Search results for: predictive learning
7283 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification
Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang
Abstract:
This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI
Procedia PDF Downloads 1037282 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 1057281 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 687280 The Use of Learning Management Systems during Emerging the Tacit Knowledge
Authors: Ercan Eker, Muhammer Karaman, Akif Aslan, Hakan Tanrikuluoglu
Abstract:
Deficiency of institutional memory and knowledge management can result in information security breaches, loss of prestige and trustworthiness and the worst the loss of know-how and institutional knowledge. Traditional learning management within organizations is generally handled by personal efforts. That kind of struggle mostly depends on personal desire, motivation and institutional belonging. Even if an organization has highly motivated employees at a certain time, the institutional knowledge and memory life cycle will generally remain limited to these employees’ spending time in this organization. Having a learning management system in an organization can sustain the institutional memory, knowledge and know-how in the organization. Learning management systems are much more needed especially in public organizations where the job rotation is frequently seen and managers are appointed periodically. However, a learning management system should not be seen as an organizations’ website. It is a more comprehensive, interactive and user-friendly knowledge management tool for organizations. In this study, the importance of using learning management systems in the process of emerging tacit knowledge is underlined.Keywords: knowledge management, learning management systems, tacit knowledge, institutional memory
Procedia PDF Downloads 3817279 Impact of Grade Sensitivity on Learning Motivation and Academic Performance
Authors: Salwa Aftab, Sehrish Riaz
Abstract:
The objective of this study was to check the impact of grade sensitivity on learning motivation and academic performance of students and to remove the degree of difference that exists among students regarding the cause of their learning motivation and also to gain knowledge about this matter since it has not been adequately researched. Data collection was primarily done through the academic sector of Pakistan and was depended upon the responses given by students solely. A sample size of 208 university students was selected. Both paper and online surveys were used to collect data from respondents. The results of the study revealed that grade sensitivity has a positive relationship with the learning motivation of students and their academic performance. These findings were carried out through systematic correlation and regression analysis.Keywords: academic performance, correlation, grade sensitivity, learning motivation, regression
Procedia PDF Downloads 4017278 Organizational Learning, Job Satisfaction and Work Performance among Nurses
Authors: Rafia Rafique, Arifa Khadim
Abstract:
This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.Keywords: counterproductive work behavior, nurses, organizational learning, work performance
Procedia PDF Downloads 4467277 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment
Authors: Jatuphum Ketchatturat
Abstract:
Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.Keywords: learning achievement, monitoring and evaluation, value-added assessment
Procedia PDF Downloads 4257276 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease
Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena
Abstract:
Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics
Procedia PDF Downloads 987275 Effectiveness of Online Language Learning
Authors: Shazi Shah Jabeen, Ajay Jesse Thomas
Abstract:
The study is aimed at understanding the learning trends of students who opt for online language courses and to assess the effectiveness of the same. Multiple factors including use of the latest available technology and the skills that are trained by these online methods have been assessed. An attempt has been made to answer how each of the various language skills is trained online and how effective the online methods are compared to the classroom methods when students interact with peers and instructor. A mixed method research design was followed for collecting information for the study where a survey by means of a questionnaire and in-depth interviews with a number of respondents were undertaken across the various institutes and study centers located in the United Arab Emirates. The questionnaire contained 19 questions which included 7 sub-questions. The study revealed that the students find learning with an instructor to be a lot more effective than learning alone in an online environment. They prefer classroom environment more than the online setting for language learning.Keywords: effectiveness, language, online learning, skills
Procedia PDF Downloads 5907274 Teaching Strategies and Prejudice toward Immigrant and Disabled Students
Authors: M. Pellerone, S. G. Razza, L. Miano, A. Miccichè, M. Adamo
Abstract:
The teacher’s attitude plays a decisive role in promoting the development of the non-native or disabled student and counteracting hypothetical negative attitudes and prejudice towards those who are “different”.The objective of the present research is to measure the relationship between teachers’ prejudices towards disabled and/or immigrant students as predictors of teaching-learning strategies. A cross-sectional study involved 200 Italian female teachers who completed an anamnestic questionnaire, the Assessment Teaching Scale, the Italian Modern and Classical Prejudices Scale towards people with ID, and the Pettigrew and Meertens’ Blatant Subtle Prejudice Scale. Confirming research hypotheses, data underlines the predictive role of prejudice on teaching strategies, and in particular on the socio-emotional and communicative-relational dimensions. Results underline that general training appears necessary, especially for younger generations of teachers.Keywords: disabled students, immigrant students, instructional competence, prejudice, teachers
Procedia PDF Downloads 737273 The Investigation of Predictor Affect of Childhood Trauma, Dissociation, Alexithymia, and Gender on Dissociation in University Students
Authors: Gizem Akcan, Erdinc Ozturk
Abstract:
The purpose of the study was to determine some psychosocial variables that predict dissociation in university students. These psychosocial variables were perceived childhood trauma, alexithymia, and gender. 150 (75 males, 75 females) university students (bachelor, master and postgraduate) were enrolled in this study. They were chosen from universities in Istanbul at the education year of 2016-2017. Dissociative Experiences Scale (DES), Childhood Trauma Questionnaire (CTQ) and Toronto Alexithymia Scale were used to assess related variables. Demographic Information Form was given to students in order to have their demographic information. Frequency Distribution, Linear Regression Analysis, and t-test analysis were used for statistical analysis. Childhood trauma and alexithymia were found to have predictive value on dissociation among university students. However, physical abuse, physical neglect and emotional neglect sub dimensions of childhood trauma and externally-oriented thinking sub dimension of alexithymia did not have predictive value on dissociation. Moreover, there was no significant difference between males and females in terms of dissociation scores of participants.Keywords: childhood trauma, dissociation, alexithymia, gender
Procedia PDF Downloads 3967272 Innovation of e-Learning for Architectural Design Courses at the University of Jordan
Authors: Samer Abu Ghazaleh, Jawdat Gousous
Abstract:
E-learning in general started in Jordan around ten years ago in universities and at different departments and colleges. This paper will investigate the possibility to apply e-learning in architecture department at University of Jordan. As known architecture departments in general depend greatly in its syllabus upon design courses and studios, which consists nearly one third of its total credit hours. A survey has been conducted for architectural students at the University of Jordan and several conclusions have been reached irrespective of age, gender and nationality of the students, where the main problem was the way of the communication between the tutor and the student.Keywords: cellular telephone, design courses, e-learning, internet
Procedia PDF Downloads 4707271 Teaching Physics: History, Models, and Transformation of Physics Education Research
Authors: N. Didiş Körhasan, D. Kaltakçı Gürel
Abstract:
Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.Keywords: pedagogy, physics, physics education, science education
Procedia PDF Downloads 2647270 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 3937269 Training Program for Kindergarden Teachers on Learning through Project Approach
Authors: Dian Hartiningsih, Miranda Diponegoro, Evita Eddie Singgih
Abstract:
In facing the 21st century, children need to be prepared in reaching their optimum development level which encompasses all aspect of growth and to achieve the learning goals which include not only knowledge and skill, but also disposition and feeling. Teachers as the forefront of education need to be equipped with the understanding and skill of a learning method which can prepare the children to face this 21st century challenge. Project approach is an approach which utilizes active learning which is beneficial for the children. Subject to this research are kindergarten teachers at Dwi Matra Kindergarten and Kirana Preschool. This research is a quantitative research using before and after study design. The result suggest that through preliminary training program on learning with project approach, the kindergarten teachers ability to explain project approach including understanding, benefit and stages of project approach have increased significantly, the teachers ability to design learning with project approach have also improved significantly. The result of learning design that the teachers had made shows a remarkable result for the first stage of the project approach; however the second and third design result was not as optimal. Challenges faced in the research will be elaborated further in the research discussion.Keywords: project approach, teacher training, learning method, kindergarten
Procedia PDF Downloads 3337268 Imparting Second Language Skill through M-Learning
Authors: Subramaniam Chandran, A. Geetha
Abstract:
This paper addresses three issues: how to prepare instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do the m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in preparatory program for bachelor’s degree. This program is designed for the disadvantage learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.Keywords: English language skill, disadvantaged learners, distance education, m-learning
