Search results for: zig-zag cooling channels
1049 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles
Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis
Abstract:
E-maintenance is a relatively new concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification by means of a global navigation satellite system (GNSS), cellular connectivity by means of 3G/long-term evolution (LTE) modem, connectivity to on-board diagnostics (OBD), and connectivity to analog and digital sensors by means of a novel design of expansion board. Specifically, the later provides eight analog plus three digital sensor channels, as well as one on-board temperature / relative humidity sensor. The specific device offers a number of adaptability features based on appropriate zero-ohm resistor placement and appropriate value selection for limited number of passive components. For example, although in the standard configuration four voltage analog channels with constant voltage sources for the power supply of the corresponding sensors are available, up to two of these voltage channels can be converted to provide power to the connected sensors by means of corresponding constant current source circuits, whereas all parameters of analog sensor power supply and matching circuits are fully configurable offering the advantage of covering a wide variety of industrial sensors. Note that a key feature of the proposed sensor node, ensuring the reliable operation of the connected sensors, is the appropriate supply of external power to the connected sensors and their proper matching to the IoT sensor node. In standard mode, the IoT sensor node communicates to the data center through 3G/LTE, transmitting all digital/digitized sensor data, IoT device identity, and position. Moreover, the proposed IoT sensor node offers WiFi connectivity to mobile devices (smartphones, tablets) equipped with an appropriate application for the manual registration of vehicle- and driver-specific information, and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware. It is programmed with a high-level language (Python) on top of a modern operating system (Linux). Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project code: T1EDK- 01359, IntelligentLogger).Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics
Procedia PDF Downloads 1581048 Computational Approach to the Interaction of Neurotoxins and Kv1.3 Channel
Authors: Janneth González, George Barreto, Ludis Morales, Angélica Sabogal
Abstract:
Sea anemone neurotoxins are peptides that interact with Na+ and K+ channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of nearly eighty autoimmune disorders due to their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.Keywords: neurotoxins, potassium channel, Kv1.3, computational methods, autoimmune diseases
Procedia PDF Downloads 3801047 Experimental Study on Temperature Splitting of a Counter-Flow Ranque-Hilsch Vortex Tube
Authors: Hany. A. Mohamed, M. Attalla, M. Salem, Hussein M. Mghrabie, E. Specht
Abstract:
An experiment al investigation is made to determine the effects of the nozzle dimensions and the inlet pressure on the heating and cooling performance of the counter flow Ranque–Hilsch vortex tube when air used as a working fluid. The all results were taking under inlet pressures were adjusted from 200 kPa to 600 kPa with 100 kPa increments. The conventional tangential generator with number of nuzzle of 6 was used and inner diameter of 7.5 mm. During the experiments, a vortex tube is used with an L/D ratio varied from 10 to 30. Finally, it is observed that the effect of the nuzzle aspect ratio on the energy separation changes according to the value of L/D.Keywords: Ranque-Hilsch, vortex tube, aspect ratio, energy separation
Procedia PDF Downloads 5281046 The Closed Cavity Façade (CCF): Optimization of CCF for Enhancing Energy Efficiency and Indoor Environmental Quality in Office Buildings
Authors: Michalis Michael, Mauro Overend
Abstract:
Buildings, in which we spend 87-90% of our time, act as a shelter protecting us from environmental conditions and weather phenomena. The building's overall performance is significantly dependent on the envelope’s glazing part, which is particularly critical as it is the most vulnerable part to heat gain and heat loss. However, conventional glazing technologies have relatively low-performance thermo-optical characteristics. In this regard, during winter, the heat losses due to the glazing part of a building envelope are significantly increased as well as the heat gains during the summer period. In this study, the contribution of an innovative glazing technology, namely Closed Cavity Façade (CCF) in improving energy efficiency and IEQ in office buildings is examined, aiming to optimize various design configurations of CCF. Using Energy Plus and IDA ICE packages, the performance of several CCF configurations and geometries for various climate types were investigated, aiming to identify the optimum solution. The model used for the simulations and optimization process