Search results for: operational data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26147

Search results for: operational data

25457 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 413
25456 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 258
25455 Next-Gen Solutions: How Generative AI Will Reshape Businesses

Authors: Aishwarya Rai

Abstract:

This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.

Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses

Procedia PDF Downloads 78
25454 Promoting 'One Health' Surveillance and Response Approach Implementation Capabilities against Emerging Threats and Epidemics Crisis Impact in African Countries

Authors: Ernest Tambo, Ghislaine Madjou, Jeanne Y. Ngogang, Shenglan Tang, Zhou XiaoNong

Abstract:

Implementing national to community-based 'One Health' surveillance approach for human, animal and environmental consequences mitigation offers great opportunities and value-added in sustainable development and wellbeing. 'One Health' surveillance approach global partnerships, policy commitment and financial investment are much needed in addressing the evolving threats and epidemics crises mitigation in African countries. The paper provides insights onto how China-Africa health development cooperation in promoting “One Health” surveillance approach in response advocacy and mitigation. China-Africa health development initiatives provide new prospects in guiding and moving forward appropriate and evidence-based advocacy and mitigation management approaches and strategies in attaining Universal Health Coverage (UHC) and Sustainable Development Goals (SDGs). Early and continuous quality and timely surveillance data collection and coordinated information sharing practices in malaria and other diseases are demonstrated in Comoros, Zanzibar, Ghana and Cameroon. Improvements of variety of access to contextual sources and network of data sharing platforms are needed in guiding evidence-based and tailored detection and response to unusual hazardous events. Moreover, understanding threats and diseases trends, frontline or point of care response delivery is crucial to promote integrated and sustainable targeted local, national “One Health” surveillance and response approach needs implementation. Importantly, operational guidelines are vital in increasing coherent financing and national workforce capacity development mechanisms. Strengthening participatory partnerships, collaboration and monitoring strategies in achieving global health agenda effectiveness in Africa. At the same enhancing surveillance data information streams reporting and dissemination usefulness in informing policies decisions, health systems programming and financial mobilization and prioritized allocation pre, during and post threats and epidemics crises programs strengths and weaknesses. Thus, capitalizing on “One Health” surveillance and response approach advocacy and mitigation implementation is timely in consolidating Africa Union 2063 agenda and Africa renaissance capabilities and expectations.

Keywords: Africa, one health approach, surveillance, response

Procedia PDF Downloads 422
25453 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 136
25452 Bank Internal Controls and Credit Risk in Europe: A Quantitative Measurement Approach

Authors: Ellis Kofi Akwaa-Sekyi, Jordi Moreno Gené

Abstract:

Managerial actions which negatively profile banks and impair corporate reputation are addressed through effective internal control systems. Disregard for acceptable standards and procedures for granting credit have affected bank loan portfolios and could be cited for the crises in some European countries. The study intends to determine the effectiveness of internal control systems, investigate whether perceived agency problems exist on the part of board members and to establish the relationship between internal controls and credit risk among listed banks in the European Union. Drawing theoretical support from the behavioural compliance and agency theories, about seventeen internal control variables (drawn from the revised COSO framework), bank-specific, country, stock market and macro-economic variables will be involved in the study. A purely quantitative approach will be employed to model internal control variables covering the control environment, risk management, control activities, information and communication and monitoring. Panel data from 2005-2014 on listed banks from 28 European Union countries will be used for the study. Hypotheses will be tested and the Generalized Least Squares (GLS) regression will be run to establish the relationship between dependent and independent variables. The Hausman test will be used to select whether random or fixed effect model will be used. It is expected that listed banks will have sound internal control systems but their effectiveness cannot be confirmed. A perceived agency problem on the part of the board of directors is expected to be confirmed. The study expects significant effect of internal controls on credit risk. The study will uncover another perspective of internal controls as not only an operational risk issue but credit risk too. Banks will be cautious that observing effective internal control systems is an ethical and socially responsible act since the collapse (crisis) of financial institutions as a result of excessive default is a major contagion. This study deviates from the usual primary data approach to measuring internal control variables and rather models internal control variables in a quantitative approach for the panel data. Thus a grey area in approaching the revised COSO framework for internal controls is opened for further research. Most bank failures and crises could be averted if effective internal control systems are religiously adhered to.