Procedia PDF Downloads 6687267 The Increasing Importance of the Role of AI in Higher Education
Authors: Joshefina Bengoechea Fernandez, Alex Bell
Abstract:
In its 2021 guidance for policy makers, the UNESCO has proposed 4 areas where AI can be applied in educational settings: These are: 1) Education management and delivery; 2) Learning and assessment; 3) Empowering teachers and facilitating teaching, and 4) Providing lifelong learning possibilities (UNESCO, 2021). Like with wblockchain technologies, AI will automate the management of educational institutions. These include, but are not limited to admissions, timetables, attendance, and homework monitoring. Furthermore, AI will be used to select relevant learning content across learning platforms for each student, based on his or her personalized needs. A problem educators face is the “one-size-fits-all” approach that does not work with a diverse student population. The purpose of this paper is to illustrate if the implementation of Technology is the solution to the Problems faced in Higher Education. The paper builds upon a constructivist approach, combining a literature review and research on key publications and academic reports.Keywords: artificial intelligence, learning platforms, students personalised needs, life- long learning, privacy, ethics
Procedia PDF Downloads 1077266 Innovative Pictogram Chinese Characters Representation
Authors: J. H. Low, S. H. Hew, C. O. Wong
Abstract:
This paper proposes an innovative approach to represent the pictogram Chinese characters. The advantage of this representation is using an extraordinary to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution. The purpose of this innovative creation is to assistant the learner learning Chinese as second language (SCL) in Chinese language learning specifically on memorize Chinese characters. Commonly, the SCL will give up and frustrate easily while memorize the Chinese characters by rote. So, our innovative representation is able to help on memorize the Chinese character by the help of visually storytelling. This innovative representation enhances the Chinese language learning experience of SCL.Keywords: Chinese e-learning, innovative Chinese character representation, knowledge management, language learning
Procedia PDF Downloads 4877265 Factors Affecting Happiness Learning of Students of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Somtop Keawchuer
Abstract:
The objectives of this research are to compare the satisfaction of students, towards the happiness learning, sorted by their personal profiles, and to figure out the factors that affect the students’ happiness learning. This paper used survey method to collect data from 362 students. The survey was mainly conducted in the Faculty of Management Science, Suan Sunandha Rajabhat University, including 3,443 students. The statistics used for interpreting the results included the frequencies, percentages, standard deviations and One-way ANOVA. The findings revealed that the students are aware and satisfaction that all the factors in 3 categories (knowledge, skill and attitude) influence the happiness learning at the highest levels. The comparison of the satisfaction levels of the students toward their happiness learning leads to the results that the students with different genders, ages, years of study, and majors of the study have the similar satisfaction at the high level.Keywords: happiness, learning satisfaction, students, Faculty of Management Science
Procedia PDF Downloads 3117264 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 617263 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 2507262 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 687261 Orthogonal Basis Extreme Learning Algorithm and Function Approximation
Abstract:
A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.Keywords: neural network, orthogonal basis extreme learning, function approximation
Procedia PDF Downloads 5357260 Awareness and Utilization of E-Learning Technologies in Teaching and Learning of Human Kinetics and Health Education Courses in Nigeria Universities
Authors: Ibrahim Laro ABUBAKAR
Abstract:
The study examined the Availability and Utilization of E-Learning Technologies in Teaching of Human Kinetics and Health Education courses in Nigerian Universities, specifically, Universities in Kwara State. Two purposes were formulated to guide the study from which two research questions and two hypotheses were raised. The descriptive research design was used in the research. Three Hundred respondents (100 Lecturers and 200 Students) made up the population for the study. There was no sampling, as the population of the study was not much. A structured questionnaire tagged ‘Availability and Utilization of E-Learning Technologies in Teaching and Learning Questionnaire’ (AUETTLQ) was used for data collection. The questionnaire was subjected to face and content validation, and it was equally pilot tested. The validation yielded a reliability coefficient of 0.78. The data collected from the study were statistically analyzed using frequencies and percentage count for personal data of the respondents, mean and standard deviation to answer the research questions. The null hypotheses were tested at 0.05 level of significance using the independent t-test. One among other findings of this study showed that lecturers and Student are aware of synchronous e-learning technologies in teaching and learning of Human Kinetics and Health Education but often utilize the synchronous e-learning technologies. It was recommended among others that lecturers and Students should be sensitized through seminars and workshops on the need to maximally utilize available e-learning technologies in teaching and learning of Human Kinetics and Health Education courses in Universities.Keywords: awareness, utilization, E-Learning, technologies, human kinetics synchronous