was MATELab, a recently constructed outdoor test facility at the University of Cambridge (UK). The model was previously experimentally calibrated. The study revealed that the use of CCF technology instead of conventional double or triple glazing leads to important benefits. Particularly, the replacement of the traditional glazing units, used as the baseline, with the optimal configuration of CCF led to a decrease in energy consumption in the range of 18-37% (depending on the location). This mainly occurs due to integrating shading devices in the cavity and applying proper glass coatings and control strategies, which lead to improvement of thermal transmittance and g-value of the glazing. Since the solar gain through the façade is the main contributor to energy consumption during cooling periods, it was observed that a higher energy improvement is achieved in cooling-dominated locations. Furthermore, it was shown that a suitable selection of the constituents of a closed cavity façade, such as the colour and type of shading devices and the type of coatings, leads to an additional improvement of its thermal performance, avoiding overheating phenomena and consequently ensuring temperatures in the glass cavity below the critical value, and reducing the radiant discomfort providing extra benefits in terms of Indoor Environmental Quality (IEQ).Keywords: building energy efficiency, closed cavity façade, optimization, occupants comfort
Procedia PDF Downloads 671045 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams
Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali
Abstract:
This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.Keywords: experimental, fire, high strength concrete beams, monotonic loading
Procedia PDF Downloads 4041044 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator
Authors: S. Movafagh, Y. Bakhshan
Abstract:
In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.Keywords: forced convection, nanofluid, radiator, CFD simulation
Procedia PDF Downloads 3461043 Tuning the Surface Roughness of Patterned Nanocellulose Films: An Alternative to Plastic Based Substrates for Circuit Priniting in High-Performance Electronics
Authors: Kunal Bhardwaj, Christine Browne
Abstract:
With the increase in global awareness of the environmental impacts of plastic-based products, there has been a massive drive to reduce our use of these products. Use of plastic-based substrates in electronic circuits has been a matter of concern recently. Plastics provide a very smooth and cheap surface for printing high-performance electronics due to their non-permeability to ink and easy mouldability. In this research, we explore the use of nano cellulose (NC) films in electronics as they provide an advantage of being 100% recyclable and eco-friendly. The main hindrance in the mass adoption of NC film as a substitute for plastic is its higher surface roughness which leads to ink penetration, and dispersion in the channels on the film. This research was conducted to tune the RMS roughness of NC films to a range where they can replace plastics in electronics(310-470nm). We studied the dependence of the surface roughness of the NC film on the following tunable aspects: 1) composition by weight of the NC suspension that is sprayed on a silicon wafer 2) the width and the depth of the channels on the silicon wafer used as a base. Various silicon wafers with channel depths ranging from 6 to 18 um and channel widths ranging from 5 to 500um were used as a base. Spray coating method for NC film production was used and two solutions namely, 1.5wt% NC and a 50-50 NC-CNC (cellulose nanocrystal) mixture in distilled water, were sprayed through a Wagner sprayer system model 117 at an angle of 90 degrees. The silicon wafer was kept on a conveyor moving at a velocity of 1.3+-0.1 cm/sec. Once the suspension was uniformly sprayed, the mould was left to dry in an oven at 50°C overnight. The images of the films were taken with the help of an optical profilometer, Olympus OLS 5000. These images were converted into a ‘.lext’ format and analyzed using Gwyddion, a data and image analysis software. Lowest measured RMS roughness of 291nm was with a 50-50 CNC-NC mixture, sprayed on a silicon wafer with a channel width of 5 µm and a channel depth of 12 µm. Surface roughness values of 320+-17nm were achieved at lower (5 to 10 µm) channel widths on a silicon wafer. This research opened the possibility of the usage of 100% recyclable NC films with an additive (50% CNC) in high-performance electronics. Possibility of using additives like Carboxymethyl Cellulose (CMC) is also being explored due to the hypothesis that CMC would reduce friction amongst fibers, which in turn would lead to better conformations amongst the NC fibers. CMC addition would thus be able to help tune the surface roughness of the NC film to an even greater extent in future.Keywords: nano cellulose films, electronic circuits, nanocrystals and surface roughness
Procedia PDF Downloads 1291042 Effect of Springback Analysis on Influences of the Steel Demoulding Using FEM
