Search results for: mediterranean forest
614 Determination of the Shear Strength of Wastes Using Back-Analyses from Observed Failures
Authors: Sadek Salah
Abstract:
The determination of the strength characteristics of waste materials is essential when evaluating the stability of waste fills during initial placement and at the time of closure and rehabilitation of the landfill. Significant efforts, mostly experimental, have been deployed to date in attempts to quantify the mechanical properties of municipal wastes various stages of decomposition. Even though the studies and work done so far have helped in setting baseline parameters and characteristics for waste materials, inherent concerns remain as to the scalability of the findings between the laboratory and the field along with questions as to the suitability of the actual test conditions. These concerns are compounded by the complexity of the problem itself with significant variability in composition, placement conditions, and levels of decay of the various constituents of the waste fills. A complimentary, if not necessarily an alternative approach is to rely on field observations of behavior and instability of such materials. This paper describes an effort at obtaining relevant shear strength parameters from back-analyses of failures which have been observed at a major un-engineered waste fill along the Mediterranean shoreline. Results from the limit-equilibrium failure back-analyses are presented and compared to results from laboratory-scale testing on comparable waste materials.Keywords: solid waste, shear strength, landfills, slope stability
Procedia PDF Downloads 242613 Status, Habitat Use, and Behaviour of Wintering Greater Flamingos Phoenicopterus roseus in Semi-Arid and Saharan Wetlands of Algeria
Authors: E. Bensaci, M. Saheb, Y. Nouidjem, A. Zoubiri, A. Bouzegag, M. Houhamdi
Abstract:
The Greater flamingo is considered the flagship species of wetlands across semi-arid and Saharan regions of Africa, especially Chotts and Sebkhas, which also concentrate significant numbers of bird species. Flamingos have different status (wintering and breeder) which vary between sites in different parts of Algeria. We conducted surveys and recorded banded flamingos across distinct regions within two climatic belts: semi-arid (Hauts Plateaux) and arid (Sahara), showing the importance of these sites in the migratory flyways particularly the relation between West Mediterranean and West Africa populations. The distribution of Greater flamingos varied between sites and seasons, where the concentrations mainly were in the wide, lees deep and salt lakes. Many of the sites (17) in the surveyed area were regularly supporting at least 1% of the regional population during winter. The analysis of Greater flamingos behaviour in different climatic regions in relation showed that the feeding is the dominant diurnal activity with rates exceeding 60% of the time. While feeding varies between seasons, and showed a negative relationship with the degree of disturbance.Keywords: Algeria, greater flamingo, Phoenicopterus roseus, Sahara, semi-arid
Procedia PDF Downloads 510612 A New Phenolic Compound Isolated from Laurus nobilis from Lebanon and Comparison of Antioxidant Activity of Different Parts
Authors: Turk Ayman, Ahn Jong Hoon, Khalife K. Hala, Gali-Muhtasib Hala, Lee Mi Kyeong
Abstract:
Laurus nobilis is an aromatic plant widely distributed in the Mediterranean region. The leaves of this plant are frequently used as a spice and as a traditional medicine for several diseases. In our present study, the methanolic extract of L. nobilis leaves showed antioxidant activity. Chromatographic separations of the EtOAc fraction which had the highest antioxidant activity led to the isolation of 12 compounds. Among them, there was a new phenylpropanoid derivative, which was identified by 1D and 2D NMR experiments, as well as high resolution mass spectrometry. In addition, two major compounds, catechin and epicatechin, which showed strong antioxidant activity may be responsible for the antioxidant activity of L. nobilis leaves. Since different plant parts may contain different types of constituents which contribute to the biological activities, we investigated the antioxidant activity of different parts of L. nobilis such as leaves, stems and fruits. Stems of L. nobilis showed the most potent antioxidant activity, followed by leaves. Further quantitation of total phenol and flavonoids contents revealed a positive correlation between the content of these compounds and antioxidant activity. Taken together, phenolic compounds including flavonoids are responsible for antioxidant activity of L. nobilis. In addition, stem parts of L. nobilis are suggested as good sources for antioxidant activity. Conclusively, L. nobilis might be effective in several free radical mediated diseases.Keywords: antioxidant activity, different parts, Laurus nobilis, phenolic compound
