Search results for: water structures
11672 The Gasification of Acetone via Partial Oxidation in Supercritical Water
Authors: Shyh-Ming Chern, Kai-Ting Hsieh
Abstract:
Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.Keywords: acetone, gasification, SCW, supercritical water
Procedia PDF Downloads 38611671 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy
Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini
Abstract:
Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layersKeywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs
Procedia PDF Downloads 18711670 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures
Authors: Mahyar Maali, Merve Sagiroglu
Abstract:
Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.Keywords: cold-formed steel, screwed connection, connection, screw length
Procedia PDF Downloads 17711669 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick
Authors: Dalia Bednarska, Marcin Koniorczyk
Abstract:
This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient
Procedia PDF Downloads 40411668 The Role of Formal and Informal Institutions in Water Governance in the Central Rift Valley of Ethiopia
Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos
Abstract:
Institutions can play a key role in coordinating how natural resources are effectively used without over-exploitation. Institutions are the laws, policies, and organizational arrangements that permit, forbid or regulate human action. The aim of this study was to look into the roles of formal and informal institutions, as well as their interactions, in water resource governance in Ethiopia's Central Rift Valley (CRV), where water scarcity is a concern. Key informant interviews, group discussions, in depth-interview, and secondary data sources were used to generate relevant data. The study revealed that formal and informal institutions were involved in water resource governance in the study area. However, the influence of informal institutions on formal institutions or vice versa is trivial to change the action of water users. Lack of clear roles and responsibilities of actors, weak capacity and lack of meaningful decentralization and participation of key actors in policy development, lack of synergy and incongruence between formal and informal institutions, and absence of enforcement mechanisms including incentives are attributed to inefficient use of water resources in the CRV. Enhancing the interplay of formal and informal institutions in the water resource policy development and meaningful decentralization and key stakeholders' engagement is recommended for sustainable water use.Keywords: institutions, governance, institutional interplay, water users
Procedia PDF Downloads 17911667 Water-Sensitive Landscaping in Desert-Located Egyptian Cities through Sheer Reductions of Turfgrass and Efficient Water Use
Authors: Sarah M. Asar, Nabeel M. Elhady
Abstract:
Egypt’s current per capita water share indicates that the country suffers and has been suffering from water poverty. The abundant utilization of turfgrass in Egypt’s new urban settlements, the reliance on freshwater for irrigation, and the inadequate plant selection increase the water demand in such settlements. Decreasing the surface area of turfgrass by using alternative landscape features such as mulching, using ornamental low-maintenance plants, increasing pathways, etc., could significantly decrease the water demand of urban landscapes. The use of Ammochloa palaestina, Cenchrus crientalis (Oriental Fountain Grass), and Cistus parviflorus (with water demands of approximately 0.005m³/m²/day) as alternatives for Cynodon dactylon (0.01m³/m²/day), which is the most commonly used grass species in Egypt’s landscape, could decrease an area’s water demand by approximately 40-50%. Moreover, creating hydro-zones of similar water demanding plants would enable irrigation facilitation rather than the commonly used uniformed irrigation. Such a practice could further reduce water consumption by 15-20%. These results are based on a case-study analysis of one of Egypt’s relatively new urban settlements, Al-Rehab. Such results emphasize the importance of utilizing native, drought-tolerant vegetation in the urban landscapes of Egypt to reduce irrigation demands. Furthermore, proper implementation, monitoring, and maintenance of automated irrigation systems could be an important factor in a space’s efficient water use. As most new urban settlements in Egypt adopt sprinkler and drip irrigation systems, the lack of maintenance leads to the manual operation of such systems, and, thereby, excessive irrigation occurs.Keywords: alternative landscape, native plants, efficient irrigation, low water demand
Procedia PDF Downloads 7711666 Influence of Some Chemical Drinking Water Parameters on Germ Count in Nalout Region, Libya
Authors: Dukali Abujnah, Mokhtar Blgacem Halbuda
Abstract:
Water is one of the world's natural resources. It is an essential source for the maintenance of human, animal, and plant life. It has a significant impact on the country's economy and all human activities. Over the past twenty years, pressure on water resources has increased due to population and industrial growth and increasing demand for agricultural and household products, which has become a major concern of the international community. The aim of this study is the physical and bacteriological analysis of drinking water in the city of Value. The study covered different locations in the city. Thirty-six groundwater samples were taken from wells and various tanks owned by the State and private wells, and the Ain Thalia spring and other samples were taken from underground water tanks. It fills up with rainwater during the rainy season. These samples were analyzed for their physical, chemical, and biological status and the results were compared to Libyan and World Health Organization drinking water specifications to assess the quality of drinking water in the city of Value. Physical and chemical analysis of water samples showed acceptable values for acidity and electrical conductivity, and turbidity was found in water samples collected from underground reservoirs compared to Libyan and World Health Organization standards. The highest levels of electrical conductivity and alkalinity, TDS, and water hardness in the samples collected were below the maximum acceptable levels for drinking water as recommended by Libyan and World Health Organization specifications. The biological test results also showed that the water samples were free of intestinal bacteria.Keywords: quality, agriculture, region, reservoir, evaluation
Procedia PDF Downloads 9111665 Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses
Authors: Yasmeen Saleem, Pedro Berliner, Nurit Agam
Abstract:
The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation.Keywords: synthetic mulch, runoff, evaporation, infiltration
Procedia PDF Downloads 12311664 Steady and Spatio-Temporal Monitoring of Water Quality Feeding Area Southwest of Great Casablanca (Morocco)
Authors: Hicham Maklache, Rajae Delhi, Fatiha Benzha, Mohamed Tahiri
Abstract:
In Morocco, where semi-arid climate is dominant, the supply of industrial and drink water is provided primarily by surface water. Morocco has currently 118 multi-purpose dams. If the construction of these works was a necessity to ensure in all seasons, the water essential to our country, it is impartial to control and protect the quality of running water. -Most dam reservoir used are threatened by eutrophication due to increased terrigenous and anthropogenic pollutants, coming from an over-fertilization of water by phosphorus and nitrogen nutrients and accelerated by uncontrolled development of microalgae aging. It should also be noted that the daily practices of citizens with respect to the resource, an essential component involved in almost all human activities (agriculture, agro-industries, hydropower, ...), has contributed significantly to the deterioration of water quality despite its treatment in several plants. Therefore, the treated water, provides a legacy of bad tastes and odors unacceptable to the consumer. -The present work exhibits results of water quality watershed Oum Erbia used to supply drinking water to the whole terraced area connecting the city of Khenifra to the city of Azemmour. The area south west of Great Casablanca (metropolis of the kingdom with about 4 million inhabitants) supplied 50% of its water needs by sourcing Dam Sidi Said Maachou located, last anchor point of the watershed before the spill in the Atlantic Ocean. The results were performed in a spatio-temporal scale and helped to establish a history of monitoring water quality during the 2009-2011 cycles, the study also presents the development of quality according to the seasonal rhythmicity and rainfall. It gives also an overview on the concept of watershed stewardship.Keywords: crude surface water quality, Oum Er Rbia hydraulic basin, spatio-temporal monitoring, Great Casablanca drink water quality, Morocco
Procedia PDF Downloads 44311663 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods
Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo
Abstract:
In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe
Procedia PDF Downloads 25811662 Ecological Studies on Bulinus truncatus Snail the Intermediate Host of Schistosoma haematobium, in White Nile State, Sudan
Authors: Mohammed Hussein Eltoum Salih
Abstract:
This study was conducted in four villages, namely: Jadeed, Alandraba, Um Gaar, and EL Shetabe in the White Nile State Sudan, to determine the ecological factors; water vegetations, physical and chemical properties of the water in Snails habitat. Bulinus truncatus, which act as an intermediate host for S. haematobium, were collected from water bodies adjacent to study villages where the residents were suspected to swim, and humans get in contact with water for various purposes. Water samples from the stretches were collected and then measured for parameters that are indicative of the quality of water and sustaining the survival of snails and would confirm even further if the contact between humans and water had taken place. The parameters measured included water conductivity, pH, dissolved oxygen, calcium, and magnesium content. Also, a single water sample from each contact site was collected for microbiological tests. The result revealed that the B. truncatus showed that these animals were fewer and free of infection and their sites of the collection were dense with different plant species making them suitable to harbor snails. Moreover, the results of microbial tests showed that there was higher bacterial contamination. Also, physical and chemical analysis of water sample of contact sites revealed that there were significant differences (p < 0.05) in water pH, calcium, and magnesium content between sites of study villages, and these were discussed in relation to factors suitable for the intermediate hosts and thus for the transmission of the S. haematobium disease.Keywords: health, parasitology, Schistosoma, snails
Procedia PDF Downloads 14711661 A Study on Fire Safety Standards through Case Study of Performance Based Design
