Search results for: mine pollution
1414 Impact of Environmental Changes on Blood Parameters in the Pelophylax ridibundus
Authors: Murat Tosunoglu, Cigdem Gul, Nurcihan Hacioglu, Nurdan Tepeova
Abstract:
Amphibian and Reptilian species are influenced by pollution and habitat destruction. Blood parameters of Amphibia species were particularly affected by the negative environmental conditions. Studied frog samples 36 clinically normal Pelophylax ridibundus individuals were captured along the Biga Stream between April–June 2014. When comparing our findings with the Turkish legislation (Water pollution control regulation), the 1. Locality of the Biga stream in terms of total coliform classified as "high quality water" (Coliform: 866.66 MPN/100 mL), while the 2. locality was a "contaminated water" (Coliform: 53266.66 MPN/100 mL). Blood samples of the live specimens were obtained in the laboratory within one day of their capture. The blood samples were taken from the etherized frogs by means of ventriculus punctures, via heparinized hematocrit capillaries. Hematological and biochemical analyses based on high quality water and contaminated water, respectively, are as follows: Red blood cell count (444210.52-426846.15 per cubic millimeter of blood), white blood cell count (4215.78-4684.61 per cubic millimeter of blood), hematocrit value (29.25-29.43 %), hemoglobin concentration (7.76-7.22 g/dl), mean corpuscular volume (637.64-719.99 fl), mean corpuscular hemoglobin (184.78-174.75 pg), mean corpuscular hemoglobin concentration (29.44-24.82 %), glucose (103.74-124.13 mg/dl), urea (87.68-81.72 mg/L), cholesterol (148.20-197.39 mg/dl), creatinine (0.29-0.28 mg/dl), uric acid (10.26-7.55 mg/L), albumin (1.13-1.39 g/dl), calcium (11.45-9.70 mg/dl), triglyceride (135.23-155.85 mg/dl), total protein (4.26-3.73 g/dl), phosphorus (6.83-17.86 mg/dl), and magnesium (0.95-1.06 mg/dl). The some hematological parameters in P. ridibundus specimens are given for the first time in this study. No water quality dependent variation was observed in clinic hematology parameters measured.Keywords: Pelophylax ridibundus, hematological parameters, biochemistry, freshwater quality
Procedia PDF Downloads 3701413 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis
Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino
Abstract:
The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty
Procedia PDF Downloads 5011412 Investigating the Behavior of Underground Structures in the Event of an Earthquake
Authors: Davoud Beheshtizadeh, Farzin Malekpour
Abstract:
The progress of technology and producing new machinery have made a big change in excavation operations and construction of underground structures. The limitations of space and some other economic, politic and military considerations gained the attention of most developed and developing countries towards the construction of these structures for mine, military, and development objectives. Underground highways, tunnels, subways, oil reservoir resources, fuels, nuclear wastes burying reservoir and underground stores are increasingly developing and being used in these countries. The existence and habitability of the cities depend on these underground installations or in other words these vital arteries. Stopping the flow of water, gas leakage and explosion, collapsing of sewage paths, etc., resulting from the earthquake are among the factors that can severely harm the environment and increase the casualty. Lack of sewage network and complete stoppage of the flow of water in Bam (Iran) is a good example of this kind. In this paper, we investigate the effect of wave orientation on structures and deformation of them and the effect of faulting on underground structures, and then, we study resistance of reinforced concrete against earthquake, simulate two different samples, analyze the result and point out the importance of paying attention to underground installations.Keywords: underground structures, earthquake, underground installations, axial deformations
Procedia PDF Downloads 1931411 Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility
Authors: Jadon Matthiasa, Cindy Donga, Ali Al Jibouria, Hsin Kuo
Abstract:
The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity.Keywords: air emissions, Gaussian Plume Model, MATLAB, soil contamination, air pollution monitoring, waste-to-energy, pollutant dispersion visualization, heavy metal analysis, environmental impact assessment, emission control effectiveness
Procedia PDF Downloads 161410 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2031409 Energy-Saving Methods and Principles of Energy-Efficient Concept Design in the Northern Hemisphere
Authors: Yulia A. Kononova, Znang X. Ning
Abstract:
Nowadays, architectural development is getting faster and faster. Nevertheless, modern architecture often does not meet all the points, which could help our planet to get better. As we know, people are spending an enormous amount of energy every day of their lives. Because of the uncontrolled energy usage, people have to increase energy production. As energy production process demands a lot of fuel sources, it courses a lot of problems such as climate changes, environment pollution, animals’ distinction, and lack of energy sources also. Nevertheless, nowadays humanity has all the opportunities to change this situation. Architecture is one of the most popular fields where it is possible to apply new methods of saving energy or even creating it. Nowadays we have kinds of buildings, which can meet new willing. One of them is energy effective buildings, which can save or even produce energy, combining several energy-saving principles. The