Procedia PDF Downloads 307611 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 94610 Labile and Humified Carbon Storage in Natural and Anthropogenically Affected Luvisols
Authors: Kristina Amaleviciute, Ieva Jokubauskaite, Alvyra Slepetiene, Jonas Volungevicius, Inga Liaudanskiene
Abstract:
The main task of this research was to investigate the chemical composition of the differently used soil in profiles. To identify the differences in the soil were investigated organic carbon (SOC) and its fractional composition: dissolved organic carbon (DOC), mobile humic acids (MHA) and C to N ratio of natural and anthropogenically affected Luvisols. Research object: natural and anthropogenically affected Luvisol, Akademija, Kedainiai, distr. Lithuania. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LAMMC. Soil samples for chemical analyses were taken from the genetics soil horizons. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. For mobile humic acids (MHA) determination the extraction procedure was carried out using 0.1 M NaOH solution. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR. pH was measured in 1M H2O. N total was determined by Kjeldahl method. Results: Based on the obtained results, it can be stated that transformation of chemical composition is going through the genetic soil horizons. Morphology of the upper layers of soil profile which is formed under natural conditions was changed by anthropomorphic (agrogenic, urbogenic, technogenic and others) structure. Anthropogenic activities, mechanical and biochemical disturbances destroy the natural characteristics of soil formation and complicates the interpretation of soil development. Due to the intensive cultivation, the pH values of the curve equals (disappears acidification characteristic for E horizon) with natural Luvisol. Luvisols affected by agricultural activities was characterized by a decrease in the absolute amount of humic substances in separate horizons. But there was observed more sustainable, higher carbon sequestration and thicker storage of humic horizon compared with forest Luvisol. However, the average content of humic substances in the soil profile was lower. Soil organic carbon content in anthropogenic Luvisols was lower compared with the natural forest soil, but there was more evenly spread over in the wider thickness of accumulative horizon. These data suggest that the organization of geo-ecological declines and agroecological increases in Luvisols. Acknowledgement: This work was supported by the National Science Program ‘The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems’ [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agrogenization, dissolved organic carbon, luvisol, mobile humic acids, soil organic carbon
Procedia PDF Downloads 236609 Strategies and Perceptions of Small Olive Oil Farmers of By-Product Valorization
Authors: Judit Manuel-i-Martin, Mechthild Donner, Ivana Radic, Yamna Erraach, Fatima Elhadad, Taoufik Yatribi, Feliu Lopez-i-Gelats
Abstract:
This paper investigates how small olive farmers and olive oil producers implement circular economy practices to manage olive related waste and how such strategies are perceived by the farmers themselves. While there is a lot of data and research about possible uses of olive oil by-products, the perceptions and related practices of olive oil farmers is a much less investigated domain. A total of 60 semi-structured interviews were conducted in one of the most relevant olive oil producing regions in the Iberian Peninsula -the region of Terres de Ponent (Catalonia – Spain) - to examine the different by-product valorization strategies the olive oil farms develop. We test the hypothesis that the strategies conducted depend on the nature and amount of resources available by the farm. The results obtained point that access to milling infrastructure is a determining factor. We also found that olive tree pruning biomass and olive pomace are the most common by-products valorized by farmers, the first one on-farm and the latter in mills. Results indicate that high value uses for olive oil by-products are rarely implemented by farmers. We conclude that olive farmers tend to perceive by-product valorization strategies as waste management practices rather than as additional sources of value for their farm.Keywords: circular economy, discourses, Mediterranean region, olive oil by-products, farmers’ strategies, olive pomace
Procedia PDF Downloads 134608 Energy Efficiency Retrofitting of Residential Buildings Case Study: Multi-Family Apartment Building in Tripoli, Lebanon
Authors: Yathreb Sabsaby
Abstract:
