Search results for: robot force control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12834

Search results for: robot force control

12144 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles

Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane

Abstract:

In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.

Keywords: autonomous vehicles, convoy, non-linear control, non-linear observer, sliding mode

Procedia PDF Downloads 136
12143 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control

Authors: Hartani Kada, Merah Abdelkader

Abstract:

Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.

Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion

Procedia PDF Downloads 604
12142 Pattern Identification in Statistical Process Control Using Artificial Neural Networks

Authors: M. Pramila Devi, N. V. N. Indra Kiran

Abstract:

Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.

Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping

Procedia PDF Downloads 368
12141 Effect of Carbide Precipitates in Tool Steel on Material Transfer: A Molecular Dynamics Study

Authors: Ahmed Tamer AlMotasem, Jens Bergström, Anders Gåård, Pavel Krakhmalev, Thijs Jan Holleboom

Abstract:

In sheet metal forming processes, accumulation and transfer of sheet material to tool surfaces, often referred to as galling, is the major cause of tool failure. Initiation of galling is assumed to occur due to local adhesive wear between two surfaces. Therefore, reducing adhesion between the tool and the work sheet has a great potential to improve the tool materials galling resistance. Experimental observations and theoretical studies show that the presence of primary micro-sized carbides and/or nitrides in alloyed steels may significantly improve galling resistance. Generally, decreased adhesion between the ceramic precipitates and the sheet material counter-surface are attributed as main reason to the latter observations. On the other hand, adhesion processes occur at an atomic scale and, hence, fundamental understanding of galling can be obtained via atomic scale simulations. In the present study, molecular dynamics simulations are used, with utilizing second nearest neighbor embedded atom method potential to investigate the influence of nano-sized cementite precipitates embedded in tool atoms. The main aim of the simulations is to gain new fundamental knowledge on galling initiation mechanisms. Two tool/work piece configurations, iron/iron and iron-cementite/iron, are studied under dry sliding conditions. We find that the average frictional force decreases whereas the normal force increases for the iron-cementite/iron system, in comparison to the iron/iron configuration. Moreover, the average friction coefficient between the tool/work-piece decreases by about 10 % for the iron-cementite/iron case. The increase of the normal force in the case of iron-cementite/iron system may be attributed to the high stiffness of cementite compared to bcc iron. In order to qualitatively explain the effect of cementite on adhesion, the adhesion force between self-mated iron/iron and cementite/iron surfaces has been determined and we found that iron/cementite surface exhibits lower adhesive force than that of iron-iron surface. The variation of adhesion force with temperature was investigated up to 600 K and we found that the adhesive force, generally, decreases with increasing temperature. Structural analyses show that plastic deformation is the main deformation mechanism of the work-piece, accompanied with dislocations generation.

Keywords: adhesion, cementite, galling, molecular dynamics

Procedia PDF Downloads 299
12140 Firefighting Means in Food Industries

Authors: Racim Rifaat Ferdjani, Zineddine Chetoui

Abstract:

The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained.

Keywords: MLCI, firefighting means, Hamoud, Boualem

Procedia PDF Downloads 119
12139 Quadrotor in Horizontal Motion Control and Maneuverability

Authors: Ali Oveysi Sarabi

Abstract:

In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics.

Keywords: helicopter balance, flight dynamics, autonomous landing, control robotics

Procedia PDF Downloads 506
12138 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects

Authors: Brian Romansky

Abstract:

There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.

Keywords: automation, BIM, robot, ROI.

Procedia PDF Downloads 82
12137 A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera

Authors: Kazuya Sato, Toru Kasahara, Junji Kuroda

Abstract:

In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previously proposed methods, a motion capture system (i.e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipment, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental result are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed.

