Search results for: generation of acoustic harmonics
3234 Act East Policy and the Politics of the Non-Recognized Thai-Indian Diasporic Community in Thailand
Authors: Ruchi Agarwal
Abstract:
The Indian diaspora in Thailand is as ethnically diverse as any other country. Although a relatively small community, the Indian diaspora has long established its roots, some with their fifth generation now living in Thailand. The community has a solid social and economic standing recognized by the host country but lacks connections with its ethnic roots in the home country. The biggest dilemma faced by the younger generation of the Indian diasporic community is the identity crisis. Regardless of being born and brought up in Thailand and possessing Thai citizenship, they do not get recognition as Thais by their Thai counterparts. However, with the Act Asia Policy of the Indian government, there has been an increase in social and political activities organized by old and new Indian associations, bringing new hopes of recognizing the Thai-Indian diasporic community.Keywords: Indian, Thailand, diaspora, Act East Policy, Thai
Procedia PDF Downloads 1523233 Research on Fuzzy Test Framework Based on Concolic Execution
Authors: Xiong Xie, Yuhang Chen
Abstract:
Vulnerability discovery technology is a significant field of the current. In this paper, a fuzzy framework based on concolic execution has been proposed. Fuzzy test and symbolic execution are widely used in the field of vulnerability discovery technology. But each of them has its own advantages and disadvantages. During the path generation stage, path traversal algorithm based on generation is used to get more accurate path. During the constraint solving stage, dynamic concolic execution is used to avoid the path explosion. If there is external call, the concolic based on function summary is used. Experiments show that the framework can effectively improve the ability of triggering vulnerabilities and code coverage.Keywords: concolic execution, constraint solving, fuzzy test, vulnerability discovery
Procedia PDF Downloads 2283232 Formation of Microcapsules in Microchannel through Droplet Merging
Authors: Md. Danish Eqbal, Venkat Gundabala
Abstract:
Microparticles and microcapsules are basically used as a carrier for cells, tissues, drugs, and chemicals. Due to its biocompatibility, non-toxicity and biodegradability, alginate based microparticles have numerous applications in drug delivery, tissue engineering, organ repair and transplantation, etc. The production of uniform monodispersed microparticles was a challenge for the past few decades. However, emergence of microfluidics has provided controlled methods for the generation of the uniform monodispersed microparticles. In this work, we present a successful method for the generation of both microparticles and microcapsules (single and double core) using merging approach of two droplets, completely inside the microfluidic device. We have fabricated hybrid glass- PDMS (polydimethylsiloxane) based microfluidic device which has coflow geometry as well as the T junction channel. Coflow is used to generate the single as well as double oil-alginate emulsion in oil and T junction helps to form the calcium chloride droplets in oil. The basic idea is to match the frequency of the alginate droplets and calcium chloride droplets perfectly for controlled generation. Using the merging of droplets technique, we have successfully generated the microparticles and the microcapsules having single core as well as double and multiple cores. The cores in the microcapsules are very stable, well separated from each other and very intact as seen through cross-sectional confocal images. The size and the number of the cores along with the thickness of the shell can be easily controlled by controlling the flowrate of the liquids.Keywords: double-core, droplets, microcapsules, microparticles
Procedia PDF Downloads 2543231 A Novel Microcontroller Based Islanding Protection of Distributed Generation Systems
Authors: Saeid Jalilzadeh, Majid Pakdel
Abstract:
The customer demand for better power quality and higher reliability has forced the power industry to use distributed generations (DGs) such as wind power and photo voltaic arrays. Islanding is a phenomenon occurs when a power grid becomes electrically isolated from the power system and the distribution system is energized by distributed generators. It is necessary to disconnect all distributed generators immediately after islanding occurrence. Therefore a DG system should have the capability to detect islanding phenomena. In this paper, a novel micro controller based relay for anti-islanding protection of a typical DG system is proposed. The simulation results using Proteus software verify the proper operation and effectiveness of the proposed protective relay.Keywords: islanding, distributed generation (DG), protective relay, micro controller, proteus software
Procedia PDF Downloads 5833230 Wireless Gyroscopes for Highly Dynamic Objects
Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev
Abstract:
Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing
Procedia PDF Downloads 3653229 Is Fashion Consumption Ageless? A Study of Differences in Fashion Consumption Behavior of Generation X, Y, and Z Females
Authors: Vaishali Joshi, Pallav Joshi
Abstract:
The main objective of this study is to examine the fashion consumption behavior of females with respect to their age group. Differences were studied in the pre-purchase, purchase and post-purchase behavior of females belonging to three age cohorts such as Generation X, Generation Y, and Generation Z. Quantitative approach was used to conduct this research. Data was collected through structured questionnaire. The questionnaire consisted of three sections. Section one included a question of the source of information of purchasing fashion apparels which measure the pre-purchase behavior. Section two measures purchase behavior which included two questions: i. motivations for purchasing fashion apparel and ii. important attributes considered for purchasing fashion apparel. The last section included a question regarding disposal of fashion apparel which measures the post-purchase behavior. Hundred females were selected as the respondents for this study through convenience sampling in the fashion streets. They were categorized into three age groups and then the results were analyzed. Four hypotheses were developed after reviewing the existing literature. Regression analysis was conducted for testing the hypothesis. Hypothesis one was accepted which stated that ‘social influence’ as a source of information for purchasing fashion apparels decreases with age. Hypothesis two was accepted which suggested that motivation of ‘Attention seeking’ for purchasing fashion apparel decreases with age. Hypothesis three and four also accepted which suggested that the importance of ‘Quality’ and ‘Price’ increases with age but hypothesis five was rejected which suggested that the importance of ‘Fit’ increases with age and last but not the least hypothesis six was accepted which suggested that the ‘duration’ of using fashion apparel increases with age. Limitation of the study deals with the sample of only female respondents. Implication can be made from this research in the field of Fashion apparel industry with respect to consumer segmentation and better marketing approaches can be implemented by the marketers form this study. Further research can be concluded by including male respondents also.Keywords: fashion, consumption behavior, age cohorts, motivation
Procedia PDF Downloads 2673228 DNA Methylation 6mA and Histone Methylation Involved in Multi-/Trans-Generational Reproductive Effects in Caenorhabditis elegans Induced by Atrazine
Authors: Jiechen Yin, Xiang Hong, Ran Liu
Abstract:
Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied to our best knowledge. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. L1 larvae were exposed to different concentrations (0.0004–40 mg/L) of ATR for 48 h. Successive generations (F1 to F5) were fed without ATR and consecutive exposure. The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of the gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0–F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, reproductive toxicity not development toxicity was transmitted to several generations (F1–F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes related to DNA methylation 6mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6mA modifiers may establish these epigenetic marks in progeny.Keywords: ATR, Caenorhabditis elegans, multi-/trans-generation, reproductive toxicity
Procedia PDF Downloads 713227 Low Density Lipoprotein: The Culprit in the Development of Obesity
Authors: Ojiegbe Ikenna Nathan
Abstract:
Obesity is a medical condition in which excess body fat has accumulated to the extent that it leads to reduced life expectancy and or increased health problems. Obesity as a worldwide problem is seen clustered in the families and it moves from generation to generation. It causes some disabilities, mortality and morbidity if left unattended to. The predisposing factors to obesity are either genetic or environment in origin. Nevertheless, the main predisposing factor to obesity is the excessive consumption of food rich in low-density lipoprotein (LDL) such as organ meats, saturated fats etc. This low-density lipoprotein causes an increase in adipose tissue and complicates to obesity. There are varieties of obesity which one needs to take appropriate measures to avoid; such as android, gynoid and morbid obesity. Nonetheless, studies have shown that there is hope for the obese individuals, despite the cause, type and degree of their obesity. This is through the use of the different available treatment measures which increase in physical activities, caloric restrictions, drug therapy and surgical intervention.Keywords: low-density, lipoprotein, culprit, obesity
Procedia PDF Downloads 4003226 The LNG Paradox: The Role of Gas in the Energy Transition
Authors: Ira Joseph
Abstract:
The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables
Procedia PDF Downloads 613225 Heat Distribution Simulation on Transformer Using FEMM Software
Authors: N. K. Mohd Affendi, T. A. R. Tuan Abdullah, S. A. Syed Mustaffa
Abstract:
In power industry transformer is an important component and most of us familiar by the functioning principle of a transformer electrically. There are many losses occur during the operation of a transformer that causes heat generation. This heat, if not dissipated properly will reduce the lifetime and effectiveness of the transformer. Transformer cooling helps in maintaining the temperature rise of various paths. This paper proposed to minimize the ambient temperature of the transformer room in order to lower down the temperature of the transformer. A simulation has been made using finite element methods programs called FEMM (Finite Elements Method Magnetics) to create a virtual model based on actual measurement of a transformer. The generalization of the two-dimensional (2D) FEMM results proves that by minimizing the ambient temperature, the heat of the transformer is decreased. The modeling process and of the transformer heat flow has been presented.Keywords: heat generation, temperature rise, ambient temperature, FEMM