Authors: Byeong-Sam Kim, Jongmin Park
Abstract:
The present work is motivated by the industrial challenge to produce complex composite shapes cost-effectively. The model used an anisotropical thermoviscoelastic is analyzed by an implemented finite element solver. The stress relaxation can be constructed by Prony series for the nonlinear thermoviscoelastic model. The calculation of process induced internal stresses relaxation during the cooling stage of the manufacturing cycle was carried out by the spring back phenomena observed from the part containing a cylindrical segment. The finite element results obtained from the present formulation are compared with experimental data, and the results show good correlations.Keywords: thermoviscoelastic, springback phenomena, FEM analysis, thermoplastic composite structures
Procedia PDF Downloads 3611041 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar
Abstract:
The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.Keywords: ECAP, mechanical design, numerical methods, SPD
Procedia PDF Downloads 1441040 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed
Authors: Ravi Inder Singh
Abstract:
Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations
Procedia PDF Downloads 5161039 Electric Power Generation by Thermoelectric Cells and Parabolic Solar Concentrators
Authors: A. Kianifar, M. Afzali, I. Pishbin
Abstract:
In this paper, design details, theoretical analysis and thermal performance analysis of a solar energy concentrator suited to combined heat and thermoelectric power generation are presented. The thermoelectric device is attached to the absorber plate to convert concentrated solar energy directly into electric energy at the focus of the concentrator. A cooling channel (water cooled heat sink) is fitted to the cold side of the thermoelectric device to remove the waste heat and maintain a high temperature gradient across the device to improve conversion efficiency.Keywords: concentrator thermoelectric generator, CTEG, solar energy, thermoelectric cells
Procedia PDF Downloads 3091038 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency
Authors: Valeriya Tyo, Serikbolat Yessengabulov
Abstract:
Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.Keywords: building geometry, energy efficiency, heat gain, heat loss
Procedia PDF Downloads 5031037 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube
Authors: Shengjun Zhang, Xu Cheng, Feng Shen
Abstract:
The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy
Procedia PDF Downloads 3521036 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates
Authors: J. Iwaro, A. Mwasha, K. Ramsubhag
Abstract:
Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.Keywords: building envelope, roof, energy consumption, thermal comfort
Procedia PDF Downloads 2751035 Alloying Effect on Hot Workability of M42 High Speed Steel
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, and 1.0V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3 wt.% were cast into ingots of 140 mm´ 140 mm´ 330 mm by vacuum induction melting. After solution treatment at 1150°C for 1.5 hrs. followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminium and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.Keywords: high speed steels, alloying elements, eutectic carbides, microstructure, hot workability
Procedia PDF Downloads 3551034 Plasma Arc Burner for Pulverized Coal Combustion
Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava
Abstract:
Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.Keywords: coal combustion, plasma arc, plasma torches, pulverized coal
Procedia PDF Downloads 1631033 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems
Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn
Abstract:
This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits
Procedia PDF Downloads 4841032 An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design
Authors: Moulay Youssef El Hafidi
Abstract:
In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids.Keywords: magnetic cooling, nanofluid, gadolinium, permanent magnets, heat exchange
Procedia PDF Downloads 861031 Aging Effect on Mechanical Behavior of Duplex Stainless Steel
Authors: Jeonho Moon, Tae Kwon Ha
Abstract:
In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0 C, 0.2 Mn, 3.8 Cr, 1.5 W, 8.5 Co, 9.2 Mo, and 1.0 V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3wt.% were cast into ingots of 140 mm x 140 mm x 330 mm by vacuum induction melting. After solution treatment at 1150 °C for 1.5 hr followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminum and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.Keywords: duplex stainless steel, alloying elements, eutectic carbides, microstructure, hot workability
Procedia PDF Downloads 4231030 A Mini Radar System for Low Altitude Targets Detection
Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan
Abstract:
This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)