Keywords: autonomous hovering control, multicopter, Web camera, operation

Procedia PDF Downloads 556
12136 Public Attitudes toward Domestic Violence against Women in China and Spain: A Cross-Cultural Study

Authors: Menglu Yang, Ani Beybutyan, Rocio Pina, Miguel Angel Soria

Abstract:

Domestic violence against women is one of the most serious social problems in the world. Attitudes toward domestic violence against women play an important role in the perpetration of violence against women, the way that victims respond to the violence, and how the community responds to violence against women. China and Spain are countries which have been influenced by the culture which males hold power and dominance over the female for a long time. However, as more connected with other European countries, the legal enforcement related to domestic violence against women developed earlier in Spain, and consequently, social awareness of violence against women evolved differently in two countries. The present study aimed to explore and compare the attitudes toward domestic violence against women across China and Spain, and their influence factors, such as gender equality attitudes and coercive control. Totally 506 participants, 255 from China and 251 from Spain completed questionnaires, including attitudes toward domestic violence against women, definition of violence behavior, justification for violence, gender equity attitudes, and coercive control. Results demonstrated that Chinese participants were less aware of domestic violence against women issue but more agreed that such issue was a crime than Spanish participants. In addition to cultural difference, gender equality attitudes, coercive control, gender, and age also affected attitudes toward domestic violence against women. Our findings imply attitudes toward domestic violence against women differ from countries along with the difference in gender equity attitudes and coercive control; such a difference may arise from cultural, traditional belief and current justice system influence. Despite the developed justice system, male dominance culture may lead to maintain the belief that domestic violence is domestic and private issue which police and justice force may not get involved.

Keywords: cross-cultural differences, domestic violence, public attitudes, violence against women

Procedia PDF Downloads 268
12135 A Study on Traction Motor Design for Obtaining the Maximum Traction Force of Tram-Train

Authors: Geochul Jeong, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

This study is about IPMSM design for obtaining the maximum traction force of Tram-Train. Tram-Train is a Tram and Train-combined railway vehicles, which operates at a maximum speed of 70km/h in the city section (Tram section) and at a maximum speed of 150km/h in the out-of-city section (Train section). For this reason, tram-train was designed to be an IPMSM (Interior Permanent Synchronous Motor) with a wide range of speed variation. IPMSM’s magnetic path varies depending on the shape of rotor and in this case, the power characteristics are different in the constant torque area and the flux weakening area. Therefore, this study suggests a method to improve Tram-Train’s traction force, based on the relationship between magnetic torque and reluctance torque. The suggested method was applied through IPMSM rotor shape design and electromagnetic field finite element method was conducted to verify the validity of the suggested method.

Keywords: tram-train, traction motor, IPMSM, synchronous motor, railway vehicles

Procedia PDF Downloads 467
12134 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA

Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu

Abstract:

The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.

Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™

Procedia PDF Downloads 517
12133 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 413
12132 Sliding Mode Control of a Photovoltaic Grid-Connected System with Active and Reactive Power Control

Authors: M. Doumi, K. Tahir, A. Miloudi, A. G. Aissaoui, C. Belfedal, S. Tahir

Abstract:

This paper presents a three-phase grid-connected photovoltaic generation system with unity power factor for any situation of solar radiation based on voltage-oriented control (VOC). An input voltage clamping technique is proposed to control the power between the grid and photovoltaic system, where it is intended to achieve the maximum power point operation. This method uses a Perturb and Observe (P&O) controller. The main objective of this work is to compare the energy production unit performances by the use of two types of controllers (namely, classical PI and Sliding Mode (SM) Controllers) for the grid inverter control. The proposed control has a hierarchical structure with a grid side control level to regulate the power (PQ) and the current injected to the grid and to obtain a common DC voltage constant. To show the effectiveness of both control methods performances analysis of the system are analyzed and compared by simulation and results included in this paper.

Keywords: grid connected photovoltaic, MPPT, inverter control, classical PI, sliding mode, DC voltage constant, voltage-oriented control, VOC

Procedia PDF Downloads 606
12131 Can Illusions of Control Make Us Happy?

Authors: Martina Kaufmann, Thomas Goetz, Anastasiya A. Lipnevich, Reinhard Pekrun

Abstract:

Positive emotions have been shown to benefit from optimistic perceptions, even if these perceptions are illusory. The current research investigated the impact of illusions of control on positive emotions. There is empirical evidence showing that people are more emotionally attentive to losses than to gains. Hence, we expected that, compared to gains, losses in illusory control would have a stronger impact on positive emotions. The results of two experimental studies support this assumption: Participants who experienced gains in illusory control showed no substantial change in positive emotions. However, positive emotions decreased when they perceived a loss in illusory control. These results suggest that a loss of illusory control (but not a gain thereof) mediates the impact of the situation on individuals’ positive emotions. Implications for emotion theory and practice are discussed.