main aim of this research is to provide information that helps to apply energy-saving methods while designing an environment-friendly building. The research methodology requires gathering relevant information from literature, building guidelines documents and previous research works in order to analyze it and sum up into a material that can be applied to energy-efficient building design. To mark results it should be noted that the usage of all the energy-saving methods applied to a design project of building results in ultra-low energy buildings that require little energy for space heating or cooling. As a conclusion it can be stated that developing methods of passive house design can decrease the need of energy production, which is an important issue that has to be solved in order to save planet sources and decrease environment pollution.Keywords: accumulation, energy-efficient building, storage, superinsulation, passive house
Procedia PDF Downloads 2621408 Detection of Pollution in the Catchment Area of Baha Region by Using Some Common Plants as a Bioindicators
Authors: Saad M. Howladar
Abstract:
Although, there are a little data on the use of littoral plants as heavy metals bioaccumulators over large areas of the wetlands environment. So, soil samples and biomass of the five plant species: Pluchea dioscroides, Pulicaria crispa, Lavandula pubescens, Tarchononthus comporatus and Argemone ochroleuca were collected from two different sites (basin and mouth) of four dams at Baha province, KSA. Nutrients and heavy metals were extracted from plant samples (leaves and stems) for analyzing elements (Na, K, Ca, P and N) and heavy metals (Pb, Cu and Ni). The soils of the mouth of the dam had the highest concentrations of all elements, while that of basin had the highest ones of most heavy metals except Pb. The soil elements in relation to the two sites arranged as: Ca > K > P > Na > N; and the heavy metals as: Cu > Ni > Pb. The present study indicated that Pluchea dioscroides had the highest values of most elements and heavy metals, while Lavandula pubescens had the lowest. In general, leaves attain the highest concentrations of all nutrients and heavy metals in most studied species as compared with stem. It was indicated that Pluchea dioscroides showed a high transfer factor for almost elements and heavy metals such as K, Na, Cu, Ni and Pb, while Pulicaria crispa showed the highest translocation factor of N, P, Ca-Na ratio and Cu. All studied species growing in the basin had almost the highest concentrations of elements and heavy metals as compared with that in the mouth of dam except K in Pluchea dioscroides, Tarchononthus comporatus and Argemone ochroleuca tissues. Otherwise tissues of Tarchononthus comporatus growing in the basin had the lowest concentrations of K and Ni, while that growing in the mouth had the highest of P and N.Keywords: Baha Region, bioindicators, plant, pollution, dams, heavy metals
Procedia PDF Downloads 4651407 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 2291406 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 6401405 Investigating the Pathfinding Elements and Indicator Minerals of Au as the Main Geological Signatures for Au Ore Discovery at Kubi Gold Deposit, Ghana
Authors: Gabriel K. Nzulu, Hans Högberg, Per Eklund, Lars Hultman, Martin Magnuson
Abstract:
X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) are applied to investigate the properties of rock samples from a drill hole from the Kubi Gold Project of the Asante Gold Corporation near Dunwka-on-Offin in the Central Region of Ghana. The distribution of these minerals in the rocks were observed in the drill hole sections. X-ray diffraction indicates that the samples contain garnet, pyrite, periclase, and quartz as the main indicator minerals. SEM revealed morphologies of these minerals. From EDX and XPS, Fe, Mg, Al, S, O, Hg, Ti, Mn, Na, Ag, Au, Cu, Si, and K are identified as the pathfinder elements in the area that either form alloys with gold or inherent elements in the sediments. This finding can be ascribed to primary geochemical distribution, which developed from crystallization of magma and hydrothermal liquids as well as the movement of metasomatic elements and the precipitous rate of chemical weathering of lateralization in secondary processes. The results indicate that Au mineralization in the Kubi Mine area is controlled by garnet, pyrite, goethite, and kaolinite that grades up to the surface (oxides) with hematite and limonite alterations.Keywords: gold, minerals, pathfinder element, spectroscopy, X-ray
Procedia PDF Downloads 1101404 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater
Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu
Abstract:
Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters
Procedia PDF Downloads 1401403 Microplastics in Urban Environment – Coimbra City Case Study
Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen
Abstract:
Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.Keywords: microplastics, cities, sources, pathways, vegetation
Procedia PDF Downloads 591402 Pattern the Location and Area of Earth-Dumping Stations from Vehicle GPS Data in Taiwan
Authors: Chun-Yuan Chen, Ming-Chang Li, Xiu-Hui Wen, Yi-Ching Tu
Abstract:
The objective of this study explores GPS (Global Positioning System) applied to trace construction vehicles such as trucks or cranes, help to pattern the earth-dumping stations of traffic construction in Taiwan. Traffic construction in this research is defined as the engineering of high-speed railways, expressways, and which that distance more than kilometers. Audit the location and check the compliance with regulations of earth-dumping stations is one of important tasks in Taiwan EPA. Basically, the earth-dumping station was known as one source of particulate matter from air pollution during construction process. Due to GPS data can be analyzed quickly and be used conveniently, this study tried to find out dumping stations by modeling vehicles tracks from GPS data during work cycle of construction. The GPS data updated from 13 vehicles related to an expressway construction in central Taiwan. The GPS footprints were retrieved to Keyhole Markup Language (KML) files so that can pattern the tracks of trucks by computer applications, the data was collected about eight months- from Feb. to Oct. in 2017. The results of GPS footprints identified dumping station and outlined the areas of earthwork had been passed to the Taiwan EPA for on-site inspection. Taiwan EPA had issued advice comments to the agency which was in charge of the construction to prevent the air pollution. According to the result of this study compared to the commonly methods in inspecting environment by manual collection, the GPS with KML patterning and modeling method can consumes less time. On the other hand, through monitoring the GPS data from construction vehicles could be useful for administration to development and implementation of strategies in environmental management.Keywords: automatic management, earth-dumping station, environmental management, Global Positioning System (GPS), particulate matter, traffic construction
Procedia PDF Downloads 1641401 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application
Authors: Miroslav Čulík, Petr Gurný
Abstract:
This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility
Procedia PDF Downloads 5481400 The Seedlings Pea (Pisum Sativum L.) Have A High Potential To Be Used As A Promising Condidate For The Study Of Phytoremediation Mechanisms Following An Aromatic Polycyclic Hydrocarbon (Hap) Contamination Such As Naphtalene
Authors: Agoun-bahar Salima
Abstract:
The environmental variations to which plants are subjected require them to have a strong capacity for adaptation. Some plants are affected by pollutants and are used as pollution indicators; others have the capacity to block, extract, accumulate, transform or degrade the xenobiotic. The diversity of the legume family includes around 20 000 species and offers opportunities for exploitation through their agronomic, dietary and ecological interests. The lack of data on the bioavailability of the Aromatic Polycyclic Hydrocarbon (PAH) in polluted environments, as their passage in the food chains and on the effects of interaction with other pollutants, justifies priority research on this vast family of hydrocarbons. Naphthalene is a PAH formed from two aromatic rings, it is listed and classified as priority pollutant in the list of 16 PAH by the United States Environmental Protection Agency. The aim of this work was to determinate effect of naphthalene at different concentrations on morphological and physiological responses of pea seedlings. At the same time, the behavior of the pollutant in the soil and its fate at the different parts of plant (roots, stems, leaves and fruits) were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS). In it controlled laboratory studies, plants exposed to naphthalene were able to grow efficiently. From a quantitative analysis, 67% of the naphthalene was removed from the soil and then found on the leaves of the seedlings in just three weeks of cultivation. Interestingly, no trace of naphthalene or its derivatives were detected on the chromatograms corresponding to the dosage of the pollutant at the fruit level after ten weeks of cultivating the seedlings and this for all the pollutant concentrations used. The pea seedlings seem to tolerate the pollutant when it is applied to the soil. In conclusion, the pea represents an interesting biological model in the study of phytoremediation mechanisms.Keywords: naphtalene, PAH, Pea, phytoremediation, pollution
Procedia PDF Downloads 751399 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property
Authors: Neha Verma, Manik Rakhra
Abstract:
Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor
Procedia PDF Downloads 1551398 Ecological Risk Aspects of Essential Trace Metals in Soil Derived From Gold Mining Region, South Africa
Authors: Lowanika Victor Tibane, David Mamba
Abstract:
Human body, animals, and plants depend on certain essential metals in permissible quantities for their survival. Excessive metal concentration may cause severe malfunctioning of the organisms and even fatal in extreme cases. Because of gold mining in the Witwatersrand basin in South Africa, enormous untreated mine dumps comprise elevated concentration of essential trace elements. Elevated quantities of trace metal have direct negative impact on the quality of soil for different land use types, reduce soil efficiency for plant growth, and affect the health human and animals. A total of 21 subsoil samples were examined using inductively coupled plasma optical emission spectrometry and X-ray fluorescence methods and the results elevated men concentration of Fe (36,433.39) > S (5,071.83) > Cu (1,717,28) > Mn (612.81) > Cr (74.52) > Zn (68.67) > Ni (40.44) > Co (9.63) > P (3.49) > Mo > (2.74), reported in mg/kg. Using various contamination indices, it was discovered that the sites surveyed are on average moderately contaminated with Co, Cr, Cu, Mn, Ni, S, and Zn. The ecological risk assessment revealed a low ecological risk for Cr, Ni and Zn, whereas Cu poses a very high ecological risk.Keywords: essential trace elements, soil contamination, contamination indices, toxicity, descriptive statistics, ecological risk evaluation