Procedia PDF Downloads 4003224 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters
Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud
Abstract:
Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.Keywords: energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation
Procedia PDF Downloads 4453223 Adaptive Power Control Topology Based Photovoltaic-Battery Microgrid System
Authors: Rajat Raj, Rohini S. Hallikar
Abstract:
The ever-increasing integration of renewable energy sources in the power grid necessitates the development of efficient and reliable microgrid systems. Photovoltaic (PV) systems coupled with energy storage technologies, such as batteries, offer promising solutions for sustainable and resilient power generation. This paper proposes an adaptive power control topology for a PV-battery microgrid system, aiming to optimize the utilization of available solar energy and enhance the overall system performance. In order to provide a smooth transition between the OFF-GRID and ON-GRID modes of operation with proportionate power sharing, a self-adaptive control method for a microgrid is proposed. Three different modes of operation are discussed in this paper, i.e., GRID connected, the transition between Grid-connected and Islanded State, and changing the irradiance of PVs and doing the transitioning. The simulation results show total harmonic distortion to be 0.08, 1.43 and 2.17 for distribution generation-1 and 4.22,3.92 and 2.10 for distribution generation-2 in the three modes, respectively which helps to maintain good power quality. The simulation results demonstrate the superiority of the adaptive power control topology in terms of maximizing renewable energy utilization, improving system stability and ensuring a seamless transition between grid-connected and islanded modes.Keywords: islanded modes, microgrids, photo voltaic, total harmonic distortion
Procedia PDF Downloads 1713222 Study and Design of Solar Inverter System
Authors: Khaled A. Madi, Abdulalhakim O. Naji, Hassouna A. Aalaoh, Elmahdi Eldeeb
Abstract:
Solar energy is one of the cleanest energy sources with no environmental impact. Due to rapid increase in industrial as well as domestic needs, solar energy becomes a good candidate for safe and easy to handle energy source, especially after it becomes available due to reduction of manufacturing price. The main part of the solar inverter system is the inverter where the DC is inverted to AC, where we try to minimize the loss of power to the minimum possible level by the use of microcontroller. In this work, a deep investigation is made experimentally as well as theoretically for a microcontroller based variable frequency power inverter. The microcontroller will provide the variable frequency Pulse Width Modulation (PWM) signal that will control the switching of the gate of the Insulating Gate Bipolar Transistor (IGBT) with less harmonics at the output of power inverter which can be fed to the public grid at high quality. The proposed work for single phase as well as three phases is also simulated using Matlab/Simulink where we found a good agreement between the simulated and the practical results, even though the experimental work were done in the laboratory of the academy.Keywords: solar, inverter, PV, solar inverter system
Procedia PDF Downloads 4623221 Sediment Transport Monitoring in the Port of Veracruz Expansion Project
Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando
Abstract:
The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,
Procedia PDF Downloads 2273220 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review
Authors: Shubhangi R. Deshmukh, Anupam B. Soni
Abstract:
Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment
Procedia PDF Downloads 1823219 Zero Net Energy Communities and the Impacts to the Grid
Authors: Heidi von Korff
Abstract:
The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.Keywords: zero net energy, distributed generation, renewable energy, zero net energy community
Procedia PDF Downloads 3073218 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3893217 Acoustic Characteristics of Ultrasonic Vocalizations in Rat Pups Prenatally Exposed to Ethanol
Authors: Mohd. Ashik Shahrier, Hiromi Wada
Abstract:
Prenatal ethanol exposure has potential to induce difficulties in the social behavior of rats and can alter pup-dam communication suggesting that deficits in pups could result in altered dam behavior, which in turn could result in more aberrant behavior in the pup. Ultrasonic vocalization (USV) is a sensitive tool for investigating social behavior between rat pups and their dam. Rat pups produce USVs on separation from their dam. This signals the dam to locate her pups and retrieve them back to the nest. In this study, it was predicted that prenatal ethanol exposure cause alterations on the acoustic characteristics of USVs in rat pups. Thirteen pregnant rats were purchased and randomly assigned into three groups: high-ethanol (n = 4), low-ethanol (n = 5), and control (n = 4) groups. Laboratory ethanol (purity = 99.5%) was dissolved in tap water and administered to the high- and low-ethanol groups as drinking water from gestational days (GD) 8-20. Ethanol-containing water was administered to the animals in three stages by gradually increasing the concentration between GDs 8–20. From GDs 8–10, 10% and 5%, from GDs 11–13, 20% and 10%, and from GDs 14–20, 30% and 15% ethanol-containing water (v/v) was administered to the high- and low-ethanol groups, respectively. Tap water without ethanol was given to the control group throughout the experiment. The day of birth of the pups was designated as postnatal day (PND) 0. On PND 4, each litter was culled to four male and four female pups. For the present study, two male and two female pups were randomly sampled from each litter as subjects. Thus, eight male and eight female pups from the high-ethanol and control groups and another 10 male and 10 female pups from the low-ethanol group, were sampled. An ultrasonic microphone and the Sonotrack system version 2.4.0 (Metris, Hoofddorp, The Netherlands) were used to record and analyze USVs of the pups. On postnatal days 4, 8, 12 and 16, the resultant pups were individually isolated from their dams and littermates, and USVs were recorded for 5 min in a sound-proof box. Pups in the high-ethanol group produced greater number of USVs compared with that in both low-ethanol and control groups on PND 12. Rat pups in the high-ethanol group also produced higher mean, minimum, and maximum fundamental frequencies of USVs compared with that in both low-ethanol and control groups. Male pups in the high-ethanol group had higher USV amplitudes than in those in low-ethanol and control groups on PND 12. These results suggest that pups in the high-ethanol group relatively experienced more negative emotionality due to the ethanol-induced neuronal activation in the core limbic system and tegmental structures and accordingly, produced altered USVs as distress calls.Keywords: emotionality, ethanol, maternal separation, ultrasonic vocalization
Procedia PDF Downloads 1313216 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators
Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo
Abstract:
In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.Keywords: smart grids, wind turbine, modeling, renewable energy, robust control
Procedia PDF Downloads 2323215 The Inception: A University-Wide Research on Alcohol Consumption
Authors: Robi Lou Logarta, Meliz Ann Marilag, Kristyl Lee Nisnisan, Felipe Lula Jr.
Abstract:
Nowadays, alcohol is consumed widely around the globe for plenty of reasons. College years are the time that the students really decide if whether they will or will not engage into alcohol, although alcohol drinking begins before students arrive at college. The reasons on why college students consume alcohol vary in many categories. The norms on alcohol drinking are addiction, emotional pain reliever, popularity purposes, socialization, and a medium of euphoria for most students; college students in particular are most likely to feel this need. After tons of requirements to be complied and courses to be reviewed, they felt a need for celebration and relaxation which ends up in drinking with college mates and a few old friends. A lot of reasons consist the consumption of alcohol and this research determined the reasons behind the students’ onset for alcohol consumption; the main reason for such action and the experiences they encountered after in-take, furthermore, the correlation of alcohol drinking to the average allowance of the involved participants; Mindanao State University-Iligan Institute of Technology Students whether it affects their spending towards alcohol or not. This study assumes that alcohol drinking for MSU-IIT students’ is done to relieve emotional pain caused by flunking in particular subjects as well as dealing with romance, as part of the student body, these acts are noticeable enough which made this hypothesis be formulated. Selected MSU-IIT students were asked about their opinions regarding reasons of alcohol consumption. There were 100 respondents consisting of first year to fifth-year students aging 17-23 years old. Choices were given to the students to mark their most favorable reason for drinking that is adult influence, curiosity, family/personal problems, peer pressure, stress. Using the bar and pie chart illustrations, the collected data was then analyzed and among the given choices, the result has invalidated the hypothesis. The outcome shows that curiosity is the topmost reason why students start to drink and not due to emotional pain. With this, another hypothesis is formulated stating that millennial is a curious generation; this generation has changed the norm of drinking. One of the characteristics of the Y generation is being adventurous which correlates to how they get curious about things and the same goes for alcohol consumption, compared to the latter, this generation can be considered early drinkers in this manner. Therefore, it is concluded that MSU-IIT students which are part of the generation Y are adventurous enough to try unfamiliar beverages to satisfy their curious minds.Keywords: adult influence, curiosity, family/personal problems, peer pressure, stress
Procedia PDF Downloads 2613214 Studies on the Existing Status of MSW Management in Agartala City and Recommendation for Improvement
