Search results for: fuzzy numbers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1886

Search results for: fuzzy numbers

1196 Bilingualism: A Case Study of Assamese and Bodo Classifiers

Authors: Samhita Bharadwaj

Abstract:

This is an empirical study of classifiers in Assamese and Bodo, two genetically unrelated languages of India. The objective of the paper is to address the language contact between Assamese and Bodo as reflected in classifiers. The data has been collected through fieldwork in Bodo recording narratives and folk tales and eliciting specific data from the speakers. The data for Assamese is self-produced as native speaker of the language. Assamese is the easternmost New-Indo-Aryan (henceforth NIA) language mainly spoken in the Brahmaputra valley of Assam and some other north-eastern states of India. It is the lingua franca of Assam and is creolised in the neighbouring state of Nagaland. Bodo, on the other hand, is a Tibeto-Burman (henceforth TB) language of the Bodo-Garo group. It has the highest number of speakers among the TB languages of Assam. However, compared to Assamese, it is still a lesser documented language and due to the prestige of Assamese, all the Bodo speakers are fluent bi-lingual in Assamese, though the opposite isn’t the case. With this context, classifiers, a characteristic phenomenon of TB languages, but not so much of NIA languages, presents an interesting case study on language contact caused by bilingualism. Assamese, as a result of its language contact with the TB languages which are rich in classifiers; has developed the richest classifier system among the IA languages in India. Yet, as a part of rampant borrowing of Assamese words and patterns into Bodo; Bodo is seen to borrow even Assamese classifiers into its system. This paper analyses the borrowed classifiers of Bodo and finds the route of this borrowing phenomenon in the number system of the languages. As the Bodo speakers start replacing the higher numbers from five with Assamese ones, they also choose the Assamese classifiers to attach to these numbers. Thus, the partial loss of number in Bodo as a result of language contact and bilingualism in Assamese is found to be the reason behind the borrowing of classifiers in Bodo. The significance of the study lies in exploring an interesting aspect of language contact in Assam. It is hoped that this will attract further research on bilingualism and classifiers in Assam.

Keywords: Assamese, bi-lingual, Bodo, borrowing, classifier, language contact

Procedia PDF Downloads 223
1195 First Breeding Populations of The Glossy Ibis (Plegadis falcinellus) in a Peri-Urban Wetland Areas (Marsh of Boussedra; North-East of Algeria)

Authors: Boudraa Wahiba, Chettibi Farah, Lahlah Naouel, Bouslama Zihad, Houhamdi Moussa

Abstract:

The marsh of Boussedra (55 ha) is a peri-urban wetland, located in the city of El - Bouni, wilaya of Annaba (North-east of the Algeria). This city hosts every year, 53 species of waterfowl, belonging to 15 different families, of which the most represented family is the Anatidae with almost 12 species. The Glossy ibis (Plegadis falcinellus) is the only representative of the family of the threskiornithidae. After a total absence for almost a decade, this species has established in North Africa and started breeding since 2000. The Glossy ibis (plegadis falcinellus), breeds with low numbers in distant areas. At the wetland of Boussedra, the population of this species was observed with numbers approaching 160 individuals. During the breeding season of 2014 (between march and july), this species bred in mixed heronries (Cattle egret Bubulcus ibis , Little egret Egretta garzetta, The black-crowned night heron Nycticorax nycticorax , Squacco heron Ardeola ralloides and Little bittern Ixobrychus minutus), where a total of 120 nests were counted. This represents the largest colony observed in North Africa. The reproduction of the studied species took place on a Tamaricaceae (Tamarix gallica), where more than 2000 nest were constructed. During this breeding season, we have monitored the colony's installation and evolution and tried to characterize the reproduction, at the urban water plan of Boussedra (measurements of nests, measurements of eggs and monitoring the growing rate and weight gaining of the chicks, since their birth until their flight).