Authors: Kyung Hoon Park, Hyung Jun Kim, Jong Wook Song
Abstract:
Super-tall building, large-scale and multi-purpose underground spaces reflect changes in construction trend. As current laws and codes such as Fire Services Act and construction codes are not enough to secure the fire safety of those structures and spaces, it is required to provide systemic supplement for performance-based design to establish or revise laws and technical standards to cope with the changes flexibly. In this study, the performance-based design standards of structures designed in Korea are compared with specification based design standards in an attempt to find the ways to establish fire safety standards for structures in Korea.Keywords: performance based design, specification based design, fire safety design, life safety
Procedia PDF Downloads 37511660 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health
Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo
Abstract:
The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.Keywords: chromatography, DNA damage, environmental risk, water pollution
Procedia PDF Downloads 23011659 Heavy Metal Pollution Status in the Water of River Benue along Ibi, Taraba State, Nigeria
Authors: I. O. Oyatayo, K. T. Oyatayo, B. Mamman
Abstract:
This study was aimed at the assessment of heavy metal pollution of the water in river Benue along Ibi, Taraba State, Nigeria. Water samples were collected at ten sampling points over a distance of 100 meters each. The following water quality parameters were determined: TDS, copper, zinc, chromium, iron, mercury, nickel, and manganese, and the results were compared with the Nigerian Standard for Drinking Water Quality (NSDWQ) and WHO maximum permitted limits. The water quality analysis was conducted using the atomic absorption spectrophotometer (Model: 01-0960-00) at 510 nm. The mean value concentrations of copper, zinc, chromium, nickel, mercury, and mercury are within the permissible limits, while that of iron is above the limit. The summary of ANOVA single-factor statistics with a specified rejection level at α 0.05 is insignificant. The study concludes that the quality of water from river Benue along Ibi is deteriorating and unfit for human consumption. It was recommended that residents of the study area should be enlightened on the effects of indiscriminate dumping of waste and the proper handling and application of fertilizer and herbicides, as some of these end up in the river via surface runoff.Keywords: heavy, metal, pollution, river, Ibi
Procedia PDF Downloads 4911658 An Assessment on the Effect of Participation of Rural Woman on Sustainable Rural Water Supply in Yemen
Authors: Afrah Saad Mohsen Al-Mahfadi
Abstract:
In rural areas of developing countries, participation of all stakeholders in water supply projects is an important step towards further development. As most of the beneficiaries are women, it is important that they should be involved to achieve successful and sustainable water supply projects. Women are responsible for the management of water both inside and outside home, and often spend more than six-hours a day fetching drinking water from distant water sources. The problem is that rural women play a role of little importance in the water supply projects’ phases in rural Yemen. Therefore, this research aimed at analyzing the different reasons of their lack of participation in projects and in what way a full participation -if achieved- could contribute to sustainable water supply projects in the rural mountainous areas in Yemen. Four water supply projects were selected as a case study in Al-Della'a Alaala sub-district in the Al-Mahweet governorate, two of them were implemented by the Social Fund and Development (SFD), while others were implemented by the General Authority for Rural Water Supply Projects (GARWSSP). Furthermore, the successful Al-Galba project, which is located in Badan district in Ibb governorate, was selected for comparison. The rural women's active participation in water projects have potential consequences including continuity and maintenance improvement, equipment security, and improvement in the overall health and education status of these areas. The majority of respondents taking part in GARWSSP projects estimated that there is no reason to involve women in the project activities. In the comparison project - in which a woman worked as a supervisor and implemented the project – all respondents indicated that the participation of women is vital for sustainability. Therefore, the results of this research are intended to stimulate rural women's participation in the mountainous areas of Yemen.Keywords: assessment, rural woman, sustainability, water management
Procedia PDF Downloads 69311657 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources
Authors: Amin Khamoosh, Hamed Faramarzifar
Abstract:
In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques
Procedia PDF Downloads 5611656 The Influence of Grammatical Gender on Socially Constructed Gender in English, Dutch, and German
Authors: Noah Brandon
Abstract:
Grammatical gender can create a restrictive roadblock for the usage of gender-inclusive language. This research describes grammatical gender structures used in English, Dutch, and German and considers how these structures restrict the implementation of gender inclusivity in spoken and written discourse. This restriction is measured by the frequency with which gender-inclusive & generic masculine forms are used and by the morphosyntactic complexity of the gender-inclusive forms available in these languages. These languages form a continuum of grammatical gender structures, with English having the least articulated structures and German having the most. This leads to a comparative analysis intended to establish a correlation between the complexity of gender structure and the difficulty of using gender-inclusive forms. English, on one side of the continuum, maintains only remnants of a formal grammatical gender system and imposes the fewest restrictions on the creation of neo-pronouns and the use of gender-inclusive alternatives to gendered agentive nouns. Next, the Dutch have a functionally two-gender system with less freedom using gender-neutral forms. Lastly, German, on the other end, has a three-gender system requiring a plethora of morphosyntactic and orthographic alternatives to avoid using generic masculine. The paper argues that the complexity of grammatical gender structures correlates with hindered use of gender-inclusive forms. Going forward, efforts will focus on gathering further data on the usage of gender-inclusive and generic masculine forms within these languages. The end goal of this research is to establish a definitive objective correlation between grammatical gender complexity and impediments in expressing socially constructed gender.Keywords: sociolinguistics, language and gender, gender, Germanic linguistics, grammatical gender, German, Dutch, English
Procedia PDF Downloads 8211655 Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment
Authors: Mehrdad Ebrahimi, Oliver Schmitz, Axel Schmidt, Peter Czermak
Abstract:
“Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions.Keywords: ceramic membrane, membrane fouling, oil rejection, produced water treatment
Procedia PDF Downloads 18411654 Study on Effectiveness of Strategies to Re-Establish Landscape Connectivity of Expressways with Reference to Southern Expressway Sri Lanka
Authors: N. G. I. Aroshana, S. Edirisooriya
Abstract:
Construction of highway is the most emerging development tendency in Sri Lanka. With these development activities, there are a lot of environmental and social issues started. Landscape fragmentation is one of the main issues that highly effect to the environment by the construction of expressways. Sri Lankan expressway system getting effort to treat fragmented landscape by using highway crossing structures. This paper designates, a highway post construction landscape study on the effectiveness of the landscape connectivity structures to restore connectivity. Geographic Information Systems (GIS), least cost path tool has been used in the selected two plots; 25km alone the expressway to identify animal crossing paths. Animal accident data use as measure for determining the most contributed plot for landscape connectivity. Number of patches, Mean patch size, Class area use as a parameter to determine the most effective land use class to reestablish the landscape connectivity. The findings of the research express scrub, grass and marsh were the most positively affected land use typologies for increase the landscape connectivity. It represents the growth increased by 8% within the 12 years of time. From the least cost analysis within the plot one, 28.5% of total animal crossing structures are within the high resistance land use classes. Southern expressway used reinforced compressed earth technologies for construction. It has been controlled the growth of the climax community. According to all findings, it could assume that involvement of the landscape crossing structures contributes to re-establish connectivity, but it is not enough to restore the majority of disturbance performed by the expressway. Connectivity measures used within the study can use as a tool for re-evaluate future involvement of highway crossing structures. Proper placement of the highway crossing structures leads to increase the rate of connectivity. The study recommends that monitoring the all stages (preconstruction, construction and post construction) of the project and preliminary design, and the involvement of the research applied connectivity assessment strategies helps to overcome the complication regarding the re-establishment of landscape connectivity using the highway crossing structures that facilitate the growth of flora and fauna.Keywords: landscape fragmentation, least cost path, land use analysis, landscape connectivity structures
Procedia PDF Downloads 14911653 Using High Performance Concrete in Finite Element Modeling of Grouted Connections for Offshore Wind Turbine Structures
Authors: A. Aboubakr, E. Fehling, S. A. Mourad, M. Omar
Abstract:
Wind energy is one of the most effective renewable sources especially offshore wind energy although offshore wind technology is more costly to produce. It is well known that offshore wind energy can potentially be very cheap once infrastructure and researches improve. Laterally, the trend is to construct offshore wind energy to generate the electricity form wind. This leads to intensive research in order to improve the infrastructures. Offshore wind energy is the construction of wind farms in bodies of water to generate electricity from wind. The most important part in offshore wind turbine structure is the foundation and its connection with the wind tower. This is the main difference between onshore and offshore structures. Grouted connection between the foundation and the wind tower is the most important part of the building process when constructing wind offshore turbines. Most attention should be paid to the actual grout