation levels which are and/or could be achieved in legal actions related to pre-trial and trial processes. Major legal decisions and judgments are identified during the consultations with legal practitioners. The dual-process model of information processing is used to describe cognitive processes taking place while making legal decisions and judgments during pre-trial and trial action. Some of the existing legal technologies are incorporated into the analysis as well. Several published automation level taxonomies are considered because none of them fit well into the legal context, as they were all created for avionics, teleoperation, unmanned aerial vehicles, etc. From the information processing perspective, analysis of the legal decisions and judgments expose situations that are most sensitive to cognitive bias, among others, also help to identify areas that would benefit from the automation the most. Automation level analysis, in turn, provides a systematic approach to interaction and cooperation between humans and algorithms. Moreover, an integrated map of legal decisions and judgments, information processing characteristics, and automation levels all together provide some groundwork for the research of legal technology perceived fairness and acceptance. Acknowledgment: This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0116) under grant agreement with the Research Council of Lithuania (LMTLT).

Keywords: automation levels, information processing, legal judgment and decision making, legal technology

Procedia PDF Downloads 142
6711 Using Eye-Tracking Technology to Understand Consumers’ Comprehension of Multimedia Health Information

Authors: Samiullah Paracha, Sania Jehanzeb, M. H. Gharanai, A. R. Ahmadi, H.Sokout, Toshiro Takahara

Abstract:

The purpose of this study is to examine how health consumers utilize pictures when developing an understanding of multimedia health documents, and whether attentional processes, measured by eye-tracking, relate to differences in health-related cognitive resources and passage comprehension. To investigate these issues, we will present health-related text-picture passages to elders and collect eye movement data to measure readers’ looking behaviors.

Keywords: multimedia, eye-tracking, consumer health informatics, human-computer interaction

Procedia PDF Downloads 339
6710 Well-Being and Helping Technology for Retired Population in Finland

Authors: R. Pääkkönen, L. Korpinen

Abstract:

This study aimed to evaluate parameters influencing well-being and how to maintain well-being as long as possible after retirement. There is contradictory information on the health changes after retirement in Finland. This work is based on interviews, statistics, and literature evaluation of Finland. Most often, balance, multitasking reaction time, and adaptation of vision in dim and darks areas are worsened. Slowing is one characteristic that is difficult to measure properly. The most important is try to determine ways to manage daily activities and symptoms of disease after retirement. Medicine is advancing, problems are often also on the economic side. Information of technical aids is important. It is worth planning a retirement age.

Keywords: retirement, working, aging, wellness

Procedia PDF Downloads 238
6709 Student Absenteeism as a Challenge for Inclusion: A Comparative Study of Primary Schools in an Urban City in India

Authors: Deepa Idnani

Abstract:

Attendance is an important factor in school success among children. Studies show that better attendance is related to higher academic achievement for students of all backgrounds, but particularly for children with lower socio-economic status. Beginning from the early years, students who attend school regularly score higher on tests than their peers who are frequently absent. The present study in different types of School In Delhi tries to highlight the impact of student absenteeism and the challenges it poses for the students. The study relies on Lewin ‘Model of Exclusion’ and tries to focus on the analysis of children with special needs and the inclusion and exclusion of students in the school.

Keywords: student absenteeism, pedagogy, learning, right to education act, exclusion

Procedia PDF Downloads 297
6708 3D Printing: Rebounding from Global Supply Chain Disruption Due to Natural Disaster

Authors: Gurjinder Singh, Jasmeen Kaur, Mukul Dhiman

Abstract:

This paper mainly describes the significance of 3D printing in the supply chain management in a scenario when there is disruption in global supply chain. Furthermore, the development and implementation of supply chain strategies in context of 3D printing technology is framed to make supply chain of an organization resilient to disruption caused by natural disasters.

Keywords: 3D printing, global supply chain, supply chain management, supply chain strategies

Procedia PDF Downloads 476
6707 Smart Signature - Medical Communication without Barrier

Authors: Chia-Ying Lin

Abstract:

This paper explains how to enhance doctor-patient communication and nurse-patient communication through multiple intelligence signing methods and user-centered. It is hoped that through the implementation of the "electronic consent", the problems faced by the paper consent can be solved: storage methods, resource utilization, convenience, correctness of information, integrated management, statistical analysis and other related issues. Make better use and allocation of resources to provide better medical quality. First, invite the medical records department to assist in the inventory of paper consent in the hospital: organising, classifying, merging, coding, and setting. Second, plan the electronic consent configuration file: set the form number, consent form group, fields and templates, and the corresponding doctor's order code. Next, Summarize four types of rapid methods of electronic consent: according to the doctor's order, according to the medical behavior, according to the schedule, and manually generate the consent form. Finally, system promotion and adjustment: form an "electronic consent promotion team" to improve, follow five major processes: planning, development, testing, release, and feedback, and invite clinical units to raise the difficulties faced in the promotion, and make improvements to the problems. The electronic signature rate of the whole hospital will increase from 4% in January 2022 to 79% in November 2022. Use the saved resources more effectively, including: reduce paper usage (reduce carbon footprint), reduce the cost of ink cartridges, re-plan and use the space for paper medical records, and save human resources to provide better services. Through the introduction of information technology and technology, the main spirit of "lean management" is implemented. Transforming and reengineering the process to eliminate unnecessary waste is also the highest purpose of this project.