Keywords: glossy ibis, reproduction, peri-urban wetland, mixed heronry, Boussedra, Algeria

Procedia PDF Downloads 330
1194 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers

Authors: Ayşegül Çabuk, Mine Işıksal

Abstract:

Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.

Keywords: reasoning, mathematics learning, middle grade students

Procedia PDF Downloads 423
1193 Multimodal Biometric Cryptography Based Authentication in Cloud Environment to Enhance Information Security

Authors: D. Pugazhenthi, B. Sree Vidya

Abstract:

Cloud computing is one of the emerging technologies that enables end users to use the services of cloud on ‘pay per usage’ strategy. This technology grows in a fast pace and so is its security threat. One among the various services provided by cloud is storage. In this service, security plays a vital factor for both authenticating legitimate users and protection of information. This paper brings in efficient ways of authenticating users as well as securing information on the cloud. Initial phase proposed in this paper deals with an authentication technique using multi-factor and multi-dimensional authentication system with multi-level security. Unique identification and slow intrusive formulates an advanced reliability on user-behaviour based biometrics than conventional means of password authentication. By biometric systems, the accounts are accessed only by a legitimate user and not by a nonentity. The biometric templates employed here do not include single trait but multiple, viz., iris and finger prints. The coordinating stage of the authentication system functions on Ensemble Support Vector Machine (SVM) and optimization by assembling weights of base SVMs for SVM ensemble after individual SVM of ensemble is trained by the Artificial Fish Swarm Algorithm (AFSA). Thus it helps in generating a user-specific secure cryptographic key of the multimodal biometric template by fusion process. Data security problem is averted and enhanced security architecture is proposed using encryption and decryption system with double key cryptography based on Fuzzy Neural Network (FNN) for data storing and retrieval in cloud computing . The proposing scheme aims to protect the records from hackers by arresting the breaking of cipher text to original text. This improves the authentication performance that the proposed double cryptographic key scheme is capable of providing better user authentication and better security which distinguish between the genuine and fake users. Thus, there are three important modules in this proposed work such as 1) Feature extraction, 2) Multimodal biometric template generation and 3) Cryptographic key generation. The extraction of the feature and texture properties from the respective fingerprint and iris images has been done initially. Finally, with the help of fuzzy neural network and symmetric cryptography algorithm, the technique of double key encryption technique has been developed. As the proposed approach is based on neural networks, it has the advantage of not being decrypted by the hacker even though the data were hacked already. The results prove that authentication process is optimal and stored information is secured.

Keywords: artificial fish swarm algorithm (AFSA), biometric authentication, decryption, encryption, fingerprint, fusion, fuzzy neural network (FNN), iris, multi-modal, support vector machine classification

Procedia PDF Downloads 259
1192 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 223
1191 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 31
1190 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India

Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma

Abstract:

The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.

Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut

Procedia PDF Downloads 125
1189 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template

Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou

Abstract:

The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.

Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation

Procedia PDF Downloads 540
1188 Exploring Socio-Economic Barriers of Green Entrepreneurship in Iran and Their Interactions Using Interpretive Structural Modeling

Authors: Younis Jabarzadeh, Rahim Sarvari, Negar Ahmadi Alghalandis

Abstract:

Entrepreneurship at both individual and organizational level is one of the most driving forces in economic development and leads to growth and competition, job generation and social development. Especially in developing countries, the role of entrepreneurship in economic and social prosperity is more emphasized. But the effect of global economic development on the environment is undeniable, especially in negative ways, and there is a need to rethink current business models and the way entrepreneurs act to introduce new businesses to address and embed environmental issues in order to achieve sustainable development. In this paper, green or sustainable entrepreneurship is addressed in Iran to identify challenges and barriers entrepreneurs in the economic and social sectors face in developing green business solutions. Sustainable or green entrepreneurship has been gaining interest among scholars in recent years and addressing its challenges and barriers need much more attention to fill the gap in the literature and facilitate the way those entrepreneurs are pursuing. This research comprised of two main phases: qualitative and quantitative. At qualitative phase, after a thorough literature review, fuzzy Delphi method is utilized to verify those challenges and barriers by gathering a panel of experts and surveying them. In this phase, several other contextually related factors were added to the list of identified barriers and challenges mentioned in the literature. Then, at the quantitative phase, Interpretive Structural Modeling is applied to construct a network of interactions among those barriers identified at the previous phase. Again, a panel of subject matter experts comprised of academic and industry experts was surveyed. The results of this study can be used by policymakers in both the public and industry sector, to introduce more systematic solutions to eliminate those barriers and help entrepreneurs overcome challenges of sustainable entrepreneurship. It also contributes to the literature as the first research in this type which deals with the barriers of sustainable entrepreneurship and explores their interaction.