Procedia PDF Downloads 1207259 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: Sirilak Areerachakul, Nat Ployong, Supayothin Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.Keywords: artificial neural network, classification, students, e-learning
Procedia PDF Downloads 4277258 Role of Feedbacks in Simulation-Based Learning
Authors: Usman Ghani
Abstract:
Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.Keywords: simulation, feedback, training, hands-on, labs
Procedia PDF Downloads 3777257 [Keynote Talk]: Computer-Assisted Language Learning (CALL) for Teaching English to Speakers of Other Languages (TESOL/ESOL) as a Foreign Language (TEFL/EFL), Second Language (TESL/ESL), or Additional Language (TEAL/EAL)
Authors: Andrew Laghos
Abstract:
Computer-assisted language learning (CALL) is defined as the use of computers to help learn languages. In this study we look at several different types of CALL tools and applications and how they can assist Adults and Young Learners in learning the English language as a foreign, second or additional language. It is important to identify the roles of the teacher and the learners, and what the learners’ motivations are for learning the language. Audio, video, interactive multimedia games, online translation services, conferencing, chat rooms, discussion forums, social networks, social media, email communication, songs and music video clips are just some of the many ways computers are currently being used to enhance language learning. CALL may be used for classroom teaching as well as for online and mobile learning. Advantages and disadvantages of CALL are discussed and the study ends with future predictions of CALL.Keywords: computer-assisted language learning (CALL), teaching English as a foreign language (TEFL/EFL), adult learners, young learners
Procedia PDF Downloads 4357256 Japanese Language Learning Strategies : Case study student in Japanese subject part, Faculty of Humanities and Social Sciences, Suan Sunandha Rajabhat University
Authors: Pailin Klinkesorn
Abstract:
The research aimed to study the use of learning strategies for Japanese language among college students with different learning achievements who study Japanese as a foreign language in the Higher Education’s level. The survey was conducted by using a questionnaire adapted from Strategy Inventory for language Learning or SILL (Oxford, 1990), consisting of two parts: questions about personal data and questions about the use of learning strategies for Japanese language. The samples of college students in the Japanese language program were purposively selected from Suansunandha Rajabhat University. The data from the questionnaire was statistically analyzed by using mean scores and one-way ANOVA. The results showed that Social Strategies was used by the greatest number of college students, whereas Memory Strategies was used by the least number of students. The students in different levels used various strategies, including Memory Strategies, Cognitive Strategies, Metacognitive Strategies and Social Strategies, at the significance level of 0.05. In addition, the students with different learning achievements also used different strategies at the significance level of 0.05. Further studies can explore learning strategies of other groups of Japanese learners, such as university students or company employees. Moreover, learning strategies for language skills, including listening, speaking, reading and writing, can be analyzed for better understanding of learners’ characteristics and for teaching applications.Keywords: language learning strategies, achievement, Japanese, college students
Procedia PDF Downloads 3927255 A Study on Pakistani Students’ Attitude towards Learning Mathematics and Science at Secondary Level
Authors: Aroona Hashmi
Abstract:
Student’s success in Mathematics and Science depends upon their learning attitude towards both subjects. It also influences the participation rate of the learner. The present study was based on a survey of high school students about their attitude towards Mathematics and Science at Secondary level. Students of the both gender constitute the population of this study. Sample of the study was 276 students and 20 teachers from 10 Government schools from Lahore District. Questionnaire and interview were selected as tool for data collection. The results showed that Pakistani students’ positive attitude towards learning Mathematics and Science. There was a significance difference between the students’ attitude towards learning Mathematics and no significance difference was found in the students’ attitude towards learning Science at Secondary level.Keywords: attitude, mathematics, science, secondary level
Procedia PDF Downloads 4727254 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles
Authors: Masood Roohi, Amir Taghavipour
Abstract:
This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time
Procedia PDF Downloads 354