Keywords: cognitive appraisal, control, illusions, optimism, positive emotions

Procedia PDF Downloads 638
12130 Realization of Hybrid Beams Inertial Amplifier

Authors: Somya Ranjan Patro, Abhigna Bhatt, Arnab Banerjee

Abstract:

Inertial amplifier has recently gained increasing attention as a new mechanism for vibration control of structures. Currently, theoretical investigations are undertaken by researchers to reveal its fundamentals and to understand its underline principles in altering the structural response of structures against dynamic loadings. This paper investigates experimental and analytical studies on the dynamic characteristics of hybrid beam inertial amplifier (HBIA). The analytical formulation of the HBIA has been derived by implementing the spectral element method and rigid body dynamics. This formulation gives the relation between dynamic force and the response of the structure in the frequency domain. Further, for validation of the proposed HBIA, the experiments have been performed. The experimental setup consists of a 3D printed HBIA of polylactic acid (PLA) material screwed at the base plate of the shaker system. Two numbers of accelerometers are used to study the response, one at the base plate of the shaker second one placed at the top of the inertial amplifier. A force transducer is also placed in between the base plate and the inertial amplifier to calculate the total amount of load transferred from the base plate to the inertial amplifier. The obtained time domain response from the accelerometers have been converted into the frequency domain using the Fast Fourier Transform (FFT) algorithm. The experimental transmittance values are successfully validated with the analytical results, providing us essential confidence in our proposed methodology.

Keywords: inertial amplifier, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 95
12129 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times

Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati

Abstract:

The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.

Keywords: Bali beef, chicken meat, liquid smoke, meat quality

Procedia PDF Downloads 388
12128 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers

Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee

Abstract:

Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.

Keywords: finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis

Procedia PDF Downloads 233
12127 Roboweeder: A Robotic Weeds Killer Using Electromagnetic Waves

Authors: Yahoel Van Essen, Gordon Ho, Brett Russell, Hans-Georg Worms, Xiao Lin Long, Edward David Cooper, Avner Bachar

Abstract:

Weeds reduce farm and forest productivity, invade crops, smother pastures and some can harm livestock. Farmers need to spend a significant amount of money to control weeds by means of biological, chemical, cultural, and physical methods. To solve the global agricultural labor shortage and remove poisonous chemicals, a fully autonomous, eco-friendly, and sustainable weeding technology is developed. This takes the form of a weeding robot, ‘Roboweeder’. Roboweeder includes a four-wheel-drive self-driving vehicle, a 4-DOF robotic arm which is mounted on top of the vehicle, an electromagnetic wave generator (magnetron) which is mounted on the “wrist” of the robotic arm, 48V battery packs, and a control/communication system. Cameras are mounted on the front and two sides of the vehicle. Using image processing and recognition, distinguish types of weeds are detected before being eliminated. The electromagnetic wave technology is applied to heat the individual weeds and clusters dielectrically causing them to wilt and die. The 4-DOF robotic arm was modeled mathematically based on its structure/mechanics, each joint’s load, brushless DC motor and worm gear’ characteristics, forward kinematics, and inverse kinematics. The Proportional-Integral-Differential control algorithm is used to control the robotic arm’s motion to ensure the waveguide aperture pointing to the detected weeds. GPS and machine vision are used to traverse the farm and avoid obstacles without the need of supervision. A Roboweeder prototype has been built. Multiple test trials show that Roboweeder is able to detect, point, and kill the pre-defined weeds successfully although further improvements are needed, such as reducing the “weeds killing” time and developing a new waveguide with a smaller waveguide aperture to avoid killing crops surrounded. This technology changes the tedious, time consuming and expensive weeding processes, and allows farmers to grow more, go organic, and eliminate operational headaches. A patent of this technology is pending.