Keywords: green entrepreneurship, barriers, fuzzy Delphi method, interpretive structural modeling

Procedia PDF Downloads 166
1187 A Study on the Influence of Salicylic Acid on Sub-Mergence Stress Recovery of Selected Rice Cultivars Grown in Kebbi State Northwest Nigeria

Authors: Ja'afar Umar, Salisu Naziru

Abstract:

Submergence stress in plants refers to the physiological and biochemical challenges that occur when plants are partially or fully submerged in water. This type of stress primarily affects plants in flood-prone areas or regions with heavy rainfall, where oxygen availability and other essential resources are limited. Salicylic acid (SA) is an important plant hormone involved in various physiological processes and responses to environmental stress, particularly in plant defense mechanisms against pathogens. Its role as a signaling molecule in plants is crucial for activating defense pathways, regulating growth, and managing responses to biotic (living) and abiotic (non-living) stresses. The study involved using salicylic acid (SA) at concentrations of 1g/L, 2g/L, and 3g/L, dissolved in water, to treat rice plants during submergence stress. The experiment had four treatments: 0g/L (control), 1g/L, 2g/L, and 3g/L of SA, each with four replications. Rice seedlings were submerged in water for 11 days and then desubmerged for 7 days. During the experiment, all plants except the control received a foliar spray of SA solutions, while control plants were sprayed with distilled water. The results indicate a significant difference (P<0.05) between the control and salicylic acid (SA)-treated rice plants. SalicyJalic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls. Salicylic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls.

Keywords: submergence, stress, rice, salicylic

Procedia PDF Downloads 18
1186 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
1185 Changes in Temperature and Precipitation Extremes in Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas.

Keywords: climate extreme, temperature extreme, precipitation extreme, Northern Thailand

Procedia PDF Downloads 283
1184 Cysticidal Effect of Balanites Aegyptiaca and Moringa Oleifera on Bovine Cysticercosis with Monitoring to Dynamics of TNF-α

Authors: Omnia M.Kandil, Noha M. F. Hassan, Doaa Sedky, Hatem A. Shalaby, Heba M. Ashry, Nadia M. T. Abu El Ezz, Sahar M. Kandeel, Mohamed S. Abdelfattah Ying L, Ebtesam M. Al-Olayan

Abstract:

The cestode, Taenia saginata is a zoonotic tapeworm that it’s larval stage which known as Cysticercus bovis cause cyst formation in cattle’s organs such as heart, lung, liver, tongue, esophagus and diaphragm muscle, despite the infected cattle may show no clinical signs. In view of considerable interest in developing cysticidal drugs including those from medicinal plants, because of their consideration as eco-friendly and biodegradable as well as having multiple bioactive compounds that may translate to multiple mechanisms in killing the parasites. This study was achieved to evaluate, for the first time, the efficacy of methanolic extract of Balanites aegyptiaca fruits and Moringa oleifera seeds against metacestode larval stage of the cestode Taenia saginata in BALB/c mice compared with commonly used anthelmintic albendazole and assigning the level of tumor necrosis factor (TNF-α) to monitor immune and inflammatory response of experimentally infected animals. The results revealed a marked decrease in the numbers of cysticerci found in all treated mice groups and up to 88% reduction was achieved in the B. aegyptiaca treated group; higher than that was recorded in both M. oleifera (72.23%) and albendazole treated ones (80.56%). The cysts of the treated groups were smaller of the control one. Besides, the mean concentration of TNF-α following treatment with Balanites and Moringa extracts, was higher but not significant difference than that in the untreated infected control one (P<0.05), evidence for inflammation and cyst damage. It can be concluded that the in vivo efficacy of M. oleifera extract was comparable to a commercial anthelmintic, and the B. aegyptiaca extract was superior in the reduction of cysticerci numbers.