Keywords: smart signature, electronic consent, electronic medical records, user-centered, doctor-patient communication, nurse-patient communication

Procedia PDF Downloads 126
6706 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 75
6705 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 83
6704 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones

Authors: Kazuhisa Takagi

Abstract:

This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.

Keywords: dynamic mathematical object, javascript, google drive, transfer jet

Procedia PDF Downloads 260
6703 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 142
6702 Regulatory Guidelines to Support the Design of Nanosatellite Projects in Mexican Academic Contexts

Authors: Alvaro Armenta-Ramade, Arturo Serrano-Santoyo, Veronica Rojas-Mendizabal, Roberto Conte-Galvan

Abstract:

The availability and affordability of commercial off-the-shell products have brought a major impetus in the development of university projects related to the design, construction and launching of small satellites on a global scale. Universities in emerging economies as well as in least developed countries have been able to develop prototypes of small satellites (cubesats and cansats) with limited budgets. The experience gained in the development of small satellites gives rise to capacity building for designing more complex aerospace systems. This trend has significantly increased the pace and number of aerospace university projects around the world. In the case of Mexico, projects funded by different agencies have been very effective in accelerating the capacity building and technology transfer initiatives in the aerospace ecosystem. However, many of this initiatives have centered their efforts in technology development matters with minimum or no considerations of key regulatory issues related to frequency assignment, management and licensing, as well as launching requirements and measures of mitigation of space debris. These regulatory concerns are fundamental to accomplish successful missions that take into account the complete value chain of an aerospace project. The purpose of this paper is to develop a regulatory framework to support the efforts of educational institutions working on the development of small satellites in Mexico. We base our framework on recommendations from the International Telecommunications Union (ITU), the United Nations Office for Outer Space Affairs (UNOOSA) and other major actors of the Mexican regulatory ecosystem. In order to develop an integrated and cohesive framework, we draw on complexity science to identify the agents, their role and interactions. Our goal is to create a guiding instrument available both in print and online that can also be used in other regions of the world

Keywords: capacity building, complexity science, cubesats, space regulations, small satellites

Procedia PDF Downloads 260
6701 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly

Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni

Abstract:

The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.

Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype

Procedia PDF Downloads 134
6700 Improving Low English Oral Skills of 5 Second-Year English Major Students at Debark University

Authors: Belyihun Muchie

Abstract:

This study investigates the low English oral communication skills of 5 second-year English major students at Debark University. It aims to identify the key factors contributing to their weaknesses and propose effective interventions to improve their spoken English proficiency. Mixed-methods research will be employed, utilizing observations, questionnaires, and semi-structured interviews to gather data from the participants. To clearly identify these factors, structured and informal observations will be employed; the former will be used to identify their fluency, pronunciation, vocabulary use, and grammar accuracy, and the later will be suited to observe the natural interactions and communication patterns of learners in the classroom setting. The questionnaires will assess their self-perceptions of their skills, perceived barriers to fluency, and preferred learning styles. Interviews will also delve deeper into their experiences and explore specific obstacles faced in oral communication. Data analysis will involve both quantitative and qualitative responses. The structured observation and questionnaire will be analyzed quantitatively, whereas the informal observation and interview transcripts will be analyzed thematically. Findings will be used to identify the major causes of low oral communication skills, such as limited vocabulary, grammatical errors, pronunciation difficulties, or lack of confidence. They are also helpful to develop targeted solutions addressing these causes, such as intensive pronunciation practice, conversation simulations, personalized feedback, or anxiety-reduction techniques. Finally, the findings will guide designing an intervention plan for implementation during the action research phase. The study's outcomes are expected to provide valuable insights into the challenges faced by English major students in developing oral communication skills, contribute to the development of evidence-based interventions for improving spoken English proficiency in similar contexts, and offer practical recommendations for English language instructors and curriculum developers to enhance student learning outcomes. By addressing the specific needs of these students and implementing tailored interventions, this research aims to bridge the gap between theoretical knowledge and practical speaking ability, equipping them with the confidence and skills to flourish in English communication settings.

Keywords: oral communication skills, mixed-methods, evidence-based interventions, spoken English proficiency

Procedia PDF Downloads 51