Keywords: autonomous navigation, machine vision, precision heating, sustainable and eco-friendly

Procedia PDF Downloads 243
12126 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 215
12125 Effect of Project Control Practices on the Performance of Building Construction Companies in Uganda: A Case Study of Kampala City

Authors: Tukundane Hillary

Abstract:

This research paper analytically evaluates the project control practice levels used by the building construction companies within Kampala, Uganda. The research also assesses the outcome of project control practices on the productivity of the companies. The research was performed to ascertain the current control practices among 160 respondents from various construction companies registered with the Uganda Registration Services Bureau. This research used amalgamation from multiple literature to obtain the variables. The research adopts 34 standard control practices from four vital project control duties: planning, monitoring, analyzing, and reporting. These project control tasks were organized using mean response ratings grounded on their relevance to the construction companies. Results showed that evaluating performance with the use of curves (4.32), timely access to information and encouragement (4.55), report representation using quantitative tools 4.75, and cost value comparison application during analysis (4.76) were rated least among the control practices. On the other hand, the top project control practices included formulation of the project schedule (8.88), Project feasibility validation (8.86), Budgeting for each activity (8.84), Key project route definition (8.81), Team awareness of the budget (8.77), Setting realistic targets for projects (8.50) and Consultation from subcontractors (8.74). From the results obtained by the sample respondents specified, it can be concluded that planning is the most vital project control task practiced in the building construction industry in Uganda. In addition, this research ascertained a substantial relationship between project control practices and the performance of building construction companies. Accordingly, this research recommends that project control practices be effectively observed by both contracting and consulting companies to enhance their overall performance and governance.

Keywords: cost value, project control, cost control, time control, project performance, control practices

Procedia PDF Downloads 68
12124 Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics

Authors: David Nagy

Abstract:

This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force.

Keywords: aerodynamic simulation, aircraft, airfoil, computational fluid dynamics, lift to drag ratio, NACA 64-206, NACA 65-415

Procedia PDF Downloads 371
12123 Study of Drawing Characteristics due to Friction between the Materials by FEM

Authors: Won Jin Ryu, Mok Tan Ahn, Hyeok Choi, Joon Hong Park, Sung Min Kim, Jong Bae Park

Abstract:

Pipes for offshore plants require specifications that satisfy both high strength and high corrosion resistance. Therefore, currently, clad pipes are used in offshore plants. Clad pipes can be made using either overlay welding or clad plates. The present study was intended to figure out the effects of friction between two materials, which is a factor that affects two materials, were figured out using FEM to make clad pipes through heterogenous material drawing instead of the two methods mentioned above. Therefore, FEM has conducted while all other variables that the variable friction was fixed. The experimental results showed increases in pullout force along with increases in the friction in the boundary layer.

Keywords: clad pipe, FEM, friction, pullout force

Procedia PDF Downloads 489
12122 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.

Keywords: power quality, direct power control, power ripple, switching table, unity power factor

Procedia PDF Downloads 315
12121 Assignment of Legal Personality to Robots: A Premature Meditation

Authors: Solomon Okorley

Abstract:

With the emergence of artificial intelligence, a proposition that has been made with increasing conviction is the need to assign legal personhood to robots. A major problem that arises when dealing with robots is the issue of liability: who do it hold liable when a robot causes harm? The suggestion to assign legal personality to robots has been made to aid in the assignment of liability. This paper contends that it is premature to assign legal personhood to robots. The paper employed the doctrinal and comparative research methodology. The paper first discusses the various theories that underpin the granting of legal personhood to juridical personalities to ascertain whether these theories can aid in the proposition to assign legal personhood to robots. These theories include fiction theory, aggregate theory, realist theory, and organism theory. Except for the aggregate theory, the fiction theory, the realist theory and the organism theory provide a good foundation to the proposal for legal personhood to be assigned to robots. The paper considers whether robots should be assigned legal personhood from a jurisprudential approach. The legal positivists assert that no metaphysical presuppositions are needed to determine who could be a legal person: the sole deciding factor is the engagement in legal relations and this prerequisite could be fulfilled by robots. However, rationalists, religionists and naturalists assert that the satisfaction of the metaphysical criteria is the basis of legal personality and since robots do not possess this feature, they cannot be assigned legal personhood. This differing perspective shows that the jurisprudential school of thought to which one belongs influences the decision whether to assign legal personhood to robots. The paper makes arguments for and against the assigning of legal personhood to robots. Assigning legal personhood to robots is necessary for the assigning of liability; and since robots are independent in their operation, they should be assigned legal personhood. However, it is argued that the degree of autonomy is insufficient. Robots do not understand legal obligations; they do not have a will of their own and the purported autonomy that they possess is an ‘imputed autonomy’. A crucial question to be asked is ‘whether it is desirable to confer legal personhood on robots’ and not ‘whether legal personhood should be assigned to robots’. This is due to the subjective nature of the responses to such a question as well as the peculiarities of countries in response to this question. The main argument in support of assigning legal personhood to robots is to aid in assigning liability. However, it is argued conferring legal personhood on robots is not the only way to deal with liability issues. Since any of the stakeholders involved with the robot system can be held liable for an accident, it is not desirable to assign legal personhood to robot. It is forecasted that in the epoch of strong artificial intelligence, granting robots legal personhood is plausible; however, in the current era, it is premature.