Keywords: Balanites aeggyptica, Moringa oleifera, cysticercosis, BALB/C mice

Procedia PDF Downloads 66
1183 Planning the Journey of Unifying Medical Record Numbers in Five Facilities and the Expected Challenges: Case Study in Saudi Arabia

Authors: N. Al Khashan, H. Al Shammari, W. Al Bahli

Abstract:

Patients who are eligible to receive treatment at the National Guard Health Affairs (NGHA), Saudi Arabia will typically have four medical record numbers (MRN), one in each of the geographical areas. More hospitals and primary healthcare facilities in other geographical areas will launch soon which means more MRNs. When patients own four MRNs, this will cause major drawbacks in patients’ quality of care such as creating new medical files in different regions for relocated patients and using referral system among regions. Consequently, the access to a patient’s medical record from other regions and the interoperability of health information between the four hospitals’ information system would be challenging. Thus, there is a need to unify medical records among these five facilities. As part of the effort to increase the quality of care, a new Hospital Information Systems (HIS) was implemented in all NGHA facilities by the end of 2016. NGHA’s plan is put to be aligned with the Saudi Arabian national transformation program 2020; whereby 70% citizens and residents of Saudi Arabia would have a unified medical record number that enables transactions between multiple Electronic Medical Records (EMRs) vendors. The aim of the study is to explore the plan, the challenges and barriers of unifying the 4 MRNs into one Enterprise Patient Identifier (EPI) in NGHA hospitals by December 2018. A descriptive study methodology was used. A journey map and a project plan are created to be followed by the project team to ensure a smooth implementation of the EPI. It includes the following: 1) Approved project charter, 2) Project management plan, 3) Change management plan, 4) Project milestone dates. Currently, the HIS is using the regional MRN. Therefore, the HIS and all integrated health care systems in all regions will need modification to move from MRN to EPI without interfering with patient care. For now, the NGHA have successfully implemented an EPI connected with the 4 MRNs that work in the back end in the systems’ database.

Keywords: consumer health, health informatics, hospital information system, universal medical record number

Procedia PDF Downloads 196
1182 Prevalence of Gestational Diabetes Mellitus in Western Australia from 2015 until 2020

Authors: Kumaressan Ragunathan, Arisudhan Anantharachagan

Abstract:

Gestational diabetes mellitus (GDM) is the subtype of diabetes that has been rapidly increasing in numbers in Australia. The annual percentage of GDM has increased more than 50 percent in the last decade. According to Diabetes Australia, more than five hundred thousand women in Australia will be diagnosed with GDM. Globally, the prevalence of GDM ranges from single-digit to more than 45%. The prevalence of GDM has increased significantly last five years after the introduction of new diagnostic criteria. Hence, we have decided to investigate the trend in GDM prevalence in a tertiary maternity unit at Western Australia and compare it to national prevalence. Data is derived from STORK Perinatal Database which has been used by Maternity services in Western Australia to populate information on pregnancy and labour. We have selected data from 2015 until 2020, which includes 17508 women. Among 17508 women, 3850 women were diagnosed with GDM. In 2015, we had a total of 2213 deliveries with 345 of them were complicated by GDM. GDM prevalence was 15.6% compared to the Australian national prevalence of 12%. In 2016, total deliveries increased to 2759 with 590 of were with GDM. GDM prevalence was 21.4% compared to the Australian national prevalence of 12%. In 2017, total deliveries further increased to 3049 with 675 with GDM. GDM prevalence was 22.1%, with an Australian national prevalence of 13%. In 2018, total deliveries continued to increase, with numbers reaching 3231 with 749 with GDM. GDM prevalence was 23.2%, with an Australian National prevalence of 14%. In 2019, total deliveries were 3110, with 712 complicated by GDM. GDM prevalence was 22.9%, with Australian national prevalence 14%. In 2020, total deliveries 3146 with 819 complicated by GDM. GDM prevalence increased to 26% and we were unable to compare this to national standard as national prevalence has not been released. Among 3890 women with GDM, 2482 (64%) of them required insulin. Apart from that, a total 1642(42%) from the GDM group were delivered via the Caesarean section. 2121 (55%) women with GDM required induction of labour. Overall, we demonstrated an increase in the prevalence of GDM in our unit from 2015 until 2020. Our prevalence is also higher compared to national prevalence. This could be contributed by the increasing number of obesity and in addition, our unit accepts referrals of women with a body mass index (BMI) of more than 40. Hence, further studies are required to look at other risk factors like ethnicity, socio-economic status, health literacy and age, which could contribute to this high prevalence.

Keywords: gestational diabetes mellitus, prevalence, Western Australia, Australia

Procedia PDF Downloads 163
1181 Acute and Chronic Effect of Biopesticide on Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Cultivation

Authors: U. Pangnakorn, S. Chuenchooklin

Abstract:

Acute and chronic effects of biopesticide from entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar and fermented organic substances from plants: (neem Azadirachta indica + citronella grass Cymbopogon nardus Rendle + bitter bush Chromolaena odorata L.) were tested on culantro (Eryngium foetidum L.). The biopesticide was investigated for infestation reduction of the major insect pest whitefly (Bemisia tabaci (Gennadius)). The experimental plots were located at a farm in Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (late November to May). Effectiveness of the treatment was evaluated in terms of acute and chronic effect. The populations of whitefly were observed and recorded every hour up to 3 hours with insect nets and yellow sticky traps after the treatments were applied for the acute effect. The results showed that bacteria ISR had the highest effectiveness for controlling whitefly infestation on culantro; the whitefly numbers on insect nets were 12.5, 10.0 and 7.5 after 1 hr, 2 hr, and 3 hr, respectively while the whitefly on yellow sticky traps showed 15.0, 10.0 and 10.0 after 1 hr, 2 hr, and 3 hr, respectively. For chronic effect, the whitefly was continuously collected and recorded at weekly intervals; the result showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect nets and sticky traps respectively, followed by treatment of nematode where the average whitefly was 9.87 and 11.43 on the insect nets and sticky traps, respectively. In addition, the minor insect pests were also observed and collected. The biopesticide influenced the reduction number of minor insect pests (red spider mites, beet armyworm, short-horned grasshopper, pygmy locusts, etc.) with only a few found on the culantro cultivation.

Keywords: whitefly (Bemisia tabaci Gennadius), culantro (Eryngium foetidum L.), acute and chronic effect, entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens)

Procedia PDF Downloads 281
1180 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
1179 EcoLife and Greed Index Measurement: An Alternative Tool to Promote Sustainable Communities and Eco-Justice

Authors: Louk Aourelien Andrianos, Edward Dommen, Athena Peralta

Abstract:

Greed, as epitomized by overconsumption of natural resources, is at the root of ecological destruction and unsustainability of modern societies. Presently economies rely on unrestricted structural greed which fuels unlimited economic growth, overconsumption, and individualistic competitive behavior. Structural greed undermines the life support system on earth and threatens ecological integrity, social justice and peace. The World Council of Churches (WCC) has developed a program on ecological and economic justice (EEJ) with the aim to promote an economy of life where the economy is embedded in society and society in ecology. This paper aims at analyzing and assessing the economy of life (EcoLife) by offering an empirical tool to measure and monitor the root causes and effects of unsustainability resulting from human greed on global, national, institutional and individual levels. This holistic approach is based on the integrity of ecology and economy in a society founded on justice. The paper will discuss critical questions such as ‘what is an economy of life’ and ‘how to measure and control it from the effect of greed’. A model called GLIMS, which stands for Greed Lines and Indices Measurement System is used to clarify the concept of greed and help measuring the economy of life index by fuzzy logic reasoning. The inputs of the model are from statistical indicators of natural resources consumption, financial realities, economic performance, social welfare and ethical and political facts. The outputs are concrete measures of three primary indices of ecological, economic and socio-political greed (ECOL-GI, ECON-GI, SOCI-GI) and one overall multidimensional economy of life index (EcoLife-I). EcoLife measurement aims to build awareness of an economy life and to address the effects of greed in systemic and structural aspects. It is a tool for ethical diagnosis and policy making.

Keywords: greed line, sustainability indicators, fuzzy logic, eco-justice, World Council of Churches (WCC)

Procedia PDF Downloads 321
1178 Experimental Verification of Similarity Criteria for Sound Absorption of Perforated Panels

Authors: Aleksandra Majchrzak, Katarzyna Baruch, Monika Sobolewska, Bartlomiej Chojnacki, Adam Pilch

Abstract:

Scaled modeling is very common in the areas of science such as aerodynamics or fluid mechanics, since defining characteristic numbers enables to determine relations between objects under test and their models. In acoustics, scaled modeling is aimed mainly at investigation of room acoustics, sound insulation and sound absorption phenomena. Despite such a range of application, there is no method developed that would enable scaling acoustical perforated panels freely, maintaining their sound absorption coefficient in a desired frequency range. However, conducted theoretical and numerical analyses have proven that it is not physically possible to obtain given sound absorption coefficient in a desired frequency range by directly scaling only all of the physical dimensions of a perforated panel, according to a defined characteristic number. This paper is a continuation of the research mentioned above and presents practical evaluation of theoretical and numerical analyses. The measurements of sound absorption coefficient of perforated panels were performed in order to verify previous analyses and as a result find the relations between full-scale perforated panels and their models which will enable to scale them properly. The measurements were conducted in a one-to-eight model of a reverberation chamber of Technical Acoustics Laboratory, AGH. Obtained results verify theses proposed after theoretical and numerical analyses. Finding the relations between full-scale and modeled perforated panels will allow to produce measurement samples equivalent to the original ones. As a consequence, it will make the process of designing acoustical perforated panels easier and will also lower the costs of prototypes production. Having this knowledge, it will be possible to emulate in a constructed model panels used, or to be used, in a full-scale room more precisely and as a result imitate or predict the acoustics of a modeled space more accurately.

Keywords: characteristic numbers, dimensional analysis, model study, scaled modeling, sound absorption coefficient

Procedia PDF Downloads 196
1177 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 113
1176 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 366
1175 A Parallel Implementation of k-Means in MATLAB

Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas

Abstract:

The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.

Keywords: K-means algorithm, clustering, parallel computations, Matlab

Procedia PDF Downloads 385
1174 Comfort Sensor Using Fuzzy Logic and Arduino

Authors: Samuel John, S. Sharanya

Abstract:

Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency.

Keywords: arduino, DHT11, soft sensor, sugeno

Procedia PDF Downloads 312
1173 Evolutional Substitution Cipher on Chaotic Attractor

Authors: Adda Ali-Pacha, Naima Hadj-Said

Abstract:

Nowadays, the security of information is primarily founded on the calculation of algorithms that confidentiality depend on the number of bits necessary to define a cryptographic key. In this work, we introduce a new chaotic cryptosystem that we call evolutional substitution cipher on a chaotic attractor. In this research paper, we take the Henon attractor. The evolutional substitution cipher on Henon attractor is based on the principle of monoalphabetic cipher and it associates the plaintext at a succession of real numbers calculated from the attractor equations.