Procedia PDF Downloads 901397 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example
Abstract:
With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation
Procedia PDF Downloads 1161396 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India
Authors: N. K. Ambujam, V. Sudha
Abstract:
Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.Keywords: NPS pollution, nutrients, hyper-eutrophication, krishnagiri reservoir
Procedia PDF Downloads 3241395 Real-Time Mine Safety System with the Internet of Things
Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır
Abstract:
This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures
Procedia PDF Downloads 631394 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems
Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar
Abstract:
Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation
Procedia PDF Downloads 1181393 A Review on Benzo(a)pyrene Emission Factors from Biomass Combustion
Authors: Franziska Klauser, Manuel Schwabl, Alexander Weissinger, Christoph Schmidl, Walter Haslinger, Anne Kasper-Giebl
Abstract:
Benzo(a)pyrene (BaP) is the most widely investigated representative of Polycyclic Aromatic Hydrocarbons (PAH) as well as one of the most toxic compounds in this group. Since 2013 in the European Union a limit value for BaP concentration in the ambient air is applied, which was set to a yearly average value of 1 ng m-3. Several reports show that in some regions, even where industry and traffic are of minor impact this threshold is regularly exceeded. This is taken as proof that biomass combustion for heating purposes contributes significantly to BaP pollution. Several investigations have been already carried out on the BaP emission behavior of biomass combustion furnaces, mostly focusing on a certain aspect like the influences from wood type, of operation type or of technology type. However, a superior view on emission patterns of BaP from biomass combustion and the aggregation of determined values also from recent studies is not presented so far. The combination of determined values allows a better understanding of the BaP emission behavior from biomass combustion. In this work the review conclusions are driven from the combination of outcomes from different publication. In two examples it was shown that technical progress leads to 10 to 100 fold lower BaP emission from modern furnaces compared to old technologies of equivalent type. It was also indicated that the operation with pellets or wood chips exhibits clearly lower BaP emission factors compared to operation with log wood. Although, the BaP emission level from automatic furnaces is strongly impacted by the kind of operation. This work delivers an overview on BaP emission factors from different biomass combustion appliances, from different operation modes and from the combustion of different fuel and wood types. The main impact factors are depicted, and suggestions for low BaP emission biomass combustion are derived. As one result possible investigation fields concerning BaP emissions from biomass combustion that seem to be most important to be clarified are suggested.Keywords: benzo(a)pyrene, biomass, combustion, emission, pollution
Procedia PDF Downloads 3551392 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method
Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta
Abstract:
Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse
Procedia PDF Downloads 1291391 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom
Authors: Witthaya Mekhum, Waleerak Sittisom
Abstract:
This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.Keywords: occupational health, safety, local wisdom, Rattanakosin
Procedia PDF Downloads 4401390 Risk Assessment of Heavy Metals in Soils at Electronic Waste Activity Sites within the Vicinity of Alaba International Market, Nigeria
Authors: A. A. Adebayo, A. O. Ogunkeyede, A. O. Adeigbe
Abstract:
Digital globalisation and yarn of Nigeria society to overcome the digital divide have resulted in contamination of soil by heavy metals (HMs) from e-waste activities at Alaba international market, Lagos, Nigeria. The aim of this research was to determine the concentration of various metals {Cadmium (Cd), Chromium (Cr), Copper (Cu), and Lead (Pb)} and identify their ecological and health risks for the people within the study area. A total of 60 soil samples were collected at Alaba market study area. Two types of samples were collected from each sampling points: topsoil (0-15 cm), subsoil (15 -30 cm). The metal concentration results showed that the soils were heavily contaminated by HMs at topsoil and subsoil. The geoaccummulation and ecological risk indices revealed high pollution level from all studied site. The health risk assessment results suggested that there is high possibility of carcinogenic risk to humans because the carcinogenic risk via corresponding exposure pathways exceeded the safety limit of 10-6 (the acceptable level of carcinogenic risk for human). Furthermore, inhalation of soil particles is the main exposure pathway for Cr to enter the human body for all ages. Children in the vicinity are exposed more to ingestion of Pb since they tend to eat earth (pica) and repeatedly suck their fingers. This study provides basic information to create awareness for a need to introduce pollution control measures and the need to protect the ecosystem and human health within the study area at Alaba international market.Keywords: contaminated soil, ecological risk, hazard index, risk factor, exposure pathways, heavy metals
Procedia PDF Downloads 2531389 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term
Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig
Abstract:
Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust
Procedia PDF Downloads 1641388 Energy Production with Closed Methods
Authors: Bujar Ismaili, Bahti Ismajli, Venhar Ismaili, Skender Ramadani
Abstract:
In Kosovo, the problem with the electricity supply is huge and does not meet the demands of consumers. Older thermal power plants, which are regarded as big environmental polluters, produce most of the energy. Our experiment is based on the production of electricity using the closed method that does not affect environmental pollution by using waste as fuel that is considered to pollute the environment. The experiment was carried out in the village of Godanc, municipality of Shtime - Kosovo. In the experiment, a production line based on the production of electricity and central heating was designed at the same time. The results are the benefits of electricity as well as the release of temperature for heating with minimal expenses and with the release of 0% gases into the atmosphere. During this experiment, coal, plastic, waste from wood processing, and agricultural wastes were used as raw materials. The method utilized in the experiment allows for the release of gas through pipes and filters during the top-to-bottom combustion of the raw material in the boiler, followed by the method of gas filtration from waste wood processing (sawdust). During this process, the final product is obtained - gas, which passes through the carburetor, which enables the gas combustion process and puts into operation the internal combustion machine and the generator and produces electricity that does not release gases into the atmosphere. The obtained results show that the system provides energy stability without environmental pollution from toxic substances and waste, as well as with low production costs. From the final results, it follows that: in the case of using coal fuel, we have benefited from more electricity and higher temperature release, followed by plastic waste, which also gave good results. The results obtained during these experiments prove that the current problems of lack of electricity and heating can be met at a lower cost and have a clean environment and waste management.Keywords: energy, heating, atmosphere, waste, gasification
Procedia PDF Downloads 2351387 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)
Authors: Violina R. Angelova
Abstract:
Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.Keywords: Lathyrus sativus L, macroelements, microelements, quality
Procedia PDF Downloads 1451386 Characterization of Fine Particles Emitted by the Inland and Maritime Shipping
Authors: Malika Souada, Juanita Rausch, Benjamin Guinot, Christine Bugajny
Abstract:
The increase of global commerce and tourism makes the shipping sector an important contributor of atmospheric pollution. Both, airborne particles and gaseous pollutants have negative impact on health and climate. This is especially the case in port cities, due to the proximity of the exposed population to the shipping emissions in addition to other multiple sources of pollution linked to the surrounding urban activity. The objective of this study is to determine the concentrations of fine particles (immission), specifically PM2.5, PM1, PM0.3, BC and sulphates, in a context where maritime passenger traffic plays an important role (port area of Bordeaux centre). The methodology is based on high temporal resolution measurements of pollutants, correlated with meteorological and ship movements data. Particles and gaseous pollutants from seven maritime passenger ships were sampled and analysed during the docking, manoeuvring and berthing phases. The particle mass measurements were supplemented by measurements of the number concentration of ultrafine particles (<300 nm diameter). The different measurement points were chosen by taking into account the local meteorological conditions and by pre-modelling the dispersion of the smoke plumes. The results of the measurement campaign carried out during the summer of 2021 in the port of Bordeaux show that the detection of concentrations of particles emitted by ships proved to be punctual and stealthy. Punctual peaks of ultrafine particle concentration in number (P#/m3) and BC (ng/m3) were measured during the docking phases of the ships, but the concentrations returned to their background level within minutes. However, it appears that the influence of the docking phases does not significantly affect the air quality of Bordeaux centre in terms of mass concentration. Additionally, no clear differences in PM2.5 concentrations between the periods with and without ships at berth were observed. The urban background pollution seems to be mainly dominated by exhaust and non-exhaust road traffic emissions. However, temporal high-resolution measurements suggest a probable emission of gaseous precursors responsible for the formation of secondary aerosols related to the ship activities. This was evidenced by the high values of the PM1/BC and PN/BC ratios, tracers of non-primary particle formation, during periods of ship berthing vs. periods without ships at berth. The research findings from this study provide robust support for port area air quality assessment and source apportionment.Keywords: characterization, fine particulate matter, harbour air quality, shipping impacts
Procedia PDF Downloads 1041385 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles
Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose
Abstract:
The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics
Procedia PDF Downloads 116