Keywords: autonomy, legal personhood, premature, jurisprudential

Procedia PDF Downloads 62
12120 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms

Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen

Abstract:

This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.

Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control

Procedia PDF Downloads 226
12119 Synthesis of a Model Predictive Controller for Artificial Pancreas

Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou

Abstract:

Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.

Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity

Procedia PDF Downloads 303
12118 Aircraft Pitch Attitude Control Using Backstepping

Authors: Labane Chrif

Abstract:

A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.

Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model

Procedia PDF Downloads 574
12117 Effects of Damper Locations and Base Isolators on Seismic Response of a Building Frame

Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi

Abstract:

Structural vibration means repetitive motion that causes fatigue and reduction of the performance of a structure. An earthquake may release high amount of energy that can have adverse effect on all components of a structure. Therefore, decreasing of vibration or maintaining performance of structures such as bridges, dams, roads and buildings is important for life safety and reducing economic loss. When earthquake or any vibration happens, investigation on parts of a structure which sustain the seismic loads is mandatory to provide a safe condition for the occupants. One of the solutions for reducing the earthquake vibration in a structure is using of vibration control devices such as dampers and base isolators. The objective of this study is to investigate the optimal positions of friction dampers and base isolators for better seismic response of 2D frame. For this purpose, a two bay and six story frame with different distribution formats was modeled and some of their responses to earthquake such as inter-story drift, max joint displacement, max axial force and max bending moment were determined and compared using non-linear dynamic analysis.

Keywords: fast nonlinear analysis, friction damper, base isolator, seismic vibration control, seismic response

Procedia PDF Downloads 319
12116 Sliding Velocity in Impact with Friction in Three-Dimensional Multibody Systems

Authors: Hesham A. Elkaranshawy, Amr Abdelrazek, Hosam Ezzat

Abstract:

This paper analyzes a single point rough collision in three dimensional rigid-multibody systems. A set of nonlinear different equations describing the progress and outcome of the impact are obtained. Specifically in case of the tangential, referred to as sliding, component of impact velocity is of great importance. Numerical methods are used to solve this problem. In this work, all these possible sliding behaviors during impact are identified, conditions leading to each behavior are specified, and an appropriate numerical procedure is suggested. A case of a four-degrees-of-freedom spatial robot that collides with its environment is investigated. The phase portrait of the tangential velocity, which presents the flow trajectories for different initial conditions, is calculated. Using the coefficient of friction as a control parameter, few phase portraits are drawn, each for a specific value of this coefficient. In addition, the bifurcation associated with the variation of this coefficient will be investigated.

Keywords: friction impact, three-dimensional rigid multibody systems, sliding velocity, nonlinear ordinary differential equations, phase portrait

Procedia PDF Downloads 379
12115 Burnishing of Aluminum-Magnesium-Graphite Composites

Authors: Mohammed T. Hayajneh, Adel Mahmood Hassan, Moath AL-Qudah

Abstract:

Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness.

Keywords: burnishing process, Al-Mg-Graphite composites, surface hardness, surface roughness

Procedia PDF Downloads 478