Keywords: cryptography, substitution cipher, chaos theory, Henon attractor, evolutional substitution cipher

Procedia PDF Downloads 430
1172 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 171
1171 Development of a Decision Model to Optimize Total Cost in Food Supply Chain

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.

Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation

Procedia PDF Downloads 223
1170 Key Transfer Protocol Based on Non-invertible Numbers

Authors: Luis A. Lizama-Perez, Manuel J. Linares, Mauricio Lopez

Abstract:

We introduce a method to perform remote user authentication on what we call non-invertible cryptography. It exploits the fact that the multiplication of an invertible integer and a non-invertible integer in a ring Zn produces a non-invertible integer making infeasible to compute factorization. The protocol requires the smallest key size when is compared with the main public key algorithms as Diffie-Hellman, Rivest-Shamir-Adleman or Elliptic Curve Cryptography. Since we found that the unique opportunity for the eavesdropper is to mount an exhaustive search on the keys, the protocol seems to be post-quantum.

Keywords: invertible, non-invertible, ring, key transfer

Procedia PDF Downloads 179
1169 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children

Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix

Abstract:

Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.

Keywords: vision, attention, oculomotor processes, reading, preschoolers

Procedia PDF Downloads 147
1168 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi

Authors: Ahmad Lutfi, Nikolas Dhega

Abstract:

The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.

Keywords: molybdenite, Malala, porphyries, anomaly B

Procedia PDF Downloads 153
1167 An Online Questionnaire Investigating UK Mothers' Experiences of Bottle Refusal by Their Breastfed Baby

Authors: Clare Maxwell, Lorna Porcellato, Valerie Fleming, Kate Fleming

Abstract:

A review of global online forums and social media reveals large numbers of mothers experiencing bottle refusal by their breastfed baby. It is difficult to determine precise numbers due to a lack of data, however, established virtual communities illustrate thousands of posts in relation to the issue. Mothers report various negative consequences of bottle refusal including delaying their return to work, time and financial outlay spent on methods to overcome it and experiencing stress, anxiety, and resentment of breastfeeding. A search of the literature revealed no studies being identified, and due to a lack of epidemiological data, a study investigating mother’s experiences of bottle refusal by their breastfed baby was undertaken. The aim of the study was to investigate UK mothers’ experiences of bottle refusal by their breastfed baby. Data were collected using an online questionnaire collecting quantitative and qualitative data. 841 UK mothers who had experienced or were experiencing bottle refusal by their breastfed baby completed the questionnaire. Data were analyzed using descriptive statistics and non-parametric testing. The results showed 61% (516/840) of mothers reported their breastfed baby was still refusing/had never accepted a bottle, with 39% (324/840) reporting their baby had eventually accepted. The most frequently reported reason to introduce a bottle was so partner/family could feed the baby 59% (499/839). 75% (634/841) of mothers intended their baby to feed on a bottle ‘occasionally’. Babies who accepted a bottle were more likely to be older at 1st attempt to introduce one than those babies who refused (Mdn = 12 weeks v 8 weeks, n = 286) (p = <0.001). Length of time taken to acceptance was 9 weeks (Mdn = 9, IQR = 18, R = 103.9, n = 306) with the older the baby was at 1st attempt to introduce a bottle being associated with a shorter length of time to acceptance (p = < 0.002). 60% (500/841) of mothers stated that none of the methods they used had worked. 26% (222/841) of mothers reported bottle refusal had had a negative impact upon their overall breastfeeding experience. 47% (303/604) reported they would have tried to introduce a bottle earlier to prevent refusal. This study provides a unique insight into the scenario of bottle refusal by breastfed babies. It highlights that bottle refusal by breastfed babies is a significant issue, which requires recognition from those communicating breastfeeding information to mothers.

Keywords: bottle feeding, bottle refusal, breastfeeding, infant feeding

Procedia PDF Downloads 166