Energy efficiency retrofitting of existing buildings was long ignored by public authorities who favored energy efficiency policies in new buildings, which are easier to implement. Indeed, retrofitting is more complex and difficult to organize because of the extreme diversity in existing buildings, administrative situations and occupation. Energy efficiency retrofitting of existing buildings has now become indispensable in all economies—even emerging countries—given the constraints imposed by energy security and climate change, and because it represents considerable potential energy savings. Addressing energy efficiency in the existing building stock has been acknowledged as one of the most critical yet challenging aspects of reducing our environmental footprint on the ecosystem. Tripoli, Lebanon chosen as case study area is a typical Mediterranean metropolis in the North Lebanon, where multifamily residential buildings are all around the city. This generally implies that the density of energy demand is extremely high, even the renewable energy facilities are involved, they can just play as a minor energy provider at the current technology level in the single family house. It seems only the low energy design for buildings can be made possible, not the zero energy certainly in developing country. This study reviews the latest research and experience and provides recommendations for deep energy retrofits that aim to save more than 50% of the energy used in a typical Tripoli apartment building.Keywords: energy-efficiency, existing building, multifamily residential building, retrofit
Procedia PDF Downloads 455607 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 11606 Geochemical Characterization of Bou Dabbous Formation in Thrust Belt Zones, Northern Tunisia
Authors: M. Ben Jrad, A. Belhaj Mohamed, S. Riahi, I. Bouazizi, M. Saidi, M. Soussi
Abstract:
The generative potential, depositional environment, thermal maturity and oil seeps of the organic-rich Bou Dabbous Formation (Ypresian) from the thrust belt northwestern Tunisia, were determined by Rock Eval and molecular analyses. The paleo-tectonic units in the area show some similarities with equivalent facies in Mediterranean Sea and Sicilian. The Bou Dabbous Formation displays variable source rock characteristics through the various units Tellian and Numidian nappes Units. Organic matter contents and petroleum potentials are fair to high (reaching 1.95% and 6 kg of HC/t of rock respectively) marine type II kerogen. An increasing SE-NW maturity gradient is well documented in the study area. The Bou Dabbous organic-rich facies are marginally mature stage in the Tellian Unit (Kasseb domain), whilst they are mature-late mature stage within Nefza-Ain Allega tectonic windows. A long and north of Cap Serrat-Ghardimaou Master Fault these facies are overmature. Oil/Oil and Oil/source rock correlation, based on biomarker and carbon isotopic composition, shows a positive genetic correlation between the oil seeps and Bou Dabbous source rock.Keywords: biomarkers, Bou Dabbous Formation, Northern Tunisia, source rock
Procedia PDF Downloads 485605 Synthesis of Green Silver Nanoparticles with Aqueous Extract of Glycyrrhiza glabra and Its Characterization
Authors: Mandeep Kataria, Ankita Thakur
Abstract:
Glycyrrhiza glabra grows in the sub- tropical and warm temperate regions of the world, in Mediterranean countries and China, America, Europe, Asia and Australia. It grows in areas with sunny, dry and hot climates. It has numerous medicinal properties like it is used to cure Peptic Ulcers, Canker sores, Eczema, Indigestion and Upper Respiratory Infections. Biosynthetic methods such as plant extract have emerged as a simple and viable alternative to more complex chemical synthetic procedures to obtain nanomaterials. Extract from plant may act both as reducing and capping agents in silver nanoparticles synthesis. In the present work, Green Silver nanoparticles were successfully formulated from bioreduction of silver nitrate solutions using Glycyrrhiza glabra root extract. These Green Silver nanoparticles have been appropriately characterized using Visible spectroscopy, colour change. The Antimicrobial activity was done by Agar disc diffusion assay. AgNPs were developed by using aqueous root extract of Glycyrrhiza glabra, which acts as a reducing as well as stabilizing agent. The green synthetic method is a fast, low cost and eco-friendly process in the field of nanotechnology. The study revealed that the green-synthesized silver nanoparticle provides a promising approach for antimicrobial activity.Keywords: Glycyrrhiza glabra, nanoparticles, antimicrobial activity, aqueous extract
Procedia PDF Downloads 128604 Germination Behavior of Tricholaena teneriffae L. a perennial Grass Species
Authors: Imed Mezghani, Yousra Ben Salah, Mohamed Chaieb
Abstract:
Tricholaena teneriffae L. is a xerophytic perennial herb that belongs to the Poaceae family likely to be used for ecological restoration programs. It's a dominant and economically important species widely distributed in the Bou-Hedma National Park, Tunisia. Reintroduction and expansion of T. teneriffae depend solely on sexual reproduction. This makes the understanding of its germination requirements vital for conservation and management. To provide basic information for its conservation and reintroduction, we studied the influence of environmental factors on seed germination patterns. The germination responses of seeds were determined over a wide range of constant temperatures (15–35°C), polyethylene glycol solutions of different osmotic potentials (0 to −2 MPa) and salt solution (0 to 150 mM of NaCl). Results indicated that the optimum temperature germination was attained at 25°C which corresponds to temperatures prevailing during mid spring season in the Mediterranean area. Seeds germinated in Polyethylene Glycol solutions exhibited significantly lower germination than control especially when water potential fell below -0.6 MPa. Germination percentage and rate decreased with an increase NaCl concentration. Seeds germination was substantially delayed and reduced with an increase in NaCl to levels above 50 mM. T. teneriffae is moderately salt tolerant at germination stage.Keywords: germination, temperature, Tricholaena teneriffae L., salt stress, water stress, rehabilitation
Procedia PDF Downloads 293603 Parasitological Study and Its Role in Fisheries Management and Stock Assessment of Boops boops (Lineauses, 1758) along the Tunisian Coast
Authors: I. Chebbi, L. Boudaya, L. Neifar
Abstract:
The bogue, Boops boops is an economically important fishery resource and commonly captured in the Mediterranean, and its diversity in parasites has been used as a tool to differentiate between stocks along with Tunisia since it is widely acceptable in fisheries management. In this study, a total of 90 fish are investigated from three localities off Tunisia, including Kelibia, Mahdia, and Zarzis. Fifteen species of parasites totaling 1270 individuals were harvested from B. boops, whereas ten parasites were used as biological tags. Based on Mahalanobis distance, each parasite species shows a great importance in the discrimination between groups. Tetraphyllidea larvae are the most influential parasites in determining the position of samples belonging to Kelibia. Monogenean species and Hysterothylacium sp. are the most important species for determining the position of samples from Mahdia. Specimens from Zarzis are characterized by the absence of the four Monogenean species and the Tetraphyllidea larvae. Parasites allocate B. boops population correctly to their origin communities with an accuracy of 83.3%. These results were corroborated by the discriminant analyses, highlighted the presence of three stocks, and improved that the parasitological method can be considered as a reliable key to provide imperative information for discriminating among B. boops stocks in Tunisian waters.Keywords: biological marker, Boops boops, parasite, population structure
Procedia PDF Downloads 134602 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 154601 Analysis of Spatial and Temporal Data Using Remote Sensing Technology
Authors: Kapil Pandey, Vishnu Goyal
Abstract:
Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing
Procedia PDF Downloads 433600 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 407599 Application of Fuzzy Multiple Criteria Decision Making for Flooded Risk Region Selection in Thailand
Authors: Waraporn Wimuktalop
Abstract:
This research will select regions which are vulnerable to flooding in different level. Mathematical principles will be systematically and rationally utilized as a tool to solve problems of selection the regions. Therefore the method called Multiple Criteria Decision Making (MCDM) has been chosen by having two analysis standards, TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and AHP (Analytic Hierarchy Process). There are three criterions that have been considered in this research. The first criterion is climate which is the rainfall. The second criterion is geography which is the height above mean sea level. The last criterion is the land utilization which both forest and agriculture use. The study found that the South has the highest risk of flooding, then the East, the Centre, the North-East, the West and the North, respectively.Keywords: multiple criteria decision making, TOPSIS, analytic hierarchy process, flooding
Procedia PDF Downloads 233598 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 125597 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 6596 Hard Coatings Characterization Based on Chromium Nitrides: Applications for Wood Machining
Authors: B. Chemani, H. Aknouche, A. Zerizer, R. Marchal
Abstract:
The phenomena occurring during machining are related to the internal friction of the material that deforms and the friction the flake on the rake face of tool. Various researches have been conducted to improve the wear resistance of the tool by thin film deposition. This work aims to present an experimental approach related to wood machining technique to evaluate the wear for the case of ripping Aleppo pine, a species well established in the Mediterranean in general and in Algeria in particular. The study will be done on tungsten carbide cutting tools widely used in woodworking and coated with chrome nitride (CrN) and Chromium Nitride enriched Aluminium (CrAlN) with percentage different of aluminum sputtered through frame magnetron mark Nordiko 3500. The deposition conditions are already optimized by previous studies. The wear tests were performed in the laboratory of ENSAM Cluny (France) on a numerical control ripper of recordi type. This comparative study of the behavior of tools, coated and uncoated, showed that the addition of the aluminum chromium nitride films does not improve the tool ability to resist abrasive wear that is predominant when ripping the Aleppo pine. By against the aluminum addition improves the crystallization of chromium nitride films.Keywords: Aleppo pine, PVD, coatings, CrAlN, wear
Procedia PDF Downloads 568595 Biology of Salema (Sarpa Salpa (L.)) and Population off Gökceada (Northern Aegean Sea, Türkiye): A Macro herbivore Species Living in Sea Grass Beds
Authors: Zeliha Erdogan, Hatice Torcu Koc
Abstract:
The fish, Sarpa salpa (L.), is one of the main macroherbivores in the Mediterranean. A total of 600 Salema individuals were collected from around Gökçeada, Sea of Northern Aegean, between January 2014 and January 2015 in order to evaluate some information on the biology of the Salema population. For this aim, measurements of the Salema were obtained using a caliper. The age readings were made from otoliths. The population was composed of 6 age classes (I-VI). The total lengths and total weights of sampled fish were determined to be ranged from 12.5 to 33.1 cm and 33.57 to 559.33 g, respectively. Length-weight relationship for all individuals was calculated as W=0.0085*L3.1723, R2=0.9524. Growth parameters were determined as L∞= 35.55cm, k=0.31, t0= -9.2, '=2.60. As the sexual ratio was 1.08:1 (M: F), the Salema population consisted of 51.66% male and 47.5% female individuals. The highest average condition factors were observed for females in May (1.68) and for males in May (1.67). According to gonad somatic index values, the spawning period was determined twice a year in spring (April) and autumn (October). The highest average hepatosomatix index value was observed for all individuals in May and December. It was estimated that total (Z) mortality, natural (M) mortality, and fishing (F) mortality rates were Z=0.44 year-1, M=0.064 year-1 and F=0.38 year-1, respectively. As the exploitation rate was estimated as E=0.86, it can be shown that the Salema stock was highly influenced by overfishing.Keywords: biology, sarpa salpa, Gökceada, meadows
Procedia PDF Downloads 80594 Transformable Lightweight Structures for Short-term Stay
Authors: Anna Daskalaki, Andreas Ashikalis
Abstract:
This is a conceptual project that suggests an alternative type of summer camp in the forest of Rouvas in the island of Crete. Taking into account some feasts that are organised by the locals or mountaineering clubs near the church of St. John, we created a network of lightweight timber structures that serve the needs of the visitor. These structures are transformable and satisfy the need for rest, food, and sleep – this means a seat, a table and a tent are embodied in each structure. These structures blend in with the environment as they are being installed according to the following parameters: (a) the local relief, (b) the clusters of trees, and (c) the existing paths. Each timber structure could be considered as a module that could be totally independent or part of a bigger construction. The design showcases the advantages of a timber structure as it can be quite adaptive to the needs of the project, but also it is a sustainable and environmentally friendly material that can be recycled. Finally, it is important to note that the basic goal of this project is the minimum alteration of the natural environment.Keywords: lightweight structures, timber, transformable, tent
Procedia PDF Downloads 169593 Microplastic Accumulation in Native and Invasive Sea Urchin Populations on Lipsi Island (Aegean Sea)
Authors: Ella Zahra
Abstract:
Sea urchins are keystone species in many global benthic ecosystems. The concentration of microplastics (MPs) in sea urchin organs was quantified in 120 individuals of 2 different species and from 4 sites across the Greek island Lipsi, with special interest in the differences between the native Arbacia lixula and the invasive Diadema setosum. Over 93% of MPs observed in both species were fibrous. MP abundance was found to correlate with exposure to open sea and harsh prevailing winds, irrespective of proximity to urban activities. The MP abundance in the invasive species was not found to be significantly dependent on site. Interestingly, the smaller native species contained significantly larger sized MPs than the invasive, possibly as a result of a greater feeding rate in A. lixula individuals. Sexually immature urchins may also have a higher feeding rate, giving rise to the negative correlation between gonad index and MPs per individual. The size of MPs ranged from 10µm to 24210µm, heavily skewed towards smaller particles. Few differences in colour were noted between the species and sites. MPs were detected in 100% of the samples with abundance ranging from 19.27 ± 6.77 to 26.83 ± 8.15 items per individual, or 3.55 ± 3.73 to 7.34 ± 10.51 items per gram of wet organ weight. This high value could lead to health risks in East Asia and the Mediterranean, where sea urchin is widely consumed, due to toxins adsorbed to the MPs.Keywords: microplastics, plastic pollution, invertebrate ecology, invasive marine species
Procedia PDF Downloads 106592 Clean Technology: Hype or Need to Have
Authors: Dirk V. H. K. Franco
Abstract:
For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.Keywords: clean technologies, catastrophic, climate, possible solutions
Procedia PDF Downloads 499591 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 210590 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti
Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms
Abstract:
Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing
Procedia PDF Downloads 125589 Production of Hydrogen and Carbon Monoxide Fuel Gas From Pine Needles
Authors: Despina Vamvuka, Despina Pentari
Abstract:
Forestry wastes are readily available in large quantities around the world. Based on European Green Deal for the deployment of renewable and decarbonized energy by 2050, as well as global energy crisis, energy recovery from such wastes reducing greenhouse gas emissions is very attractive. Gasification has superior environmental performance to combustion, producing a clean fuel gas utilized in internal combustion engines, gas turbines, solid oxide fuel cells, or for synthesis of liquid bio-fuels and value-added chemicals. In this work, pine needles, which are abundantly found in Mediterranean countries, were gasified by either steam or carbon dioxide via a two-step process to improve reactivity and eliminate tar, employing a fixed bed unit and a thermal analysis system. Solid, liquid and gaseous products from the whole process were characterized and their energy potential was determined. Thermal behaviour, reactivity, conversion and energy recovery were examined. The gasification process took place above 650°C. At 950°C conversion and energy recovery were 77% dry and 2 under a flow of steam and 85% dry and 2.9 under a flow of carbon dioxide, respectively. Organic matter was almost completely converted to syngas, the yield of which varied between 89% and 99%. The higher heating values of biochar, bio-oil and pyrolysis gas were 27.8 MJ/kg, 33.5 MJ/kg and 13.6 MJ/m3. Upon steam or carbon dioxide gasification, the higher heating value of syngas produced was 11.5 MJ/m3 and 12.7 MJ/m3, respectively.Keywords: gasification, biomass, steam, carbon dioxide
Procedia PDF Downloads 98588 Relaxant Effects of Sideritis raeseri Extract on the Uterus of Rabbits
Authors: Berat Krasniqi, Shpëtim Thaçi, Miribane Dërmaku-Sopjani, Sokol Abazi, Mentor Sopjani
Abstract:
The Mediterranean native plant, Sideritis raeseri Boiss. & Heldr. (Lamiaceae), also known as "mountain tea," has a long history of use in traditional medicine. The effects of an ethanol extract of Sideritis raeseri (SR) on uterus smooth muscle activity are evaluated in this study, and the underlying mechanism is identified. S. raeseri extract (SRE) was made from air-dried components of the SR shoot system. At 37°C, the SRE (0.5-2 mg/mL) was tested on isolated rabbit uterus rings that were suspended in a Krebs solution-filled organ bath and bubbled with a mixture of 95% O₂ and 5% CO₂. The SRE alone relaxed the muscle contraction in a concentration-dependent manner in uterine rings in in vitro tests. SRE also decreased Ca²⁺-induced contractions in the uterus by a large amount when the uterus was depolarized with carbachol (CCh, 1µM), K⁺ (80 mM), or contracted by oxytocin (5 nM). The potential involvement of NO-dependent or independent cGMP mechanisms in the uterine actions of SR was investigated. For this purpose, L-NAME (NO synthase inhibitor, 100 M) or bradykinin (NO synthase stimulator, 100 nM), or indomethacin (cyclooxygenase inhibitor, 10µM) decreased the impact of SRE. These results suggest that NO-dependent signaling is involved in SRE's mediated uterine relaxant effect. Data suggests that SRE could be a powerful tocolytic agent that reduces uterine activity and could be used to treat a number of uterine conditions.Keywords: Sideritis raeseri, uterus, alternative medicine, intracellular mechanisms
Procedia PDF Downloads 116587 Diversity and Use of Agroforestry Yards of Family Farmers of Ponte Alta – Gama, Federal District, Brazil
Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Martins
Abstract:
The home gardens areas are production systems, which are located near the homes and are quite common in the tropics. They consist of agricultural and forest species and may also involve the raising of small animals to produce food for subsistence as well as income generation, with a special focus on the conservation of biodiversity. Home gardens are diverse Agroforestry systems with multiple uses, among many, food security, income aid, traditional medicine. The work was carried out on rural properties of the family farmers of the Ponte Alta Rural Nucleus, Gama Administrative Region, in the city of Brasília, Federal District- Brazil. The present research is characterized methodologically as a quantitative, exploratory and descriptive nature. The instruments used in this research were: bibliographic survey and semi-structured questionnaire. The data collection was performed through the application of a semi-structured questionnaire, containing questions that referred to the perception and behavior of the interviewed producer on the subject under analysis. In each question, the respondent explained his knowledge about sustainability, agroecological practices, environmental legislation, conservation methods, forest and medicinal species, ago social and socioeconomic characteristics, use and purpose of agroforestry and technical assistance. The sample represented 55.62% of the universe of the study. We interviewed 99 people aged 18-83 years, with a mean age of 49 years. The low level of education, coupled with the lack of training and guidance for small family farmers in the Ponte Alta Rural Nucleus, is one of the limitations to the development of practices oriented towards sustainable and agroecological agriculture in the nucleus. It is observed that 50.5% of the interviewed people landed with agroforestry yards less than 20 years ago, and only 16.17% of them are older than 35 years. In identifying agriculture as the main activity of most of the rural properties studied, attention is drawn to the cultivation of medicinal plants, fruits and crops as the most extracted products. However, it is verified that the crops in the backyards have the exclusive purpose of family consumption, which could be complemented with the marketing of the surplus, as well as with the aggregation of value to the cultivated products. Initiatives such as this may contribute to the increase in family income and to the motivation and value of the crop in agroecological gardens. We conclude that home gardens of Ponte Alta are highly diverse thus contributing to local biodiversity conservation of are managed by women to ensure food security and allows income generation. The tradition of existing knowledge on the use and management of the diversity of resources used in agroforestry yards is of paramount importance for the development of sustainable alternative practices.Keywords: agriculture, agroforestry system, rural development, sustainability
Procedia PDF Downloads 141586 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 91585 Phytochemical Study and Antimicrobial Activity of Nigella sativa L. (Renunculaceae) in Algeria
Authors: L. Bendifallah, F. Acheuk, M. Djouabi, M. Oukili, R. Ghezraoui, W. Lakhdari, R. Allouane
Abstract:
Nigella sativa L. (Renunculaceae) native to the Mediterranean region and Western Asia, Black cumin is grown to India, through Sudan and Ethiopia. It is widely cultivated in Egypt, the Middle East, Saudi Arabia, Turkey, Sudan, Afghanistan and Europe. It is among the most important medicinal plants in Algeria that is known for its antifungal and antimicrobial properties. Despite its plethora of uses for treating various diseases, it has garnered very little scientific interest so far, particularly in Algeria. For this study, the seeds of Algerian Nigella sativa L cultivated in the area of Magra (M’sila) in northern Algeria, were collected in summer. In such a propitious context, the aim of this study was to enhance Nigella sativa as a medicinal herb. The phytochemical screening methods are used. For their antimicrobial activity, extracts of tannin and polyphenols were screened against four pathogenic bacterial strains and two pathogenic yeast strains. The phytochemical analysis results showed a remarkable combination of chemical components including a high content in tannins, in flavonoïds, and in alkaloids. The tannins and the polyphenols have strong antimicrobial activity against all the species. The maximum zone of inhibition was noted for polyphenol and tannin extracts against Escerichia coli (14 mm, 12.33 mm) and an antifungic activity against Aspergillus niger (11.66 mm, 9 mm). These results indicate to some benefits of Nigella sativa seeds which can use to treatment the microbial infection.Keywords: Nigella sativa, phytochemistry, antimicrobial activity, Algeria
Procedia PDF Downloads 324