Authors: Subhro Sarkar, Umesh Mishra
Abstract:
Agartala Municipal Council (AMC) is the municipal body which regulates and governs the Agartala city. MSW management may be proclaimed as a tool which rests on the principles of public health, economy, engineering and other aesthetic or environmental factors by dealing with the controlled generation, collection, transport, processing and disposal of MSW. Around 220-250 MT of solid waste per day is collected by AMC out of which 12-14 MT is plastic and is disposed of in Devendra Chandra Nagar dumping ground (33 acres), nearly 12-15 km from the city. A survey was performed to list down the prevailing operations conducted by the AMC which includes road sweeping, garbage lifting, carcass removal, biomedical waste collection, dumping, and incineration. Different types of vehicles are engaged to carry out these operations. Door to door collection of garbage is done from the houses with the help of 220 tricycles issued by 53 NGOs. The location of the dustbin containers were earmarked which consisted of 4.5 cum, 0.6 cum containers and 0.1 cum containers, placed at various locations within the city. The total household waste was categorized as organic, recyclable and other wastes. It was found that East Pratapgarh ward produced 99.3% organic waste out of the total MSW generated in that ward which is maximum among all the wards. A comparison of the waste generation versus the family size has been made. A questionnaire for the survey of MSW from household and market place was prepared. The average waste generated (in kg) per person per day was found out for each of the wards. It has been noted that East Jogendranagar ward had a maximum per person per day waste generation of 0.493 kg/day.In view of the studies made, it has been found that AMC has failed to implement MSWM in an effective way because of the unavailability of suitable facilities for treatment and disposal of the large amount of MSW. It has also been noted that AMC is not following the standard procedures of handling MSW. Transportation system has also been found less effective leading to waste of time, money and manpower.Keywords: MSW, waste generation, solid waste disposal, management
Procedia PDF Downloads 3173213 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 1483212 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities
Procedia PDF Downloads 1563211 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 2483210 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply
Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong
Abstract:
Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC
Procedia PDF Downloads 5033209 Solar and Wind Energy Potential Study of Lower Sindh, Pakistan for Power Generation
Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui
Abstract:
Global and diffuse solar radiation on horizontal surface of Lower Sindh, namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to assess the feasibility of solar energy utilization for power generation in Sindh province. The results obtained show a large variation in the direct and diffuse component of solar radiation in summer and winter months in Lower Sindh (50% direct and 50% diffuse for Karachi and Hyderabad). In Nawabshah area, the contribution of diffuse solar radiation is low during the monsoon months, July and August. The KT value of Nawabshah indicates a clear sky throughout almost the entire year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even during the monsoon months. The estimated values indicate that Nawabshah has high solar potential, whereas Karachi and Hyderabad have low solar potential. During the monsoon months the Lower part of Sindh can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 m/sec to 6.9 m/sec. A wind corridor exists near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in the monsoon months of July and August, wind speeds are higher in the Lower region of Sindh.Keywords: hybrid power system, lower Sindh, power generation, solar and wind energy potential
Procedia PDF Downloads 2523208 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.Keywords: agro-industrial waste, biomass, briquettes, combustion
Procedia PDF Downloads 2063207 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2023206 Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road
Authors: Surachai Ampawasuvan, Supornchai Utainarumol
Abstract:
Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment.Keywords: peak rate, trips generation, fuel station, arterial road
Procedia PDF Downloads 4083205 Thermodynamic Analysis of Zeotropic Mixture Used in Low Temperature Solar Rankine Cycle with Ejector for Power Generation
Authors: Basma Hamdi, Lakdar Kairouani, Ezzedine Nahdi
Abstract:
The objective of this work is to present a thermodynamic analysis of low temperature solar Rankine cycle with ejector for power generation using zeotropic mixtures. Based on theoretical calculation, effects of zeotropic mixtures compositions on the performance of solar Rankine cycle with ejector are discussed and compared with corresponding pure fluids. Variations of net power output, thermal efficiency were calculating with changing evaporation temperature. The ejector coefficient had analyzed as independent variable. The result show that (R245fa/R152a) has a higher thermal efficiency than using pure fluids.Keywords: zeotropic mixture, thermodynamic analysis, ejector, low-temperature solar rankine cycle
Procedia PDF Downloads 281