Keywords: agency theory, credit risk, internal controls, revised COSO framework

Procedia PDF Downloads 320
25451 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection

Authors: Reza Moslemi, Sebastien Perrier

Abstract:

Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.

Keywords: condition assessment, pipe degradation, sampling, water main

Procedia PDF Downloads 152
25450 Motivation Needs in Working of the Employees in Rayong Province: A Case Study of Panakom Co., Ltd.

Authors: Ganratchakan Ninlawan, Witthaya Mekhum

Abstract:

The objective of this research was to investigate motivation needs in working of the employees in Rayong Province at Panakom Co., Ltd. The sample group included 59 operational employees of Panakom Co., Ltd divided into 2 main parts to complete the questionnaires. Part 1 dealt with personal information of the staff in the form of checklist questions. Part 2 was about the motivation needs in working in the form of 5 rating scales. The data were analyzed to find frequency, percentage, arithmetic mean, and SD with the results as follows. They reported their working conditions in the moderate level while the first aspect was on the regulation of the Working Support Department. The second rated aspect was on the modern facilities and office stationeries followed by the working environment such as lighting, temperature, sound system, and atmosphere. The last aspect was on the provision of enough working equipment. On the part of work stability and work progress, they rated this aspect at the moderate level with the details below. The first aspect was their satisfaction in work rotation followed by the encouragement in joining training and seminar to increase working knowledge. The third aspect was their perception on the progress of their careers. The last aspect was on the chance to get promoted in special cases. On the payment and fringe benefit, they rated this part in the moderate level with the highest aspect being on the provided fringe benefit such as health care. The second aspect was on the suitable salary compared to their knowledge and proficiency. The third aspect was on the satisfaction on the activities and seminars provided by the company. Finally, the last aspect was on the sufficient salary when compared with the current cost of living.

Keywords: motivation needs, working, employees, Rayong Province

Procedia PDF Downloads 255
25449 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 137
25448 Adaptation of Climate Change and Building Resilience for Seaports: Empirical Study on Egyptian Mediterranean Seaports

Authors: Alsnosy Balbaa, Mohamed Nabil Elnabawi, Yasmin El Meladi

Abstract:

With the ever-growing concerns of climate change, Mediterranean ports, as vital economic and transport hubs face unique challenges in maintaining operations and infrastructure. This empirical study seeks to understand the current adaptations and preparedness levels of Egyptian Mediterranean ports against climate-induced disruptions. Drawing from a structured questionnaire, the research gathers insights on observed climate impacts, infrastructure adaptations, operational changes, and stakeholder engagement, aiming to shed light on the resilience of these ports in the face of a changing climate.

Keywords: climate, infrastructures, port, mediterranean

Procedia PDF Downloads 65
25447 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
25446 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 94
25445 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 161
25444 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 595
25443 Increasing the Speed of the Apriori Algorithm by Dimension Reduction

Authors: A. Abyar, R. Khavarzadeh

Abstract:

The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.

Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis

Procedia PDF Downloads 3
25442 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 356
25441 Improving Knowledge Management Practices in the South African Healthcare System

Authors: Kgabo H. Badimo, Sheryl Buckley

Abstract:

Knowledge is increasingly recognised in this, the knowledge era, as a strategic resource, by public sector organisations, in view of the public sector reform initiatives. People and knowledge play a vital role in attaining improved organisational performance and high service quality. Many government departments in the public sector have started to realise the importance of knowledge management in streamlining their operations and processes. This study focused on knowledge management in the public healthcare service organisations, where the concept of service provider competitiveness pales to insignificance, considering the huge challenges emanating from the healthcare and public sector reforms. Many government departments are faced with challenges of improving organisational performance and service delivery, improving accountability, making informed decisions, capturing the knowledge of the aging workforce, and enhancing partnerships with stakeholders. The purpose of this paper is to examine the knowledge management practices of the Gauteng Department of Health in South Africa, in order to understand how knowledge management practices influence improvement in organisational performance and healthcare service delivery. This issue is explored through a review of literature on dominant views on knowledge management and healthcare service delivery, as well as results of interviews with, and questionnaire responses from, the general staff of the Gauteng Department of Health. Web-based questionnaires, face-to-face interviews and organisational documents were used to collect data. The data were analysed using both the quantitative and qualitative methods. The central question investigated was: To what extent can the conditions required for successful knowledge management be observed, in order to improve organisational performance and healthcare service delivery in the Gauteng Department of Health. The findings showed that the elements of knowledge management capabilities investigated in this study, namely knowledge creation, knowledge sharing and knowledge application, have a positive, significant relationship with all measures of organisational performance and healthcare service delivery. These findings thus indicate that by employing knowledge management principles, the Gauteng Department of Health could improve its ability to achieve its operational goals and objectives, and solve organisational and healthcare challenges, thereby improving organisational.

Keywords: knowledge management, Healthcare Service Delivery, public healthcare, public sector

Procedia PDF Downloads 273
25440 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 191
25439 Islamic Finance: Challenges of Islamic Banking in Pakistan

Authors: Asif Zaheer Shaikh, Zhaoyong Zhang, Jaime Yong, Ume Laila Shah

Abstract:

Islamic finance is growing with remarkable pace, especially Islamic banking, a major segment of Islamic finance, is expanding rapidly. This paper discusses the position of Islamic finance and Islamic banking, around the world in general and particularly in Pakistan. History of Islamic banking in Pakistan is protested, presently a significant growth is observed. However Islamic banking is confronting with number of challenges, which are refraining from sustainable growth of this industry in Pakistan. Growth level of Islamic banks should be steeper to contribute substantial share in country’s economy. It is important to formulate effective policies, at institutional and operational level to address these challenges through close collaboration of key stakeholders.

Keywords: Islamic finance, challenges, Islamic banking, Pakistan

Procedia PDF Downloads 537
25438 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency

Procedia PDF Downloads 452
25437 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 248
25436 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho

Authors: Tsepiso Mofolo, Luna Bergh

Abstract:

The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.

Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction

Procedia PDF Downloads 295
25435 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage

Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy

Abstract:

Availability of a wide variety of renewable resources, such as large reserves of hydro, biomass, solar and wind in Canada provides significant potential to improve the sustainability of energy uses. As buildings represent a considerable portion of energy use in Canada, application of distributed solar energy systems for heating and cooling may increase the amount of renewable energy use. Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. Heat production by concentrating solar rays using parabolic troughs can overcome the poor efficiencies of flat panels and evacuated tubes in cold climates. A numerical dynamic model is developed to simulate an installed parabolic solar trough facility in Winnipeg. The results of the numerical model are validated using the experimental data obtained from this system. The model is developed in Simulink and will be utilized to simulate a tri-generation system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates as this is lacking in the literature. In this paper, the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using organic Rankine cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modeling provides dynamic performance results using real time minutely meteorological data which are collected at the same location the solar system is installed. This is a big step ahead of the current models by accurately calculating the available solar energy at each time step considering the solar radiation fluctuations due to passing clouds. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. A natural gas water heater provides the required excess heat for the absorption cooling at low or no solar radiation periods. The results of the simulation are presented for a summer month in Winnipeg which includes the amount of generated electric power from ORC and contribution of solar energy in the cooling load provision

Keywords: absorption cooling, parabolic solar trough, remote community, validated model

Procedia PDF Downloads 216
25434 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning

Authors: Yangzhi Li

Abstract:

Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.

Keywords: robotic construction, robotic assembly, visual guidance, machine learning

Procedia PDF Downloads 87
25433 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 379
25432 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 144
25431 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer

Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa

Abstract:

Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.

Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer

Procedia PDF Downloads 168
25430 An Effective Approach to Knowledge Capture in Whole Life Costing in Constructions Project

Authors: Ndibarafinia Young Tobin, Simon Burnett

Abstract:

In spite of the benefits of implementing whole life costing technique as a valuable approach for comparing alternative building designs allowing operational cost benefits to be evaluated against any initial cost increases and also as part of procurement in the construction industry, its adoption has been relatively slow due to the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice, i.e. the lack of professionals in many establishments with knowledge and training on the use of whole life costing technique, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. This has proved to be very challenging to those who showed some willingness to employ the technique in a construction project. The knowledge generated from a project can be considered as best practices learned on how to carry out tasks in a more efficient way, or some negative lessons learned which have led to losses and slowed down the progress of the project and performance. Knowledge management in whole life costing practice can enhance whole life costing analysis execution in a construction project, as lessons learned from one project can be carried on to future projects, resulting in continuous improvement, providing knowledge that can be used in the operation and maintenance phases of an assets life span. Purpose: The purpose of this paper is to report an effective approach which can be utilised in capturing knowledge in whole life costing practice in a construction project. Design/methodology/approach: An extensive literature review was first conducted on the concept of knowledge management and whole life costing. This was followed by a semi-structured interview to explore the existing and good practice knowledge management in whole life costing practice in a construction project. The data gathered from the semi-structured interview was analyzed using content analysis and used to structure an effective knowledge capturing approach. Findings: From the results obtained in the study, it shows that the practice of project review is the common method used in the capturing of knowledge and should be undertaken in an organized and accurate manner, and results should be presented in the form of instructions or in a checklist format, forming short and precise insights. The approach developed advised that irrespective of how effective the approach to knowledge capture, the absence of an environment for sharing knowledge, would render the approach ineffective. Open culture and resources are critical for providing a knowledge sharing setting, and leadership has to sustain whole life costing knowledge capture, giving full support for its implementation. The knowledge capturing approach has been evaluated by practitioners who are experts in the area of whole life costing practice. The results have indicated that the approach to knowledge capture is suitable and efficient.

Keywords: whole life costing, knowledge capture, project review, construction industry, knowledge management

Procedia PDF Downloads 260
25429 Political Corruption and Workplace Misconduct

Authors: Masako Darrough, Mahmud Hossain, Santanu Mitra

Abstract:

The prevalent and increasing workplace misconduct in the United States presents a significant threat to social welfare. Despite efforts by enforcement agencies, U.S. workers remain vulnerable to employer exploitation, as evidenced by rising workplace injuries and discrimination lawsuits. While existing literature has identified several factors associated with unethical labor practices, the influence of political corruption remains largely unexplored. This paper aims to fill this gap by investigating the relationship between political corruption and workplace misconduct in the U.S. context. Using the data from the U.S. Bureau of Labor Statistics, the Equal Employment Opportunity Commission, and corruption convictions reported by the Department of Justice, we find a positive association between political corruption and workplace misconduct among U.S.-listed firms that are headquartered in different states from 2004 to 2022. Both unionization and stricter labor laws attenuate the positive association between corruption and unethical labor practices. Our analyses also address potential endogeneity concerns via difference-in-differences, instrumental variables, and propensity-score-matched analyses, reaffirming the robustness of our findings. This research contributes to the literature by shedding light on how corrupt political climates influence organizational operational behavior and unethical practices. It also underscores the importance of stakeholder trust and the role of regulatory frameworks and offers practical insights to policymakers by suggesting a judicious allocation of enforcement resources to more corrupt states.

Keywords: workplace misconduct, political corruption, unionization, labor law strictness

Procedia PDF Downloads 24
25428 An Approach of High Scalable Production Capacity by Adaption of the Concept 'Everything as a Service'

Authors: Johannes Atug, Stefan Braunreuther, Gunther Reinhart

Abstract:

Volatile markets, as well as increasing global competition in manufacturing, lead to a high demand of flexible and agile production systems. These advanced production systems in turn conduct to high capital expenditure along with high investment risks. Developments in production regarding digitalization and cyber-physical systems result to a merger of informational- and operational technology. The approach of this paper is to benefit from this merger and present a framework of a production network with scalable production capacity and low capital expenditure by adaptation of the IT concept 'everything as a service' into the production environment.

Keywords: digital manufacturing system, everything as a service, reconfigurable production, value network

Procedia PDF Downloads 344