Procedia PDF Downloads 3241029 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation
Authors: W. Meron Mebrahtu, R. Absi
Abstract:
Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.Keywords: accuracy, eddy viscosity, sewers, velocity profile
Procedia PDF Downloads 1161028 Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers
Authors: E. Taslak, C. Kocatepe, O. Arıkan, C. F. Kumru
Abstract:
In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards.Keywords: breakdown voltage, corn oil, dissipation factor, mineral oil, power loss, relative dielectric constant, resistivity
Procedia PDF Downloads 5821027 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations
Procedia PDF Downloads 1911026 Narratives and Meta-Narratives in the News of People Killed in 2022 Iranian Protests
Authors: Abbas Rezaei Samarin
Abstract:
In October 2022, protests began following the death of Mahsa Amini and were followed by the deaths of those arrested by Iran's morality police which Iran's official media and foreign Persian-language satellite channels presented to the audience different narratives of how they were killed. These two types of media produced two different and sometimes conflicting narratives when faced with the news of a certain person's death, and the conflict is found between the narratives in some cases. This study has focused on the semiotics of these narratives, the interpretation of discourses supporting the narratives, and finally, their analysis within the framework of narrative theories. In the present study, the researcher has used a qualitative approach and has concluded that the narrative of both types of media is structured around the functions of the existing and ideal political system.Keywords: narrative, iran, fake news, protests, manipulation of reality
Procedia PDF Downloads 1001025 Urban Waste Management for Health and Well-Being in Lagos, Nigeria
Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo
Abstract:
High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.Keywords: health, infrastructure, management, septage, well-being
Procedia PDF Downloads 1801024 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8 Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25 wt. %Y, a large amount of pro-eutectic phases have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8 Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.Keywords: Sn-Zn eutectic alloy, yttrium, FactSage®, microstructure, mechanical properties
Procedia PDF Downloads 4731023 Review for Identifying Online Opinion Leaders
Authors: Yu Wang
Abstract:
Nowadays, Internet enables its users to share the information online and to interact with others. Facing with numerous information, these Internet users are confused and begin to rely on the opinion leaders’ recommendations. The online opinion leaders are the individuals who have professional knowledge, who utilize the online channels to spread word-of-mouth information and who can affect the attitudes or even the behavior of their followers to some degree. Because utilizing the online opinion leaders is seen as an important approach to affect the potential consumers, how to identify them has become one of the hottest topics in the related field. Hence, in this article, the concepts and characteristics are introduced, and the researches related to identifying opinion leaders are collected and divided into three categories. Finally, the implications for future studies are provided.Keywords: online opinion leaders, user attributes analysis, text mining analysis, network structure analysis
Procedia PDF Downloads 2251022 Numerical Study of a Nanofluid in a Truncated Cone
Authors: B. Mahfoud, A. Bendjaghlouli
Abstract:
Natural convection is simulated in a truncated cone filled with nanofluid. Inclined and top walls have constant temperature where the heat source is located on the bottom wall of the conical container which is thermally insulated. A finite volume approach is used to solve the governing equations using the SIMPLE algorithm for different parameters such as Rayleigh number, inclination angle of inclined walls of the enclosure and heat source length. The results showed an enhancement in cooling system by using a nanofluid, when conduction regime is assisted. The inclination angle of inclined sidewall and heat source length affect the heat transfer rate and the maximum temperature.Keywords: heat source, truncated cone, nanofluid, natural convection
Procedia PDF Downloads 3131021 Elasto-Plastic Behavior of Rock during Temperature Drop
Authors: N. Reppas, Y. L. Gui, B. Wetenhall, C. T. Davie, J. Ma
Abstract:
A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material.Keywords: bounding surface, cooling of rock, plasticity model, rock deformation, elasto-plastic behavior
Procedia PDF Downloads 1321020 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies
Authors: Adeiza Matthew, Oluwamishola Abubakar
Abstract:
In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.Keywords: calorific, BTU, wood moisture content, density of wood
Procedia PDF Downloads 113