connection as this transfers the loads safely from tower to foundations and the soil also. In this paper, finite element analyses have been carried out for studying the behaviour of offshore grouted connection for wind turbine structures. ATENA program have been used for non-linear analysis simulation of the real structural behavior thus demonstrating the crushing, cracking, contact between the two materials and steel yielding. A calibration of the material used in the simulation has been carried out assuring an accurate model of the used material by ATENA program. This calibration was performed by comparing the results from the ATENA program with experimental results to validate the material properties used in ATENA program. Three simple patch test models with different properties have been performed. The research is concluded with a result that the calibration showing a good agreement between the ATENA program material behaviors and the experimental results.Keywords: grouted connection, 3D modeling, finite element analysis, offshore wind energy turbines, stresses
Procedia PDF Downloads 52911652 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin
Authors: Qiying Zhang, Panpan Xu, Hui Qian
Abstract:
Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na+ > Mg2+ > Ca2+ > K+and SO42- > HCO3- > Cl- > NO3- > CO32- > F-, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cl-and SO42-have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District
Procedia PDF Downloads 21011651 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 11511650 Effect of Mineral Admixture on Self-Healing Performance in Concrete
Authors: Young-Cheol Choi, Sung-Won Yoo, Bong Chun Lee, Byoungsun Park, Sang-Hwa Jung
Abstract:
Cracks in concrete commonly provide the passages of ingresses of aggressive and harmful ions into concrete inside and thus reduce the durability of concrete members. In order to solve this problem, self-healing concrete based on mineral admixture has become a major issue. Self-healing materials are those which have the ability of autonomously repairing some damages or small cracks in concrete structures. Concrete has an inherent healing potential, called natural healing, which can take place in ordinary concrete elements but its power is limited and is not predictable. The main mechanism of self-healing in cracked concrete is the continued hydration of unreacted binder and the crystallization of calcium carbonate. Some mineral admixtures have been found to promote the self-healing of cementitious materials. The aim of this study is to investigate the effect of mineral admixture on the self-healing performances of high strength concrete. The potential capability of self-healing of cementitious materials was evaluated using isothermal conduction calorimeter. The self-healing efficiencies were studied by means of water flow tests on cracked concrete specimens. The results show a different healing behaviour depending on presence of the crystalline admixture.Keywords: mineral admixture, self-healing, water flow test, crystallization
Procedia PDF Downloads 36811649 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 8911648 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface
Authors: Muhammad Saiful Islam Khan, Yun Ji Kim
Abstract:
Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.Keywords: chlorpyrifos, diazinone, pesticides, micro plasma
Procedia PDF Downloads 18811647 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China
Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao
Abstract:
Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake
Procedia PDF Downloads 13911646 Ballast Water Management Triad: Administration, Ship Owner and the Seafarer
Authors: Rajoo Balaji, Omar Yaakob
Abstract:
The Ballast Water Convention requires less than 5% of the world tonnage for ratification. Consequently, ships will have to comply with the requirements. Compliance evaluation and enforcement will become mandatory. Ship owners have to invest in treatment systems and shipboard personnel have to operate them and ensure compliance. The monitoring and enforcement will be the responsibilities of the Administrations. Herein, a review of the current status of the Ballast Water Management and the issues faced by these are projected. Issues range from efficacy and economics of the treatment systems to sampling and testing. Health issues of chemical systems, paucity of data for decision support etc., are other issues. It is emphasized that management of ballast water must be extended to ashore and sustainable solutions must be researched upon. An exemplar treatment system based on ship’s waste heat is also suggested.Keywords: Ballast Water Management, compliance evaluation, compliance enforcement, sustainability
Procedia PDF Downloads 43911645 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan
Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan
Abstract:
Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.Keywords: heavy metals, soil, groundwater, tannery effluents, food chain
Procedia PDF Downloads 34711644 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design
Authors: S. J. M. Mohd Saleh, S. Guo
Abstract:
Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design
Procedia PDF Downloads 23311643 Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration
Authors: Obsi Terfasa, Bhanupriya Das, Shiao-Shing Chen
Abstract:
Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations.Keywords: wastewater treatment, separator, coal fly ash, ceramic membrane, ultrafiltration
Procedia PDF Downloads 37